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WAVE OPERATORS AND UNITARY EQUIVALENCE

Tosio KATO

This paper is concerned with the wave operators W± =
W±(Hl9 Ho) associated with a pair Ho, Hi of selfadjoint opera-
tors. Let (M) be the [set of all real-valued functions φ on
reals such that the interval (—00, 00) has a partition into a
finite number of open intervals Ik and their end points with
the following properties: on each Ik, <f> is continuously dif-
ferentiable, φ1 Φ 0 and φ' is locally of bounded variation.
Theorem 1 states that, if Hi = Ho + V where V is in the trace
class T, then W'± ± W±{φ{H1\ φ(H0)) exist and are complete
for any φe(M); moreover, M'± are "piecewise equal" to W±
(in the sense to be specified in text). Theorem 2 strengthens
Theorem 1 by replacing the above assumption by the condi-
tion that φn(H0 = φn(H0) + Vnt VneT, where ψne(M) and ψn

is univalent on (—n, n) for n = 1, 2, 3 , . . . . As corollaries we
obtain many useful sufficient conditions for the existence and
completeness of wave operators.

1* Introduction* The present paper is a continuation of earlier
papers of the author on the theory of wave and scattering operators
and the related theory of unitary equivalence of selfadjoint operators.

We begin with a brief review of relevant definitions and known
results (see Kato [4> 5] and Kuroda [6]), adding some new definitions
for convenience. Let ξ> be a Hubert space and let H be a selfadjoint
operator in ξ> with the spectral representation H = $ XdE(X). A vector
u e ξ> is absolutely continuous (singular) with respect to H if (E(X)u,u)
is absolutely continuous (singular) in λ (with respect to the Lebesgue
measure). The set of all ueξ) which are absolutely continuous (sin-
gular) with respect to H forms a subspace of ξ), which we call the
absolutely continuous (singular) subspace with respect to H and denote
by &ac(&s) These two subspaces are orthogonal complements to each
other and reduce H. The part of H in ξ>ac($>s) is called the absolutely
continuous (singular) part of H and is denoted by HaG (Hs)

Let Hh j = 0, 1, be two selfadjoint operators in ξ) with the spec-
tral representation Hά — \ XdEj(X), and let P3 be the projection on the
absolutely continuous subspace ξ>y,αc with respect to Hά. If one or
both of the strong limits

( 1 . 1 ) W± = W±(HU Ho) = 8- lim exp (itH,) exp (-itHQ)P0
ί-»±oo

exist(s), it is (they are) called the (generalized) wave operator(s).

Received January 8, 1964. This work was sponsored (in part) by Office of Naval
Research Contract 222 (62).

171



172 TOSIO KATO

W+ is, whenever it exists, a partial isometry on ξ> with initial set
ξ>0,αc and final set Wl+ contained in φ l f α c . 2JΪ+ reduces Hl9 and the part
of Hτ in 30̂ + is unitarily equivalent to H0>ac, with

(1.2) E1(X)W+ = TΓ+£?o(λ) , - - < λ < + oo

The wave operator W+ will be said to be complete if the final set 2Ji+

coincides with ξ>i,αc.
W+ has the property that, whenever W+(HU HQ) and TF4(if2, HJ

exist, then TF+(2fa, So) exists and is equal to W+(H2, H^)W+{HU Ho).
If both W+(HU Ho) and W+(HQ, Hλ) exist, then they are complete and
are the ad joints to each other.

Similar results hold for W+ replaced by W_.
If Hx — Ho is small in the sense that H1 — Ho + V with V be-

longing to the trace class T of operators on ξ>, then both W±(HU HQ)
exist and are complete. The main purpose of the present paper is to
prove some generalizations of this theorem, which involve what we
shall call the principle of invariance of wave operators. Roughly
speaking, this principle asserts that the wave operators W±(φ(H1)9φ(HQ))
exist for an " a r b i t r a r y " function φ and are independent of φ for a
wide class of functions φ. Its precise formulation is given in Theorems
1 and 2 proved below.

The proof of these theorems is rather simple, depending essentially
on a single inequality proved in a previous paper (Kato [5]). It will
be noted that Theorem 2 contains as special cases most of the suf-
ficient conditions for the existence and completeness of wave operators
obtained in recent years (see Kuroda [6, 7], Birman [1, 2], Birman-
Krein [3].

2* Principle of invariance of wave operators* Consider the
wave operators W±(φ(H1), (Φ(HO)) where φ is a real-valued, Borel mea-
surable function on (— °°, + °°). The principle of invariance asserts that
these wave operators do not denoted on φ. Of course certain restric-
tions must be imposed on φ and on the relation between Ho and Hx

To this end it is convenient to introduce a certain class of functions.

DEFINITION. A real-valued function φ on (— ooy + oo) is said to
be of class (M) if the whole interval (— oo, + co) has a partition into
a finite number of open intervals Ik, k — 1, , r, and their end points
with the following properties: on each Ik, φ is strictly monotone and
differentiate, with the derivative φ' continuous, φf Φ 0 and (locally)
of bounded variation. {Ik} will be called a system of intervals associated
with φ (such a system is not unique).

THEOREM l Let Ho, Hλ be self ad joint operators such that Hx =
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Ho+ V with VeT. If φ is of class (M), W'± = W±(φ(Hλ)y φ(H0))
exist and are complete. Furthermore, W'+ are (i piecewise equal"
either to W± = W±(Hlf HQ) or to Wτ, in the sense that

(W'± - W±)E0(Ik) = 0 or (W'± - Wτ)E0(Ik) = 0, k = 1, , r,

according as φ is increasing or decreasing on Ik. In particular,
W'± — W±{W± = TFqz) if Φ is increasing (decreasing) in each Iky k=
1, — , r. (Here {Ik} is a system of intervals associated with φ e (M)
and E0(I) = EQ(β - 0) - E0(a) if 1= (a, β).)

Proof. It is known (see Kato [5]) that W± exist under the as-
sumptions of the theorem.

We take a fixed Ik and assume that φ is increasing on Ik. We
use the inequality (2.9) of the paper cited, which reduces for s = 0 to

(2.1) \\(W+-l)x\\^(8πm"\\V\\1)
lli

α +oo \ l / 4

HI V\ll2exv(-itH0)x\\2dt)
where x e ξ)0,αc is subjected to the condition that d(E0(X)x, x)/dX ^ m2

almost everywhere. Here | V\ is the nonnegative square roof of V2

and || F | | i denotes the trace norm of V, which is finite by assumption.
Now let u e !go,ac be such that E0(Ik)u = u and d(E0(X)u, u)/dX ^ m2.

We note that such u with finite m2 form a dense subset of E0(Ik)!Q0>ac =
Eo(Ik)PoίQ (see a similar proposition in loc. cit. when Ik is the whole
interval). If we set x=exp ( — isφ(H0))u, we have (E0(X)x, x) — (E0(X)ufu)
so that the assumptions on x stated above are satisfied. Hence (2.1)
gives

( 2.2 ) || (W+ - 1) exp ( - isφ(HQ))u || ^

(2.3) τ)(s) = (+ O O | | | F | 1 / 2 e x p ( - itH0 - isφ(H0))u \\2dt
Jo

= Σ I C I ( + Ί (exp ( - itHt - isφ(H0))u, /„) |Jdί ,
71 = 1 J O

where {/J is a complete orthonormal system of eigenvectors of F a n d
the cn are the associated eigenvalues.

The integrals on the right of (2.3) have the form (Al) of Appendix,
where w(X) is to be replaced by d(E0(X)u, fn)/dX which belongs to U(Ik)
with IΛnorm not exceeding m (see loc. cit.). Therefore, each term on
the right of (2.3) tends to 0 for s —> + co (Lemma A3, Appendix). On
the other hand, the series on the right of (2.3) is majorized by the
convergent series 2ττm2 Σ I cn I — 2πm21| V\\x. Hence r](s) —•> 0 for
s—> +oo and the left member of (2.2) must tend to 0 for s—> + c o .
Since (W+ — 1) exp ( — itφ(H0)) is uniformly bounded and the set of u
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with the above properties is dense in EQ(Ik)P0^> as remarked above,
it follows that (W+-ΐ) exp (-isφ(H0))P0E0(Ik) -> 0 strongly for s->+ oo.
But we have W+ exp (-isφ(H0)) = exp (~isφ(H1))W+ by (1.2). On mul-
tiplying the above result from the left with exp {isφ{H^), we thus
obtain

(2.4) 8 - lim exp (isφ(HJ) exp (-isφ(H0))P0EQ(Ik)

= W+P0E0(Ik) = W+E0(Ik) if φ is increasing on Ik .

Similarly we can show that

(2.4') s - lim exp (isφiHJ) exp (-isφ(H0))P0E0(Ik) = W_E0(Ik)
S—>-'Γoo

if φ is decreasing on 1 .̂

Since P0E0(X) is continuous in λ, we have Σ * PoEo(Ik) = P0 Ad-
ding (2.4) or (2.4') for fc = 1, •••, r, we thus arrive at the result

( 2.5 ) s - lim exp (isφ(HJ) exp (~isφ(H0))PQ = Σ W ^ W * ) ,

where W(±) means that W+(W_) should be taken if ^ is increasing
(decreasing) on Ik.

(2.5) shows that the wave operator W+(φ(HJ, Φ(H0)) exists and is
equal to the right member; it should be noted that the absolutely
continuous subspace for Φ(H0) is identical with ξ>0,αc = Poξ> (Lemma A5,
Appendix). Similar results hold for PΓ_(^(iί1), φ(HQ)); we have only
to take the opposite choice for Wi±) in (2.5). These wave operators
are complete since they also exist when Ho and iϊi are exchanged.

3* Generalization* Let us consider a question which is in a
sense converse to Theorem 1. Suppose ψ(H^ — ψ(HQ) belongs to T
for some function ψ; then do the wave operators W±(Hly Ho) exist?

The answer to this question is quite simple if ψ is of class (M)
and, in addition, univalent. Then the inverse function exists, with
domain Δ consisting of a finite number of open intervals and a finite
number of points. This inverse function can be extended to a func-
tion ψ of class (M) by setting, for example, ψ(λ) = λ on the com-
plement of A. Therefore, W±(HU Ho) = W±(^(ψ{H1))f ψ(H0))) exist and
are complete by Theorem 1.

If ψ is not univalent, we do not know whether the same resalts
hold. But we can show that this is true if there is an approximate
univalent sequence {ψn} of functions of class (M) such that ψn{H?) —
ψn(H0) e T. We call {ψn} an approximate univalent sequence if ψn is
univalent on ( — n9n),n= 1, 2,

More generally, we can prove
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THEOREM 2. Let Ho, Hλ he selfadjoint and let there exist an ap-
proximate univalent sequence {ψn} of functions of class (M) such that
ψn{Hλ) = fn(H0) + Vn with Vn e T, n = 1, 2, Then, for any φ e (M),
the wave operators W'± — W±(φ{H^), Φ(H0)) exist and are complete.
In particular, W± = W±(HU Ho) exist and are complete. W'± are
piecewise equal either to W± or to Wτ in the sense stated in Theorem
1.

Proof. I. The restriction of ψn to ( — n, n) has inverse function,
which can be extended to a | % G (M) in the same way as above.

Set Φn = Ψ°fn°ψn; then Φn(X) = Φ(X) for λ e (—n, n), and Φne (M)
by Lemma A4 (Appendix). We define the following selfadjoint opera-
tors, all functions of Hjfj = 0, 1:

= Lnj , (f,o|t)(ffy) = Hnj ,

φn{Hό) = Knj =

Since ϋΓwi = (φoψn)(Lnj) by operational calculus (see Stone [8], Theorem
6.9), where φoψne(M) and Lnί=Ln0+ Vn, Vn e T, it follows from
Theorem 1 that W'n± — W±(Knl, KnQ) exist and are complete.

II. For any function ψ of class (M), ^ (±oo) = limλ_±oo ψ(X) exist
(the values ±oo being permitted for these limits). Thus Φn(±co) and
(Ψn°ψn)(±co) exist. By replacing {φn} by a suitable subsequence (and
correspondingly for {ψn} and {ψn})> we may assume that a± limn_»oβ0w(±oo)
and /3 ± = lim^oo (ψ>%oτ/rj(±oo) exist (±oo being permitted for these
limits).

Let J be an open interval such that a± and Φ( ± co) are exterior
to J, and let S — φ~\J), Sn = Φn~\J). S and Sn are unions of a
finite number of open intervals and of points. Since K${H0) and Knj =
•Φn{Hά), we have (we denote by 2^(5) the spectral measure determined
from {Eό{X)})

( 3.2) Fά{J) = Ej(S) , FM) - ^ ( S . ) , 3 = 0,1.

S is bounded since ^(±oo) are exterior to J". Similarly, Sn is
bounded if n is sufficiently large, since a± are exterior to J.

Take an n so large that Sn is bounded and S cz(—n, n). Since
ίn(λ) = ^(λ) for λ e (—n, n), we have S = (—π, ti) (Ί SΛ. Further take
an m>n such that S w c ( — m, m). We have S = ( - m , m ) n S f f l as
above, so that S w n S, = Sm Π ( - m , m) n Sw = S n Stt = S. Hence

< 3.3 ) FMWmj{J) = FjiSJEASJ

= ^(S. n s j = J^(S)

III. Now we have, for any u e ξ)0>αc = Poξ> ,
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3.4 ) exp (itKnl)(l - Fnl(J)) exp (-itKJP0F0(J)

= (1 - Fnl(J)) exp (itKJ exp ( - itKn0)P0F0(J)

— (1 - Fnl(J))Wn+Fa(J) strongly for t — + co

Since (1 - Fnl(J))W'n+ = W'n+(1 - FM)) by (1.2) applied to W'n+,
and since F0(J) S Fn0(J) by (3.3), the last member of (3.4) vanishes.
On the other hand exp (— itKn0)F0(J) = exp (—itK0)F0(J) since Φn(X) =
Φ(X) for λ e {-n, n) and F 0 (J) = E0(S) g E0((-n, n)). On multiplying
(3.4) from the left by exp(— itKnl), we thus obtain

( 3.5) s - lim (1 - Fnl(J)) exp ( - itK0)P0F0(J) = 0 .

The same is true when n is replaced by the m > n considered above.
Now multiply the latter from the left by Fnl{J) and add to (3.5). In
view of (3.3), we then obtain

( 3.6 ) s - lim (1 - F^J)) exp ( - itK0)P0F0(J) = 0 .

Multiply again (3.6) from the left by exp (iίJKΊ); then

( 3.7 ) s - lim exp (UK,) exp ( - UKQ)P0F0(J)
ί-^ + oo

= s - lim F&J) exp (UKnl) exp (-itKJP0F0(J)
ί-»+o

where we have again used the relation

exp ( - UK0)F0(J) = exp (-itKJF0(J)

and similarly exp (itKJF^J) = exp (ίtKJF^J) = i^/) exp (itKnl).
(3.7) shows that lim^+o,, exp (itK^ exp (—itK0)u exists and is equal

to F^W'^u whenever u belongs to P0F0(J)&, where J is any interval
with the four points a± and Φ(±^>) in its exterior. Since such u
forms a dense set in Poξ), the existence of W+ — W+(KU Ko) has been
proved. The existence of W'_ can be proved in the same way. Since
Ko and JKΊ can be exchanged, all these wave operators are complete.

Incidentally, it follows from (3.7) that W'+u = Fx{J)Wf

n+u for
uePQF0(J)&. But \\W'+u\\ = \\u\\ = \\W'n+u\\ since TF'+ and W'+n

are isometric on PQ^ Since FX{J) is a projection, we must have
W\u = T^;

%+u. Similar result holds for W'_. Thus

(3.8)

Note that this is true for sufficiently large n (depending on J ) .

IV. To prove the piece wise equality of W'± and W± or W+, let
Ik be one of the intervals associated with φe(M). We may assume
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that φ' > 0 on 7/c; we have to show that (W'± - W±)E0(Ik) = 0. For
this it suffices to show that (W'± - W±)E0(I) = 0 for any finite sub-
interval 7 of Ik; we may further assume that β± are exterior to 7
and (x±9 Φ(±<χ>) are exterior to the interval Φ(I).

We set J — φ{I) and apply the preceding results to J. Since
S = φ~\J) z> 7, we have E^I) ^ ^ ( S ) = F,(J) and hence by (3.8)

(3.9) (W'± - W'n±)E0(I) = 0

for sufficiently larg n.
We have similar results when φ(X) is replaced by the identity

function λ (since β± and ± co are exterior to 7). Then W'±f W'n± are
to be replaced respectively by W± = W±(HU Ho) and Wn± = W±(Hnl, Hn0).
Thus

(3.10) (W± - Wn±)E0(I) = 0

for sufficiently large n.

We may assume that n is so large that Ia( — n9ri). I can be
expressed as the union of a finite number of subintervals Δv (and a
finite number of points) in each of which ψn is monotonic. Then ψ^
is monotonic on Δ'p = ψn{Δp) since ψn is univalent on (—n,n). φoψn

is also monotonic on Δ'p since Φf > 0 on fn{Δr

v) = 4P; it is increasing
or decreasing with ψv Since ϋΓwi = (^o^Λ)(LΛ, ), J ϊ n i = ψn(Lnj) and
^ 1 = ^ 0 + ^ , 7 , 6 ^ , it follows from Theorem 1 that (W'n±-
Wn±)EQ(Δp) = 0; note that EO(ΔP) ^ EQ(ψ~\Δ'p)) = G0(Λ) where {G0~(λ)}
is the resolution of the identity for Ln0 — ψn(H0). Adding the results
obtained for p — 1, 2, , we have

(3.11) (W'n± - Wn±)E0(I) = 0 .

The desired result (W'± - W±)E0(I) - 0 follows from (3.9), (3.10) and
(3.11).

4* Applications* A number of sufficient conditions for the exis-
tence and completeness of wave operators can be deduced from Theorem
1 or 2. We shall mention only a few.

(a) Let neither HQ nor Hλ have the eigenvalue 0. If Hϊp=H^p+ V
with Ve T for some odd integer p, then W±{Φ(H^, Φ(H0)) exist and
are complete for any φe(M).

The proof follows by applying Theorem 2 with ψn — ψ (independ-
ent of n) where f(X) — X~p for λ Φ 0 and ^(0) = 0.

(b) In (a) we may allow even integers p if we assume in addition
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that HQ and Hλ are nonnegative.
In this case we need only to replace the above ψ by ψ(X) =

(sign λ) I X \~p for X Φ 0.

(c) Let (Hλ — ζ)" 1 — (Ho — ζ)" 1 G Γ for some nonreal complex num-
ber ζ. Then W+iΦiHJ, Φ(HO)) exist and are complete for any φe(M).

For the proof we first note that, if the assumption is true for
some ζ = ζ0, then it is true also for all nonreal ζ. This can be seen
first for I ζ — ζ01 < I Im ζ01 by considering the Neumann series for the
resolvents. The result can then be extended to all ζ of the half-plane
(Im ζ)(Im ζ0) > 0 by a standard procedure. The other half-plane can
be taken care of by considering the ad joints.

Set now ψn(X) = - i[(n - iX)-1 - (n + iX)~τ] = 2X(n2 + λ2)-1. It
follows from the above remark that ψn(H^ — ψn(HQ) e Γ. But it is
easy to see that {ψn} is an approximate univalent sequence of functions
of class (M). Hence the proposition follows by Theorem 2.

(b) It should be remarked that the existence of W±(Φ(H^)9 Φ(H0))
implies the existence of

( 4.1) s - lim UlUτ* = W±(H19 HQ) ,

where U3 — (Hό — i)(Hj + i)~x is the Cayley transform of H3. In fact,
Uj = exp (iφ(Hj)) where Φ(X) = — 2 arccot λ, and φ belongs to (Jkf),
being strictly increasing on (-co, +oo).

Appendix* We prove here some lemmas which are used in the
text.

LEMMA Al. Let f, g be complex-valued, continuous functions on
a closed interval [α, b]. Let f be of bounded variation with total

g(X)dX and let MG = max | G(X) |, Mf =
a

max|/(λ)|. Then f(X)g(X)dX (Mf + Vf)MG.

The proof is simple and will be omitted.

LEMMA A2. Let φ be a real-valued differentiate function on
[a, b] such that the derivative φ' is continuous, positive and of bounded
variation. We have for any t, s > 0

1 exp (itX — isφ(X))dX
1 Jα c(t + cs)

where c = min φ'(X) > 0 and Vφ, is the total variation of φf.
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Proof. The integral in question is equal to

i(t + sφ\X))"1(d/dX) exp (~ίtX - isφ(X))dX .

We apply Lemma Al to estimate this integral, setting f(X) =
i(t + sψ'ix))-1 and g(X) = (d/dX) exp ( —ΐίλ - ίsφ(X)). Then Mf = (t + cs)"1,
Λίff ^ 2 and it is easily seen that Vf ^ sVφ,/(t + cs)2 ̂  Fφ//c(ί + cs).
This proves the desired inequality.

LEMMA A3. Let φ be of class (M) with an associated system of
of intervals {Ik} (see definition in text). For a fixed k, let iv e L2(Ik).
If φ is increasing on Ik, we have

exp (-itX - isφ(X))w(X)dX •0 , S—> + oo.(Al) [ °° dt
Jo

r-t°° # ro

// φ is decreasing on Ik, (Al) is true if \ dt is relpaced by dt.
Jθ J-co

Proof. We may assume that w e L2(— co, + oo), on setting w(X) =
0 for λ outside Ik. Let if be the self ad joint operator Hu(X) = λu(λ)
acting in L2(— co, + oo), and let U be the unitary operator defined
by the Fourier transformation. The inner integral of (Al) represents
the function (C/exp (— isφ(H))w(t), and the left member of (Al) is
equal to || EUexp (— isφ(H))w ||2, where E is the projection of L2(— oo,
+ °o) onto the subspace consisting of all functions that vanish on
( - oo,0). Thus (Al) is equivalent to that EUexp ( - isφ{H))w -^ 0,
s—> + 00. Since EUexι>( — isφ(H)) is uniformly bounded with norm
S 1, it suffices to prove (Al) for all w belonging to a fundamental
subset of L2(Ik). Thus we may restrict ourselves to considering only
characteristic functions w of closed finite subintervals [α, b] of Ika

Assume that φ is increasing on Ik. If we denote by vs(t) the in-
ner integral of (Al) for the characteristic function w of [a, b] c J A ,
we have by Lemma A2

\Vs(t) I g 2(c + V^ so that ί+" I vs(t) \2dt ̂  4 ^ + Vφ/^ > 0
c(t + cs) Jo c3s

for s —> + 00, where c is the minimum of ^'(λ) on [α, b] and Vψ/ is the
total variation of φ' on [a, b]. A similar proof applies to the case ^ ' < 0
on Ik, with \ά°°dt replaced by JLoώί.

L E M M A A4. Le i φ9 ψ be of class (M). Then the composed func-
tion φoψ also belongs to (M), and there exists a system of intervals
associated with φoψ such that, in each interval of the system, both
ψ and φoψ are monotonic.
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Proof. Let {Ik} and {Jh} be systems of intervals associated with
Φ and ψ, respectively. For each h, ψ maps Jh one-to-one onto an
open interval J'h. Let Jkh be the inverse image under this map of
J'h Π hk. Obviously all Jkh are open and mutually disjoint, and cover
the whole interval (-co, + oo) except for a finite number of points.
It is easy to see that φoψ is monotonic and continuously differentiate
on each Jkh, with (φoψ)'(X) = Φ'(ψ(X))ψ'(λ). Furthermore, (φoψ)' is.
locally of bounded variation on Jkh, for the same is true with φ' and
ψf by assumption. The intervals JkJι form a system stated in the
lemma.

LEMMA A5. Let Φ be of class (M). For any selfadjoίnt operator
H, the absolutely continuous subspace for Φ(H) is identical with the
absolutely continuous subspace for H.

Proof. Let H=[ XdE(X), Φ(H) = 1 XdF(X) be the spectral repre-
sentations of the operators considered. We denote by E(S), F(S) the
spectral measures constructed from {E(X)}9 {F(X)}9 respectively. For
any Borel subsets S of the real line, we have F(S)^E(φ-1(S)). If | S | = 0
(we denote by \S\ the Lebesgue measure of S), then \φ~\S)\ = 0 by
the properties of φe(M), so that F(S)u — 0 if u is absolutely con-
tinuous with respect to H. On the other hand, F(φ(S)) = Eiφ-^ΦiS)) ^
E(S). If ISI = 0, we have |φ(S) \ = 0 so t h a t 11E(S)u\\^\\F(φ(S))u | | = 0-

if u is absolutely continuous with respect to Φ{H). This proves the
lemma.
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