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APPROXIMATION BY CONVOLUTIONS

R. E. EDWARDS

This paper is concerned mainly with approximating
functions on closed subsets P of a locally compact Abelian
group G by absolute-convex combinations of convolutions / * g,
with / and g extracted from bounded subsets of conjugate
Lebesgue spaces LV(G) and Lp/(G). It is shown that the
Helson subsets of G can be characterised in terms of this
approximation problem, and that the solubility of this problem
for P is closely related to questions concerning certain
multipliers of LP(G). The final theorem shows in particular
that the P. J. Cohen factorisation theorem for L^G) fails badly
for LP(G) whenever G is infinite compact Abelian and p > 1.

1* The Approximation Problem*
(1.1) Throughout this note, G denotes a locally compact Abelian

group and X its character group. For the most part we shall be
concerned with the possibility of approximating functions on closed
subsets P of G by absolute-convex combinations

( 1 ) ±ar(fr*9r),
r=l

of convolutions f*g, where / and g are selected freely from bounded
subsets of conjugate Lebesgue spaces LP(G) and Lpt(G) (1/p + Ijp' =
1). In the sums (1), the number n of terms is variable, whilst the
complex coefficients ar are subject to the condition

( 2 ) Σ l « r l ^ l .

Accordingly, if the fr and gr are respectively free to range over subsets
A and B of LP(G) and Lpf(G), the allowed sums (1) compose precisely
the convex, balanced envelope of

A * £ = {f*g:feA,geB}.

We denote by CQ(G) the Banach space of continuous, complex-
valued functions on G which tend to zero at infinity, the norm being
|| u || = sup {I u(x) I : x e G}. The space C0(P) is defined similarly, P
replacing G throughout. If G (or P) is compact, the restriction that
the functions tend to zero at infinity becomes void; we then write
C{G) (or C{P)) in place of C0(G) (or C0(P)).

It is well-known that if 1 < p < °o then f*ge C0(G) whenever
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fe LP(G) and g e LP'(G), so that restriction from G to P results in a
member of C0(P).

(1.2) Given an exponent p satisfying 1 < p < oo and a closed
subset P of G, we shall consider the following assertion:—

{Avp) To each member u of a second category subset of C0(P)
corresponds a number i ί = K(Pyp,u) < °o such that w is the
uniform limit on P of absolute-convex combinations (1), the fr

and gr being subject to the restrictions

It is evident that (AP) and (AP

f) are equivalent assertions. Fur-
thermore, only a little reflection is required to see that (Ap) is true
for every P, so that the restriction 1 < p < oo is reasonable. With
this restriction on p, (AP) signifies that each u belonging to the said
second category set belongs to the closed, convex, balanced envelope
in C0(P) of A * B, where A and B are respectively the closed balls in
LP(G) and Lpf{G) of radius VK (which a priori may depend upon u).

(1.3) As well shall see, the truth or falsity of (AP

P) is equivalent
to an assertion about bounded measures supported by P which may
conveniently be expressed by regarding such a measure as a multiplier
(or centraliser) of (LP(G).

We denote by M(G) the space of bounded, complex (Radon) measures
on G; it may be regarded as the dual of C0(G). Furthermore, M(P)
may be thought of as the subset of M(G) composed of measures μ e
M(G) whose supports are contained in P.

Each μ e M(G) generates a multiplier Γμ of LP(G) defined by
Tμf=μ*f for feLp(G). In general, by a multiplier of LP(G) is
meant a continuous endomorphism of LP(G) which commutes with
translations. Each multiplier T of LP(G) has a norm

II Γ | | = sup{ | |Γ/ | | p : | | / | | , ^ 1 } .

Accordingly we may define Np(μ) for μ e M(G) as the norm of ΪV
regarded as a multiplier of LP(G).

It is easily seen that

( 3 ) N,(μ)£\\μ\\,

equality holding if p — 1 (and hence also if p — oo).
Although, as will be seen in (2.3), the norms Np(μ) and \\μ\\ are

not generally equivalent on M(G) when 1 < p < oo, yet equivalence
may obtain on M(P) for suitable closed subsets P of G. In fact, as
the next theorem shows, the suitable sets P are just those for which
the assertion (AP) is true. When p — 2 one obtains in this way a
new characterisation of the so-called Helsόn subsets of G; see (1.6)
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infra. A further link between (AP) and properties of certain sets of
multipliers of LP(G) is expressed in Theorem (2.1).

(1.4) THEOREM. Let P be a closed subset of (?, and let 1 < p < oo.
Then (Ap) is true if and only if there exists a number k — (P, p)
< oo such that

( 4 ) \\μ\\^k.Np(μ),

for each μeM(P).

Proof. Suppose first that (4) holds for μeM(P)0 This signifies
that

the supremum being taken over those / and g lying respectively in
the unit balls in LP(G) and LV'(G). Since

* g) dμ ,

where f(x) = f(—x), it follows that

I! μ ^ Sup{ (/* g)dμ : \\f\\, S V~K, \\ g \\p, S

From this it follows that for each u e Ca{P) one has

( 5 ) udμ ^ Sup (/* 9) dμ

where now / and g vary subject to the conditions

( 6 )

Now (5), combined with the Bipolar Theorem, shows that u belongs
to the closed, convex, balanced envelope in C0(P) of the functions f*g
(or, more precisely, their restrictions to P), where / and g are subject
to (6). Thus the assertion (Ap) is true for each ueC0(P), with

K(P9p,u)^k(P,p).\\u\\ .

Conversely, suppose that (AF) is satisfied. Let Σ denote the set
of we C0(P) for which K(P,p,u) exists finitely, so that Σ is a second
category subset of C0(P). For a given ueΣ, the set of admissible
numbers K(P,p,u) is easily seen to be closed. Denote by S the set
of u e Σ for which the infimum of this set of admissible values of
K(P,p,u) is at most unity. Thus S consists precisely of those u e C0(P)
which are limits in CQ(P) of sums (1), wherein
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( 7 ) WfrWpS 1, || flr, | | , ^ 1 .

It is almost evident that S is closed, convex, and balanced in C0(P).
Moreover, Σ is the union of the sets nS (n = 1, 2, •••). Since Σ is
second category in CQ(P), it follows that S must be a neighbourhood
of zero in CQ(P). Consequently, Σ = C0(P) and, for some r > 0, each
ueC0(P) satisfying \\u\\ ^ r is the limit in C0(P) of sums (1) with
the fr and gr subject to (7) Then, however, each ueCQ(P) belongs
to the closed, convex, balanced envelope in C0(P) of the set of con-
volutions f*g with

For μ e M(P) it is therefore the case that

r " 1

Using again the relation

( (f*9)dμ^ \ (μ*f)gdx

it appears that

= r~\Np(μ),

which is (4), with k = r"1. The proof is thus complete.

(1.5) REMARK. It has appeared in the course of the preceding
proof that, if the approximation specified in (A%) is possible for each
member of a second category subset of C0(P), then it is indeed possible
for each u e C0(P), and this with a value of K(P,p,u) not exceeding
Ko(P,P). I I * | |.

(1.6) The case p = 2: relation with Helson sets. When p — 2
it is a simple consequence of the Parseval formula and PlancherePs
theorem that

where
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μ(ξ)=\σξ(v)dμ(x) ,

is the Fourier-Stieltjes transform of μ. Reference to Rudin [4], p.115,
Theorem 5.6.3 shows then that as a Corollary to Theorem (1.4) one
obtains the fact that (A%) is true for a closed set PaG if and only if
P is a Helson subset of G. (Rudin assumes his Helson sets to be
compact, but this restriction is unnecessary in the present connection.)

From the case p = 2 of Theorem (1.4) we may also derive a
known property of Helson subsets of discrete groups G. (For historical
reasons, Helson subsets of discrete groups are often termed Sidon sets;
see [4], Section 5.7.)

(1.7) COROLLARY. Suppose that G is discrete and that P is a
Helson (or Sidon) subset of G. Then each bounded, complex-valued
function on P is the restriction to P of the Fourier-Stieltjes trans-
form of some measure on the (compact) character group X. (Cf. [4],
p. 121, Theorem 5.7.3(d).)

Proof. Let B(P) be the superspace of C0(P) formed of all bounded,
complex-valued functions on P. On B(P) take the topology of pointwise
convergence on P. Let T denote the linear mapping of M(X) into
B(P) which assigns to λ e M(X) the function Tλ defined by

It is evident that T is continuous for the weak topology t — σ(M(X)>
C(X)) on M(X). For any k > 0, the set

Sk = {λeM(X): | | λ | | g k} ,

is compact for t, so that its image T(Sk) is compact, and therefore
closed, in B(P). It will therefore suffice to show that, for some k >
0, T(Sk) is dense in

V={veB(P):\\v\\ g 1 } ;

and this will certainly be the case if T(Sk) is shown to be dense in
the closed unit ball VQ = Vf) C0(P) in C0(P).

Suppose then that ue Fo. Since P is a Helson set, (1.5) affirms
the existence of a number k = KQ(P,2) such that u is the limit,
uniformly on P, and so a fortiori in the sense of the pointwise topology,
of functions (1) with || fr ||2 g VΈ and || gr ||2 S VT. By the Plan-
cherel theory, these approximating functions form a sequence (ΊOJU,

each term of which is expressible in the form
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where λs e M(X) is defined by dxs(ξ) = Fβ(ξ)dξ, and where

so that

| | λ f | | =

^ Σ

Thus us e T(Sk) for each s, which shows that each ue Vo belongs to the
closure in B(P) of T(Sk), as we wished to show.

2. Falsity of (AS). It is not altogether trivial to decide whether
or not (AS) is true. By expressing this assertion in terms of multipliers
of LP(G), we shall show that (A%) is false at any rate whenever 1 <
p < oo and G is infinite compact Abelian. The same conclusion is
derivable without explicit mention of multipliers; see Remark (3.2)
infra.

Let us denote by mp(G) the set of all multipliers of LV(G). As
observed in (1.3), we may regard M(G) as a subset of mp(G). The
next theorem makes reference to the so-called weak and uniform
operator topologies on mv(G), and for brevity we shall label these
"W.O.T." and "U.O.T." respectively.

(2.1) THEOREM. If P is a closed subset of G, the following four
statements are equivalent:—

( i) M{P) is closed in mp(G) for the U.O.T.;
(ii) M(P) is sequentially closed in mp(G) for the W.O.T.
(ii') M(P) contains the closure in mp(G), relative to the W.O.T.,

of any Np-bounded subset of M(P);
(iii) there exists a number k — k(P,p) < oo such that

\\μ\\^k.Np(μ),

for μeM(P), i.e., by Theorem (1.4), (A*P) is true.

Proof. Since P is closed, M(P) is in any case complete for the
norm \\ μ\\. Since mp(G) is complete for the U.O.T., M(P) is complete
for Np if and only if (i) holds. In any case, Np(μ) ^ || μ \\. These
remarks, combined with the Inversion Theorem for Banach spaces,
show that (i) and (iii) are equivalent.
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It is evident that (ii) implies (i). Also, since any sequence in
M{P) which is convergent for the W.O.T. is iV -̂bounded (a direct
application of the uniform boundedness principle), (ii') implies (ii). It
therefore remains only to show that (iii) implies (ii').

Suppose then that {μ^ is an JV -̂bounded net in M{P) such that
liπii TH = T in the W.O.T.: we have to show that T = Tμ for some
μeM(P). Now, since (iii) is true by hypothesis, Sup̂  || μ{ || < oo.
Hence the net (μ{) has a weak limiting point μ e M(G). Since P is
closed, μ necessarily belongs to M(P). The definition of the weak
topology on M(G) ensures that, for each feLp(G) and each geLp\G),

the number I (μ * f)gdx is a limiting point of the numerical net

But this last net is convergent to i (Tf)gdx. It follows that Tf ~

μ*f for each fe LP(G), i.e., T = Tμe M(P), which is what we wished
to prove.

(2.2) REMARK. It is simple to verify that if μ e M{P), then the
multiplier Tμ has the property that T^f is, for each fe LP(G), the
limit of linear combinations of translates f(x-a) of / with ae P.
Problem: Is it true that conversely any Temp(G), which is so ap-
proximable, is the limit in the W.O.T. of multipliers Tμ with μ rang-
ing over some iV -̂bounded subset of M(P)f! The answer is affirmative
if P = G is compact, as will appear in the proof immediately below.

(2.3) COROLLARY. Suppose that G is infinite compact Abelian. Then
{Al) is false for every p satisfying 1 < p < °o.

Proof. Let us show first that any T e mp(G) is the limit in the
W.O.T. of an Λ/>bounded net (μj in M{G). Take any base {U,) of
compact neighbourhoods of zero in G, and choose for each i a non-
negative, continuous function h{ on G with support contained in Uf
and such that I h{dx = 1. Then lim^ h{ * / = / in LP{G) for each fe

LP{G), so that
Tx = lim, T{hi * /) = lim, Th, * / = lim, k, * / ,

where k{ = Th, e LP{G) and

Let μίeM{G) be defined by dμ^x) = ki{x)dx. Then N^μ,) ^ || T \\ ,
and lim, TH f = lim, k{ * / = / in LP{G). Thus lim, TH - T in the
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W.O.T. (even in the strong operator topology), and the net (/̂ ) is Np-
bounded. This verifies our claim.

This being so, Theorem (2.1) shows that it is now sufficient to
show that M(G) Φ mp(G), when G and P satisfy the stated conditions.
To this end, we choose and fix any infinite Sidon subset S of X, and
aim to show that corresponding to any bounded-complex-valued function
b on X which vanishes on XΓ\S' there is a multiplier Temp(G) for
which

(8) (T/y(ξ) = b(ξ)f(ξ) (ξeX).

Indeed, if 1 < p ^ 2, this follows from the substance of p. 130 of [4].
If, on the other hand, 2 < p < oo there is by that same token a
multiplier 2\ of LP'(G) such that (8) is true with Tx in place of T,
and it then suffices to take for the desired T the adjoint of 2\.

If the multiplier T defined by (8) were of the form Tμ with μe
M(G), then (8) would entail that

(9) β(ξ) = b(ξ) (ξeX).

Since therefore μ vanishes off S, the lemma immediately below would
combine with (9) to show that

(10) Σ^s I b(ξ) |2 < - .

However, S being infinite, we are at liberty to suppose that (10) is
false, in which case T is not of the form Tμ. Thus M(G) is a proper
subset of mp{G), and the proof is complete.

(2.4) Let G be a compact Abelίan group and S a Sidon subset
of X. If μe M(G) is such that

(11) /*(£) = 0 (f

then μ is absolutely continuous (relative to Haar measure on G) and
its Radon-Nikodym derivative h belongs to Lq(G) for every finite q.
In particular,

Σζes I β ( ξ ) \ 2 < o o .

Proof. It is known ([4|, p. 128, Theorem 5.7.7) that

(12) \\t\\qSBq\\t\\lf

for every q < °° and every trigonometric polynomial t on G for which
t(ξ) = 0 for ξeXnS', the number Bg being independent of t. On the
other hand one may select in many ways a net (ίt ) of trigonometric
polynomials on G such that lim^ tt* μ = μ weakly in M(G) and C =
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sup. || ίi ||i < °°. The inequality (12) applies to tt* μ and gives

Supposing that q > 1, it follows that the net (tt * μ) has a weak
limiting point hg in Lq(G) and, since t{* μ—*μ weakly in M(G), μ can
be none other than the measure defined by dμ(x) = hq(x)dx. Putting
h = JI2QL2(G), it is seen that hq — h a.e. for each β > 1, so that
h 6 Lg(G) for every finite q. This A is, modulo negligible functions,
the Radon-Nikodym derivative of μ, and the lemma is established.

3* Impossibility of factorisation in Lp(G)t p > 1. It was shown
by P.J. Cohen [1] that each heL\G) can be factorised as f*g with
/ and g in L\G). Now, if p > 1, LP(G) is an algebra under convolu-
tion if G is compact (and, if Abelian as we assume throughout, in no
other cases). The next theorem, still concerned with approximation
by sums of the type (1), though now with different restrictions on
the fr and gr, shows that Cohen's result is very far from being
extendible to LP(G) with p > 1.

(3.1) THEOREM. Let G be infinite compact Abelian, and let
1 < p g oo. Let Σ denote the set of functions h in LP(G) with the
following property:— There exists a number R = R(p, h) < oo such
that h is the weak limit in M(G) of finite sums

subject to the condition

(14)
r-\

Then Σ is a first category subset of LP(G).

Note. In the statement of Theorem (3.1) we are regarding LP(G)
as a subset of M(G), identifying a function fe LP(G) with the measure
μ defined by dμ(x) = f(x)dx.

Proof. Take again an infinite Sidon subset S of X. Since p >1
there exists ([4], p. 130) a number c = c(p, S) such that

for each fe LP(G). If k is a sum of the type (13), then k = Σ?«iΛ f7r
and so, by the Cauchy-Schwarz inequality,
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^ c2R ,

the last step by virtue of (14). Consequently, the inequality

(15) Σζes\h(ξ)\< oo

is satisfied by each he Σ.
If ^ were second category in LP(G), an argument similar to that

used in the proof of Theorem (1.4) would show that

(16) Σtes\R(ξ)\^c'\\h\\p,

for each h e LP(G), c' being independent of h. This in turn would
entail the existence of a measure μ e M(G) (actually a function in
LV'{G) if p < oo) such that

0 if ξeXί)S' .

But this would contradict Lemma (2.4). Thus Σ must be a first
category subset of LP(G), as asserted.

(3.2) REMARK. The preceding proof can be modified slightly to
show that Σf)C(G) is a first category subset of C(G), thus providing
an alternative proof of Corollary (2.3).

(3.3) REMARK. The final phase of the preceding proof, leading
from (16) to the contradiction, may be completed without reference to
Lemma (2.4), and is in fact quite independent of the notion of Sidon
sets and their properties. This is shown by the following lemma.

(3.4) LEMMA. Let G be compact Abelίan. If S is a subset of
X such that

(17) Σςes I u(ξ) | < oo ,

holds for each u in a second category subset of C(G), then S is
necessarily finite.

Proof. The hypothesis entails (cf. the proof of Theorem (1.4))
the existence of a number c" such
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for each ueC(G). This and the Riesz theorem combine to show that
to each bounded, complex-valued function b on S corresponds a measure
μ e M(G) for which

μ(ξ) = b(ξ) for ξeS, μ{ξ) = 0 for ξeXnS'.

This μ is uniquely determined by b and the mapping T which carries
b into μ is an algebraic isomorphism of the algebra B(S) of all
bounded, complex-valued functions on S (with the sup norm and
pointwise product) into the convolution algebra M(G). By Theorem 1
of [2], this entails that B(S) is of finite dimension, so that S must be
finite.

(3.5) REMARK. Yet another way of deriving a contradiction from
(16), or from the apparently weaker variant (17), is to invoke a known
theorem which says that if S is a Sidon subset of the character group
of a compact Abelian group G, then for any given v e 12(S) there exists
ue C(G) such that u(ξ) — v(ξ) for ξe S. For the circle group this is
established by Rudin ([5], 5.1 and 5.3), though the result for Hadamard
sets S of integers is much older; and for general G it follows from
Theorem 5.7.7 of [4] together with a result due to Hewitt and Zuckerman
{[3], Theorem 8.6) which applies even to non-Abelian compact G.
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