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ON AN EXTENSION OF THE
PICARD-VESSIOT THEORY

H. F. KREIMER

In previous papers, the author has extended the Galois
correspondences between difiPerential Picard-Vessiot extensions
and algebraic matrix groups to Picard-Vessiot extensions of a
wider class of fields with operators, the so-called M-fields.
In this paper, M-field extensions which generalize extensions
by integrals and by exponentials of integrals are studied.

These fields are found to be simple field extensions and
their structure in the case that the extension is algebraic is
investigated. Under suitable restrictions on the fields of con-
stants, the M-Galois groups of these fields are shown to be
commutative. Criteria are established for such solution fields
to be P-V extensions of M-fields of difference and differential
type. An extension obtained by a finite sequence of algebraic
extensions, extensions by integrals, and extensions by expo-
nentials of integrals, is called a generalized Liouville extension.
It is demonstrated that if the connected component of the
identity element in the ikf-Galois group of a regular P-V
extension is a solvable group, then the P-V extension is a
generalized Liouville extension, and if a P-V extension is
contained in a generalized Liouville extension then the con-
nected component of the identity element in the ikf-Galois group
of the P-V extension is solvable.

1, Terminology and notation are briefly considered in § 2, and a
preliminary result on the constants of an algebraic M-extension of an
ΛΓ-field is obtained. The structure of solution fields analogous to
extensions by integrals and criteria for the existence of P-V exten-
sions of this type are determined in § 3, and a similar study of solu-
tion fields analogous to extensions by exponentials of integrals is made
in § 4. In § 5, generalized Liouville extensions are defined, and solva-
bility of the Galois group of a P - V extension is interpreted in terms
of imbedding the extension in a generalized Liouville extension.

2Φ M-rings* The terminology and notaion of this paper are the
same as in [6] and [7]. Let C be an associative, commutative co-
algebra with identity over a ring W, which is freely generated as a
"PΓ-module by a set M. If w —> w is a homomorphism of W into a
ring S, let Cs be the S-module obtained from the Tf-module C by
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inverse transfer of the basic ring to 5. If p is a homomorphism of
a ring R into the algebra (C8)* = Hom# (C8, S); then for every me M
there is a mapping a —> αp(m) of i? into S, which will also be denoted
by m, and the set of these mappings will be called an M-system of
mappings of R into S. Let m —• 2 % peM zmnpn 0 p, where me M,
zmnp £ ^ a n ^ m̂wί> — 0 except for a finite number of elements n and p
in M, be the coproduct mapping of C into C®wC; if a,beR and
me M, (a + b)m — am + δm and (ah)m — Σw, p eir £^(cm)(δp). An M-
ring is a ring together with an M-system of mappings of the ring
into itself. An M-ring of difference type is an M-ring in which the
M-system of mappings consists of homomorphisms, and an M-ring of
differential type is an M-ring in which the M-system of mappings
consists of the identity automorphism and higher derivations of rank
one or greater.

An element c of an M-ring R is a constant if (ca)p — c-ap for
every ae R. The following are equivalent:

( 1 ) c is a constant of R,
( 2 ) cp = c lp,
( 3 ) (ca)m — c(am) for every ae R and me M,
( 4 ) cm = c(lm) for every me M.

The constants of R form a subring of R which contains the identity
element of R and this subring will be denoted by Rc. Suppose h, de R
and d is a unit in R, then bd~xe Rc if, and only if, d(bm) = b(dm) for
every me M. Consequently, if R is a field, so is Rc.

(2.1) LEMMA. Let K be an M-field which is an M-extension of
an M-field L. If K is an algebraic extension of L, then Kc is an
algebraic extension of Lc.

Proof Suppose de Kc and f(x) = xh + ah_λx
h~x + + axx + a0.

is the irreducible, monic polonomial over L for which d is a root. If
ra e M, 0=(f(d))m=(fm)(d), where (fm)(x) = (lm)xh + (ah_1m)xh-1+ +
(axm)x + αom. But then (fm)(x) must be a multiple of f(x), thus
(fm){x) = (lm)f(x) and aam — (lm)aΛ for 0 ^ a ^ h — 1. Therefore,
aae Lc for 0 ^ a g fc — 1 and ώ is algebraic over Lc.

Let S'{M) be the free semi-group with identity generated by the
set M. Operations by elements of S'(M) on an M-ring i? are defined
as follows: the identity element of S'(M) operates on R as the identity
automorphism of R, and any other element of S'(M) operates on R
as the resultant of the operations on JB by its factors. If h is a
positive integer, rlf r2, , rh are h elements of R, and s19 s2, , sh

are h elements of S'(M); denote by W(rlf r2, , rh; slf s2, , sh) the
determinant:
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s, r,s2 . . . rλsh

Sχ ' 2"2 * ' 2"Λ

rhs2 rhsh

An M-field K which is an M-extension of an M-field L is a solu-
tion field over L if there exists a positive integer h and h elements
kl9 k2, , kh of K, such that K = Lζkly k2, - , khy and, for some
choice of h elements t1912, « , th in S'(M), W(kx, k2, «« , &A; ίx, t2, , ίA) =
ΫF0 ^ 0 while W^~1W(k1, k29 , ftΛ; ί̂  - , tΛ_19 tΛ+19 , th, t) e L for
H ί r ^ λ and t = 1 or t =tβm, me M and 1 ̂  β ^ h. The set of
elements k19 k2, , kh is a fundamental set for K over L. K is a
Picard-Vessiot extension of the M-field L if K is a solution field over
L and, additionally, iζ, = Lc and Lc is an algebraically closed field.

3* Extensions by integrals*

(3.1) THEOREM. Let K, L and Lo be M-fields such that K is
an M-extension of L and L is an M-extension of L09 and assume
there exists ke K such that km — (lm)k — ame Lo for every me M.

( i ) Lζky is a solution field over L.
( ii) If Kc~ L(βyc, then Lζky is invariant under M-automor-

phisms of K over L; and, if Lζkyc — Lc, then the M-Galois group
of Lζky over L is commutative.

(in) As abstract fields, Lζky is a simple extension of L by
adjunction of the element k.

(iv) Lζkyc — Lc if, and only if, L{k}c — Lc.
( v ) If k is algebraic over L but k& L and Lζkyc — (L0)c, L is

a field of characteristic p Φ 0 and k is a root of an irreducible
polynomial over L of the form xph + c^xv71"1 + + cxx

v + cox + b,
where h is a positive integer, cω e (L0)c for 0 gΞ a ^ h — 1, and bm —
(lm)be Lo for every me M.

(vi) If L is a field of characteristic zero and k is transcendental
over L then Lζkyc — Lc if, and only if there does not exist be L
such that bm — (lm)b — am for every me M.

(vii) If Lζky is a P~V extension, such an extension is unique.

Proof, (i) If Lζky — L, then Lζky is trivially a solution field
over L with fundamental set consisting of 1. Therefore, assume kg L.
If am = 0 for every me M, then ke Kc and Lζky is a solution field
over L with fundamental set consisting of k. If there exists ne M

1 ksuch that an Φ 0, then the determinant In kn = an Φ 0 while 1 and

k are solutions of the equations xm — ama~\xn) + ((lm) — (ln)ama~ι)x



194 H. F. KREIMER

and (xn)m = (anm + Σ J α » X&w) + ((ln)m —
where Σ m = Σ«,reM zmqr((ln)q)ar, for every meM. It is then readily
established that Lζky is a solution field over L with fundamental set
consisting of 1 and k.

(ii) An ikf-isomorphism φ of Lζky over L into K is completely
determined by its action on k, and (kφ — k)m — {km)φ — km =
(αm + (lm)fc)<p — αm — (lm)fc = (lm)(kφ — &) for every meM. There-
fore kφ — k e Kc or kφ = k + c for some constant c. If Kc — Lζkyc,
then Lζky is invariant under M-automorphisms of K over L; and, if
IXJc^e — Lc, then the ikf-Galois group of L(ky over L is isomorphic to
a subgroup of the additive group of constants of L.

(iii) The subring L[k] QK of polynomials over L in k is an M-
stibring of K, and Lζky is simply the field of fractions of L[k] in K.
(See Corollary (4.2) of [6]).

(iv) If LKkyc — Lc then certainly L{k}c — Lc. If & is algebraic
over L, then Lζl^y = L[k] = L{k} and the converse is true. Let k be
transcendental over L. An element of Lζky may be represented as
the ratio of a polynomial f(k) e L[k] and a monic polynomial g{k) e L[k].
Suppose f(k) (g{k))~1eKc and is expressed in lowest terms, i.e., f(k)
and g{k) are relatively prime. Then g(k)-((f(k))m) — f(k)-({g(k))m)
for every meM; and, were (g(k))m Φ (lm) g(k) for some meM, then
/(fc).(^(fc))-1 - ((f(k))m - (lm)f(k)).((g(k))m - {lm)g{k)T\ This last is
impossible since the degree of (g(k))m — (lm)g(k) is less than the degree
of g(k). Thus (g(k))m = (lm)g(k) and (f(k))m = (lm)f(k) for every
meM, consequently /(&), #(&) e L{fc}c. Therefore, if L{k}c = Lc, then

(v) Suppose & is algebraic over L. If L[y] is the ring of poly-
nomials over L in an indeterminate y, determined as an ikf-extension
of L by setting ym = αm + (lm):?/ for every me M; there is a canonical
ikί-homomorphism ^ of L[y] over L into K such that 2/17 = k. Let /
be the kernel of η, and let f(y) be the monic polynomial which gener-
ates I, i.e., the minimal polynomial for k over L. Because I is an
M-ideal, (f(y))m must be a multiple of /(#) and computation shows
that (f(y))m= (lm)f{y)9 for every meM. Therefore f(y)eL[y]ΰ.
Suppose L</c>c = Lc and 0(2/) e L[y]c. Then #(&) G Lζkyc = Lc, say
gf(fc) = c, and fc is a root of g(y) — c. Therefore g(y) — c is a multiple
of /(^/) and, if g(y) has positive degree, it is not less than the degree
of f{y). Subsequently assume only that L[y]c contains polynomials of
positive degree, and f(y) is such a polynomial of least positive degree.
If d e Lc, (y + d)m = (lm)(y + d) + am and (f(y + d))m = (lm)f(y + d)
for every meM. Therefore f(y + d) and f(y + d) — /(̂ /) are elements
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of L[y]c. The degree of f(y + d) — f(y) is less than the degree of
f(y) and, therefore, cannot be positive. Thus f(y + d) — f(y) =
f(d) — /(0); but this identity can be valid only if f(y) is a polynomial
of degree not greater than one, or L is a field of characteristic p Φ 0
and f(y) — b + J,Lo ^aypOί>

f where h is a nonnegative integer and b
and Ca>, 0 ^ a ^ hf are elements of L. If p is the representation of
L[y] in (CzCy])* associated with the ikf-system of mappings on L[y]9

then yp = a + yΛp where a is that element of (CLίy])* such that a(m) =
αm for every me M. If L is a field of characteristic p Φ 0 and /(]/) =
6 + Σά=oc*y*", then /(?/) lp = (f(y)Y = 6P + Σ£=o <£<*** + ΣiU»**•<£.
Therefore cΛ lp = cp and c , e L c for O^a^h and, if ^ ( L o ) , for
0 S a S hy then 6m — (lm)δ = — Σ L o (cpapOi)(m)e LQ for every me M.
The assertion in (v) is now immediate.

(vi) Suppose L is a field of characteristic zero and k is transcen-
dental over L. If L<7c)>c ^ Lc, then L{k}c Φ Lc and there is a poly-
nomial over L in & of positive degree which belongs to L{k]c. Let
f(k) be such a polynomial of least degree. By the argument in part
(v), the degree of f(k) is one. Then f(k) generates a prime M-ideal
1 in L{k) and L{k}/I is Λf-isomorphic to L. If b is the image of k + 7
under such an M-isomorphism, then bm — (lm)δ = αm for every me M.
Conversely, if there exists be L such that bm — (lm)b ~ am for every
me M, then k — be L{k}c and L<&>c =£ Lc.

(vii) Let L<(/c)> be a P - F extension of L and let LζkfS) be a second
P - F extension of L such that A'm — (lm)kr = am for every me M.
If fc and /c' are transcendental over L, there is an isomorphism ψ of
Lζky over L onto Lζk'y such that ^ = A:' and φ is an M-isomorphism.
Suppose k is algebraic over L and either &' is transcendental over L
or algebraic over L but of degree over L not less than the algebraic
degree of k over L. If /(#) is the monic minimal polynomial for k
over L, then /(&') e L(kryc = Lc by the argument in part (v); say
f{k) — d. Then k! is a root of f(x) — cZ and fc' is algebraic over L
with the same degree over L as k. If the degree of k over L is one,
then Lζky — L ~ L(kfS}. If the degree of k over L is greater than
one, then L is a field of characteristic p Φ 0 and f(x) — x?71 +
ch^xvlι~x + +c±xp + cQx + 6 where /& is a positive integer and ca e Lc

for 0 ^ α ^ fe — 1. Let c be a root in the algebraically closed field
Lc of x*h + c^x?71-1 + + cxx

p + cox + d. Then /(&' + c) = /(&')
— d — 0 and there is an isomorphism 9? of L<(&)> over L onto LζkfS}
such that kφ ~ kr + 0. φ is an ikί-isomorphism.

(3.2) COROLLARY. Let L be an M-field of characteristic zero
such that Le is algebraically closed, and let am, me M, be elements
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of L. There exists a P-V extension Lζky of L such that km—
(lm)k = am for every meM if, and only if (1) there exists an element
be L such that bm — (lm)b = am for every meM, in which case
Lζky = L, or (2) if L[y] is the ring of polynomials over L in an
indeterminate y, determined as an M-extension of L by setting ym =
am + (lm)y for meM, and L(y) is the field of fractions of L[y],
then there is a structure of an M-field on L(y) such that L(y) is an
M-extension of L[y], in which case Lζky and L(y) are M-isomorphic.

Proof. If there exists b e L such that bm — (lm)b = am for every
me M, set k = b to obtain a trivial P-V extension of L. If there
does not exist be L such that bm — (lm)b = am for every meM, but
there is a structure of an M-field on L(y) such that L(y) is an M-
extension of L[y]; then L(y)c = Lc by part (vi) of Theorem (3.1) and,
setting k~y, Lζky — L(y) is a P-V extension of L. The converse
is immediate from parts (iii) and (v) of Theorem (3.1).

If L is an M-field of differential type and of characteristic zero
such that Lc is algebraically closed, Corollary (3.2) may be applied to
establish the existence of P - V extensions by adjunction of integrals.

(3.3) COROLLARY. Let L be an M-field of difference type such
that Lc is algebraically closed, and let am, meM, be elements of L.
There exists a P-V extension Lζky of L such that km — k — am for
every me M if, and only if, the characteristic is 0 or the following
condition is fulfilled when the characteristic is p Φ 0: that there do
not exist a nonnegative integer h, C&e Lc for 0 ^ a ^ h, and be L,
such that bm — b + Σϊ=ocΛam)p (* = dme Lc for every meM, where
{dm I m e M) is a finite set not equal to {0}.

Proof. Let L[y] and L(y) be as in Corollary (3.2). The M-system
of mappings on L[y] consists of isomorphisms and these can be extended
to L(y), so that L(y) is an M-field which is an M-extension of L[y].
Because of Corollary (3.2), only the case when L is a field of charac-
teristic p Φ 0 need be considered. If L[y]c — Lc, then L(y)c = Lΰ by
part (iv) of Theorem (3.1) and, setting y = k, Lζky — L(y) is the
desired P - V extension of L. If there exists an irreducible polynomial
in L[y]c of positive degree, this polynomial generates a proper prime
M-ideal I in L[y], The M-field L[y)/I is an algebraic extension of L
and (L[y]/I)c = Lc by Lemma (1.1), since Lc is algebraically closed.
Setting k = y + I, L<&> = L[y]/I is the desired P-V extension of L.
Therefore, assume that there exist polynomials of positive degree in
L[y\c, let f(y) be such a polynomial of least positive degree, but
assume f{y) is reducible. Analyzing f(y) as in the proof of part (v)
of Theorem (3.1), f(y) must have the form f(y) = V + Σί=o c'ay** where



ON AN EXTENSION OF THE PICARD-VESSIOT THEORY 197

i is a nonnegative integer and cf

a e Lc for 0 :§ a S i Let g(y) be an
irreducible monic polynomial which divides f(y), and let ζ be a root
of g(y) in a splitting field for f(y) over L. The roots of f(y) are the
elements ζ + e where e is a root of /(#) — br and lies in the algebrai-
cally closed field Lc. The roots of g(y) are those elements ζ + e where
^ is a root of #(ζ + y). Let e and e' be roots of #(ζ + y); there is an
automorphism of the splitting field of f(y) over L which maps ζ to
ζ + e' and its inverse maps ζ + β t o ζ + β — β'. Then #(ζ + β — e') = 0,
e — e' is again a root of #(ζ + y), and the roots of g(ζ + #) form an
additive subgroup of Lc. Therefore g(ζ + y) must be a ^-polynomial
over Lc, say g(ζ + y) — Σ*-=o c«2/p" where ϋ is a nonnegative integer
and cΛ e Lc for 0 ^ a ^ fc; and (/(?/) = g(ζ + (y — ζ)) must have the
form g(y) ~ b + Σ»=o cc*yp<ύ' Any irreducible monic polynomial which
divides f(y) will have the form g(y + e) where e is a root in Lc of
f(y) - V. If me M; (f(y))m = /(y), (flr(y))m = flr(y + e J - g(y) + dn,
and bm + ΣLoc«(^m)p£" = δ + ^ w , where dm = g(ej — beLc and ew is
a root of /(T/) — b\ Since 0(2/) is a proper factor of /(#), g(y) g L[?/]c

and dm ^ 0 for some me M.

Conversely, assume there exist a nonnegative integer h, c* e Lc for
Q ^ a ^ h, and 6 e L, such that bm — b + Σ*=o cΛ(αTO)pα = dmeLc for
every meM, where { d m | m e M } is a finite set not equal to {0}. Let
E be the additive subgroup of Lc generated by {dm | m e M}, let g(y) =
b + ΣiLoW", let f(y) = n.e*(v+j), and let f(y) = f(g(y)). f(y)
will be a p-polynomial over Lc, i.e. /(T/) will be a finite linear combina-
tion over Le of monomials ypβ, β a nonnegative integer; f(y) will have
the form f(y) = bf + Σ^=o ̂ l?/pQ5 where i is a nonnegative integer and
cf

ae Lΰ for 0 ^ α ^ i; and /(i/)e L[y]e. If the desired P - F extension
Lζky existed, f(k) would be an element of LζUye — Lc. If c is a root
in Lc of f(y) - bf + f(k), then f(k + c) = 0 and some factor #(fc + c) +
β = 0. But then 0 = (g(k + c) + e)m = g(k + c) + e + dm — dm for
every meM, contrary to the assumption that {dm | m e M] Φ {0}.

(3.4) COROLLARY. Let L be an M-field such that the M-system
of mappings on L consists of the identity automorphism m0 and
infinite higher derivations and Lc is algebraically closed. If am, meM
and m Φ m0, are elements of L, there exists a P-V extension of
differential type Lζky of L such that km = am for every me M,mΦ m0.

Proof. Let amo = 0, and let L[y] and L(y) be as in Corollary
(3.2). The M-system of mappings on L[y] consists of the identity
automorphism m0 and infinite higher derivations, and these can be
extended to L(y) so that L(y) is an M-field of differential type which
is an M-extension of L[y]. By repetition of the argument in the
beginning of the proof of Corollary (3.3), only the case when L is a
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field of characteristic p Φ 0 and L[y]c contains polynomials of positive
degree need be considered. Let f(y) e L[y]c be a polynomial of positive
degree, and let g(y) be an irreducible factor of f(y), say f(y) =
Q(y)'(g(y))h'pl where h is a positive integer not divisible by p, i is a
nonnegative integer, and q(y) is not divisible by g(y). Let {D1,D2,D3, •}
be an infinite higher derivation on L[y] contained in the Λf-system of
mappings on L[y]. If Do = m0, (g(y))D0 = g(y). Let i be a positive
integer and assume that (g(y))Da is a multiple of g(y) for 0 ^ # < i .
Observe that {g(y))v%Da = 0 for every positive integer α which is not
divisible by pι and {g{y))Ί>τDoύ.pi = ((g(y))Da)

p% for every nonnegative
integer a. Then 0 = (f(y))Dd.pi which is equal to a sum of terms
divisible by (g(y))κ'pi plus the term hq(y)'(g(y)Yh-1^i'((g(y))Djy\ and
(g(y))Dj must be divisible by g(y). Consequently g(y) generates a pro-
per prime M-ideal I in L[y], L[y]/I is an algebraic extension of L
and, setting k — y + I, Lζky = L[y]/I is the desired P- V extension
of L.

4* Extensions by exponentials of integrals*

(4.1) THEOREM. Let K, L, and Lo be M-fields such that K is an
M-extension of L and L is an M-extension of LQ, and assume there
exists a nonzero ke K such that km = amk, where am e Lo, for every
me M.

( i) L<#> is a solution field over L.
(ii) If Ke = Lζkyc, then Lζtiy is invariant under M-automor-

phisms of K over L; and, if Lζkye — Lc, then the M-Galois group
of Lζky over L is commutative.

(iii) As abstract fields, Lζky is a simple extension of L by
adjunction of the element k.

(iv) Lζk>e = Lc if, and only if, L{k}c = Lc.
(v) If k is algebraic over L and L(kye = Lc, then k is a root

of an irreducible polynomial over L of the form xh + b, where h is
a positive integer, b Φ 0 and (6m)&~1 e Lo for every me M.

(vi) If Lζky is a P-V extension, such an extension is unique.

Proof. ( i ) It is easily verified that Lζky is a solution field over
L with fundamental set consisting of k.

(ii) An M-isomorphism φ of Lζky into K is completely deter-
mined by its action on k, and k{{kφ)m) = k{(km)φ) = k((ajc)φ) —
(amk)-(kφ) — (kφ)-(km) for every meM. Therefore {kφ)k~ιeKc or
kφ = ck for some nonzero constant c. If Kc — Lζk!yc, then Lζky is
invariant under M-automorphisms of K over L; and, if L<A>0 = Lc,
then the M-Galois group of Lζky over L is isomorphic to a subgroup
of the multiplicative group of nonzero constants of L.
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(iii) The argument is the same as in part (iii) of Theorem (3.1).
(iv) If Lζkye = Lc then certainly L{k}c = Lc. If fc is algebraic

over L, then Lζky = L[k] = L{k} and the converse is true. Let k be
transcendental over L. An element of Lζky may be represented as
the ratio of a polynomial f(k) e L[fc] and a nonzero polynomial <7(fc) e L[k]
with either /(0) = 1 or g(0) = 1. Suppose /(fcH^fc))"1 e ifc and is
expressed in lowest terms. Then g(k) ({f(k))m) = f(k) ((g(k))m) for
every meM; and, were (g(k))m Φ (lm)g(k) for some meM, then
/(fcH^fc))-1 = ((/(fc))m - (lm)/(fc)) ((#(fc))m - (lmMfc))-1. This last is
impossible, since it follows from the equations /(0) ((g(0))m — (lm)#(0)) =
<7(0) ((/(0))m - (im)/(0)) = 0 that (/(fc))m - (lm)/(fc) and (</(fc))m -
(lm)g(k) are both divisible by fc. Thus (g(k))m — (lm)g{k) and (f(k))m —
(lm)f(k) for every meM, consequently f(k), g(k)e L{k}c. Therefore,
if L{k}c = Lc then

( v ) Suppose A; is algebraic over L. If I/[τ/] is the ring of poly-
nomials over L in an indeterminate y, determined as an M-extension
of L by setting ym = amy for every meM; there is a canonical Af-
homomorphism 7] of L[τ/] over L into X such that y^ = fc. Let J be
the kernel of jy. Since k Φ 0, i/?/. Let /(#) be a polynomial such
that f(y) generates I and /(0) = 1. Because I is an Λf-ideal, (f{y))m
must be a multiple of f(y) and computation shows that (f(y))m =
(lm)f(y), for every meM. Therefore /(#) e L[τ/]c. Suppose L<(A;X = L c

and g(y) 6 L[i/]β. Then gf(fc) e L<fc>c = Lc, say g{k) = c, and fc is a
root of ^(T/) — c. Therefore g(y) — c is a multiple of /(T/) and if #(#)
has positive degree, it is not less than the degree of f(y). Subsequently
assume only that L[y]c contains polynomials of positive degree, and
f(y) is such a polynomial of least positive degree. If b^y71 is the
highest term of f(y) and meM, then the identity (f(y))m = (lm)f(y)
implies {b~Ύyh)m = {lm)b~ιyh. Therefore b~λyh and f(y) — δ"1^^ are ele-
ments of L[^/]c. The degree of f(y) — b~λyh is less than the degree of
f(y) and, therefore, cannot be positive. Thus f(y) — b~τyh — /(0) =
ce Lc or f(y) = b~λyh + c. Since ZrV e ^Mo, ί>(^m) = i/Λ(6m) or
(6m)6"1 = (yhm)y~h e LQ for every meM. The assertion in (v) is now
immediate.

(vi) Let L<#> be a P - 7 extension of L and let Lζkfy be a second
P-Fextension of L such that kf Φ 0 and &'m = αmfc' for every meM.
If A; and fc' are transcendental over L, there is an isomorphism φ of
Lζky over L onto Lζk'y such that fc^ = fc' and φ is an ikf-isomorphism.
Suppose fc is algebraic over L and either fc' is transcendental over L
or algebraic over L but of degree over L not less than the algebraic
degree of fc over L. lί xh + b is the minimal polynomial for fc over
L, then b~\kr)h + 1 e L<(fc'X = ί/c by the argument in part (v); say
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b~\k')h + l = d. Then k' is a root of xh + 6(1 - d) and d Φ 1. Let
c be a root in the algebraically closed field Lc of xh — (1 — d)~ι. Then
{ckf)h + 6 = 0 and there is an isomorphism φ of Lζky over L onto

such that A;*5" = ckf. φ is an M-isomorphism.

(4.2) COROLLARY. Let L be an M-field of difference type such
that Lc is algebraically closed, and let am, me M, be elements of L.
There exists a P~V extension Lζky of L such that k Φ 0 and km ~
amk for every me M, if and only if am Φ 0 for every me M and
there do not exist positive integers h and i and a nonzero be L, such
that bm = cm(am)hb for every me M, where cm is an ΐth root of unity
and some cm Φ 1.

Proof. If the desired P - V extension Lζtiy exists and me M, m
is an isomorphism on Lζky. Since k Φ 0, km — amk Φ 0 and am Φ 0.
Therefore assume am Φ 0 for every me M. Let L[y] be the ring of
polynomials over L in an indeterminate y, determined as an M-exten-
sion of L by setting ym = amy for every me M, and let L(y) be the
field of fractions of L[y\. The ikf-system of mappings on L[y] consists
of isomorphisms and these can be extended to L{y), so that L(y) is
an M-field which is an Λf-extension of L[y]. If L[y]c = Lc, then
L(y)β — Lc by part (iv) of Theorem (4.1) and, setting k — y, Lζtiy =
L(y) is the desired P-V extension of L. Suppose f(y)Φy is an
irreducible polynomial in L[τ/]c of positive degree. f(y) generates a
proper prime M-ideal I in L[y\, L[y]/I is an algebraic extension of L,
7/ ί I and, setting k — y + I, L<fc> = L[y]/I is the desired P - F exten-
sion of L. Consequently, assume that there exist polynomials of
positive degree in L[y]c, let f(y) be such a polynomial of least positive
degree, f{y) may be chosen so that /(0) ^ 0, but assume f{y) is re-
ducible. Analyzing f(y) as in the proof of part (v) of Theorem (4.1),
f(y) must have the form {b')~ιyι + c' where i is a positive integer.
If g(y) is an irreducible factor of f(y) such that #(0) = 1, then g(y)
has the form g(y) = b~ιyh + 1 where h is a positive integer, and all
other such factors of f(y) have the form g(dy) where d is an ith
root of unity in Lc. If meM; (f(y))m = /(#), (g(y))m = g{dmy) =
c^b^y*1 + 1 and &m — cm{am)hb, where cm = (dm)~λ and dw is an ίth
root of unity. Since g(y) is a proper factor of f(y), g(y) £ L[y]c and
cm Φ 1 for some meM.

Conversely, assume there exist positive integers h and i and a
nonzero b e L, such that bm = cm(am)hb for every meM, where cm is
an ΐth root of unity and some cm Φ 1. Let 0(2/) = ί r V + 1, and let
f{y) be the product of the distinct polynomials g(dy) where d is an
h-iih root of unity. f{y) will have the form (b'^y^ + l and f(y) e L[y]c.
If the desired P~V extension iXky existed, f(k) Φ 1 would be an
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element of L<fc>c = Lc. If c is a root in Lc of yh'{ - (1 - f{k))~\
then f(ck) = 0 and some factor g(cdk) — 0. But then 0 = (g(cdk))m =
Cmlb~ι(cdk)h + 1 = 1 — c"1 for every me M, contrary to the assumption
that some cmφ 1.

(4.3) COROLLARY. Let L be an M-field of differential type and
of characteristic zero such that Le is algebraically closed. If mQe M
is the identity automorphism on L and am, me M and m Φ m0, are
elements of L, there exists a P-V extension of differential type Lζky
of L such that k Φ 0 and km = amk for every me M, m Φ m0.

Proof. Let amo = 1, and let L[y] and L(y) be defined as in the
proof of Corollary (4.2). The M-system of mappings on L[y] consists
of the identity automorphism m0 and higher derivations, and these
can be extended to L(y) so that L(y) is an M-field of differential type
which is an M-extension of L[y]. By repetition of the argument in
the beginning of the proof of Corollary (4.2), only the case when
L[y]c contains polynomials of positive degree need be considered. Let
f(y) e L[y]c be a polynomial of positive degree, choose f(y) so that
/(0) Φ 0, and let g(y) be an irreducible factor of f{y), say f(y) —
Q(y)'(9(y))h where h is a positive integer and q(y) is not divisible by
g(y). Let {Da} be a higher derivation on L[y] contained in the M-
system of mappings on L[y]. If Do — m0, (g(y))DQ = g(y). Let i be a
positive integer not greater than the rank of {£>*} and assume that
(g{y))D» is a multiple of g(y) for 0 ^ a < i. Then 0 = {f(y))Di

which is equal to a sum of terms divisible by (g(y))h plus the term
hq(y)'(g(y))h~κ((g(y))Di)f and {g(y))Di must be divisible by g(y). Con-
sequently g(y) generates a proper prime M-ideal I in L[y], L[y]/I is
an algebraic extension of L,y$ I and, setting k = y + /, L(β} =
L[y]/I is the desired P-V extension of L.

(4.4) COROLLARY. Let L be an M-field, such that the M-system
of mappings on L consists of the identity automorphism m0 and
infinite higher derivations and Lc is algebraically closed. If amf

me M and m Φ m0, are elements of L, there exists a P-V extension
of differential type Lζky of L such that k Φ 0 and km = amk for
every me M, m Φ m0.

Proof. Because of Corollary (4.3), only the case where L is a
field of characteristic p Φ 0 need be considered. Let amo — 1, and let
L[y] and L(y) be defined as in the proof of Corollary (4.2). The argu-
ment is then analogous to the proof of Corollary (3.4).
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5* Generalized Liouville extensions*

(5.1) DEFINITION. An M-field K which is an M-extension of an
M-field L is a generalized Liouville extension of L if there exists a
positive integer i and i + 1 intermediate M-subfields of K, L —
Lo S Lλ S Q L{ — Kf such that for each integer α, 1 ^ α :g i,
there exists ke La such that LΛ — La_xζky and

(1) LΛ is an algebraic extension of LΛ_χ, or
( 2 ) &m — (lm)k = α m e Lα_x for every me M, or
( 3 ) /cm = αm& where αme La_x for every me M.
If L is an M-subfield of an ikf-field K, let AK(L) denote the M-

Galois group of K over L. If G is a subgroup of AK(L), let /(G)
denote the set of all elements of K left fixed by the automorphisms in
G; I(G) is an Λf-subfield of if and L g I(G) S K. Suppose K is a
solution field over an M-field L such that Kc = Lc and &!, Λ2, , ik̂
is a fundamental set for i ί over L. If φ e A ^ L ) , then kaφ —
Σβ=i c«β^β, 1 ^ α ^ i, where {caβ)1^cύ}β^j is a matrix over Kc — Lc, by
Theorem (3.2) of [7]. The structure of AK(L) may be determined
analogously to the analysis of the differential Galois group presented
in Kaplansky's An Introduction to Differential Algebra*. The results
needed in the sequel will be summarized here. AK(L) is an algebraic
matrix group over Lc and the algebraic subgroups of AK(L) are the
subgroups Aκ{Lr) where Lr is an intermediate ikf-subfield of K, L S=
V £ K. If H is the connected component of the identity element of
AK(L), then H is an algebraic subgroup of finite index in AK(L).
Therefore H = AK(L) where L — I(H) and L is a finite dimensional
algebraic extension of I(AK(L)). Moreover, L is algebraically closed in
K. Indeed, if k e K is algebraic over L, then Aκ{Lζky) is an algebraic
subgroup of finite index in H since the left cosets of H mod Aκ(L(ky)
are in one-to-one correspondence with the distinct images of k under
the automorphisms in H. Because H is connected, Aκ{L(ky) — H and
ke L.

(5.2) THEOREM. Let K be a P-V extension of an M-field L.
If the connected component of the identity element in AK(L) is a
solvable group, then K is a generalized Liouville extension of I(AK(L)).

Proof. Let H be the connected component of the identity element
in AK(L) and let L — I(H). L is a finite dimensional algebraic exten-
sion of I{AK{L)). Since H is a connected, solvable algebraic matrix
group over the algebraically closed field Lc, a fundamental set ku k2, ,
kj for K over L may be chosen so that the M-automorphisms of H
are represented by triangular matrices, say kaφ — YJβ=a caβ(φ)'kβ for
φe H and 1 ^ a ^ j , where the coefficients caβ{φ) e Lc. It me M and
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", then ((kύm)kj1)φ = ((kjφ)m)(kjφy1 = ((Cjj(φ) (kjm))(cjj(φ)'kj)~1 =
(k^kj1 and (kjm)kj1e L. Thus kάm = amkj where ameL for every
me M. Ii me M and φe H, let K(m) — {kjqλ)m — (Xm)kjqλ and

for a ^ /3 ̂  j 1 — 1 and 1 ^ α ^ j" — 1; then

(K(m))φ =

Σ
β

By Theorem (3.2) of [7], K is finitely generated as an abstract field
over L 2 L; therefore every intermediate subfield is also finitely gener-
ated over L. Consequently, if V is the M-subfield of K generated
over L by the K(m), me M and 1 ^ a ^ j ~ 1, then there are finitely
many me M such that U is generated as an M-field over L by the
kr

ω(m) for these m and 1 ^ α: g j - 1. By induction on j , it may be
assumed that V is a generalized Liouville extension of I(AK(L)). Since
(kcckj^m — (lm)/^/ 1 = A^(m)e L' for every me M and 1 ^ ^ ^ i — 1
while kάm = α m ^ where α m e L g L ' for every me M, it follows that
iΓ is a generalized Liouville extension of I(Ak(L)).

In connection with this theorem, it should be noted that I(AK(L)) —
L if K is a regular field extention of L. If if is an ikf-field of dif-
ferential type, then I(AK{L)) ~ L provided only that if is a separable
field extension of L.

(5.3) LEMMA. Let Kf, K, V and L be M-fields such that Kf is
an M-extensίon of L, K and U are M-subfields of Kr and contain
L, and Kr is generated by its subfields K and V'.

(i) If K is a solution field over L, Kr is a solution field over
V and a fundamental set for K over L is a fundamental set for
K' over U.

(ii) If K and I! are linearly disjoint over L, there is a canonical
isomorphism of AK(L) into AK,{U). Moreover, if K is a solution
field over L, Kc — Lc, K'c = Un and AK(L) and Aκ,{Lf) are represented
by matrices with respect to the same fundamental set for K over L
and Kf over U\ then this canonical isomorphism is the identity map
on matrices.

Proof (i) The verification is immediate from the definition of
solution field.

(ii) If K and V are linearly disjoint over L, automorphisms of
K over L extend uniquely to automorphisms of K' over 1/ and M-
automorphisms of K over L extend to M-automorphisms of Kr over
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U, yielding an isomorphism of Ak{L) into AK,(L'). The remaining
assertion is immediate.

The converse of theorem (5.2) is a consequence of

(5.4) THEOREM. If Kf is a generalized Liouville extension of
an M-field L and K is an intermediate M-subfield of Kf such that
K is a P-V extension of L, then the connected component of the
identity element in AK(L) is a solvable group.

Proof. By Corollary (2.3) of [7], K and K[ are linearly disjoint
over Kc = Lc, whence K and L(K'C) are linearly disjoint over L. By
Lemma (5.3), K(K'C) is a solution field over L(K'); and there is a
matrix representation for the algebraic group AK(L) over Lcy a matrix
representation for the algebraic group Aκ(K')(L(Kc)) over K'c 3 Lc, and
a canonical isomorphism of AK{L) into Aκ{K'e)(L(Kl)) which is the identity
map on matrices. If H is the connected component of the identity
element in AK(L), then H is an irreducible component of AK(L)
and its image in Aκ{κf){L(K'c)) is irreducible, hence connected, since
Lc is algebraically closed. Therefore H is mapped into the connected
component of the identity element in Aκ(κ>e)(L(K!))f and it will suffice
to prove the theorem under the assumptions that K is merely a solu-
tion field over L but K'c ~ Lc.

Let L = Lo g Lt S S L = Kf be as in definition (5.1), and let
k e Lλ be such that Lλ — L<(ky and

( 1 ) L2 is an algebraic extension of L, or
( 2) km — (lm)fc = ame L for every me M, or
( 3 ) km — amk where ame L, for every me M.
Be induction on i, it may be assumed that the connected component

of the identity element in Aκ{ky(L^) is solvable. Let L — I(H), where
again H denotes the connected component of the identity element in
AK(L). K is a regular extension of L, since L is algebraically closed
in K and L is the fixed field of a group of automorphisms of K whence
K is a separable extension of L. If L1 is an algebraic extension of
L, then Lζti} is an algebraic extension of L and K and Lζky are
linearly disjoint over L. The canonical isomorphism of H = AK(L) into
Aκ<ky(Lζky) given by lemma (5.3) must map H into the connected com-
ponent of the identity element in Aκ<k>(L^f whence H is solvable.

Assume L1 is not an algebraic extension of L. If /c is transcen-
dental over K, then Lγ = L(fc) and iΓ<fc> = ΐΓ(Jfc) by Theorems (3.1)
and (4.1). K and L1 are linearly disjoint over L, so again there is a
canonical isomorphism of H into the connected component of the iden-
tity element in Aκ{ky{L^) and H is solvable. Suppose k is algebraic
over K. If fcm = ajz where ame L for every m e M , then fcfe + b — 0
where A is a positive integer, 6 e K and again (6m)6~1 e L for every
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me M. If km — (lm)fe = ame L for every me M, then L is a field
of characteristic p Φ 0 and fcpΛ + c^Jc^"1 + + cjfc* + cQk + 6 = 0
where h is a positive integer, cae Kc — Lc for O ^ α ^ f c — 1, be K
and again 6m — (lm)be L for every me M. In either case L< )̂> is
invariant under the automorphisms in AK(L) and AL<b>(L) is commuta-
tive, by Theorems (3.1) and (4.1). Therefore, Aκ(L^by) is an invariant
subgroup of AK(L) and the factor group, which is isomorphic to a
subgroup of AL<b>(L), is commutative. Lx is an algebraic extension of
Lζby and, by a preceding argument, the connected component of the
identity element in Aκ(Lζby) is canonically isomorphic to a subgroup
of the connected component of the identity element in Aκ{ky{L^) and is
solvable. Therefore H, the connected component of the identity ele-
ment in AK(L), is solvable by Lemma (4.9) of [3].
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