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THE ASYMPTOTIC NATURE OF THE SOLUTIONS

OF CERTAIN LINEAR SYSTEMS OF

DIFFERENTIAL EQUATIONS

A. DEVINATZ

Suppose y'if) = [A+V(t)+R(t)]y(t) is a system of differential
equations defined on [0, oo), where A is a constant matrix,
V(t) —> 0 as t —> co and the norms of the matrices V'it) and R(t)
are summable. If the roots of the characteristic polynomial
of A are simple, then under suitable conditions on the real
parts of the roots of the characteristic polynomials of A + V(t)
a theorem of N. Levinson gives an asymptotic estimate of the
behavior of the solutions of the differential system as t -» co.
In this paper Levinson's theorem is improved by removing the
condition that the characteristic roots of A are simple. Under
suitable conditions on V{t) and R(t) and the characteristic roots
of A + V(t), which reduce to Levinson's conditions when the
characteristic roots of A are simple, asymptotic estimates are
obtained for the solutions of the given system.

The proof given here, with essential modifications, will follow the
proof given by Levinson [3] [2, p. 92], One interest in the improved
theorem is in its application to the problem of finding the deficiency
index of an ordinary self-ad joint differential operator, which will appear
in a subsequent paper. We shall establish the following.

THEOREM.1 Let A be a constant n x n matrix whose minimal
polynomial is of degree n and is of the form

χ(λ) = β (λ - λfc)
w*, λ, Φ λk for j Φk9 Σ nk = n .

Let q + 1 = max nk, V(t) an n x n matrix with (q + l)-times continu-
ously dijferentiable elements satisfying t2q \v(

ι

r

J

)(t)\Jlr e L1 for 1 ^ r ^
q + 1 and V(t)—>0 as t-*co. Let the roots of det (A + V(t) - λl) = 0
be {λA.(ί)}f and for t 7> τ0 we suppose the minimal polynomial of
A + V(t) is

χ(λ, ί) = Π (λ - Ut)Y«,
k = l

where Xk(t) —> Xk as t —> co. For a given k, let
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1 If A is an n X n matrix with entries an we shall write | A \ = Σϋ \ aij |. If x

is a vector with entries xι we shall write \x\ = Σ* l ^ l
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dkJ(t) = Re(Xk(t) - λy(ί)) ,

and suppose that all j , 1 ^ j ^ n9 fall into one of two classes Ix and

dkj —> oo as t—> oo and
Jo

(I t - τ \q + 1) exp - Γ dkj < M < ™ for t ^ τ ^ 0 ,

j e J2 if and only if \ dkj < log M for t ^ τ ^ 0. Let R(t) be a
Jr

matrix valued function with measurable elements such that
t2q \R(t)\e L1. Let {qkj; 1 S j ^ nk) be a set of "principal vectors"
for Xk; i.e., qkj = (A - XkI)n*-jgknk, (A - λΛJ)Λ*"1flrΛnjfe ^ 0 cmd (A -
XkI)n]cgknk = 0. Then, given the differential equation

(1.1) y'(ί) = [A + F(ί) + R(t)]y(t)

there exists a t0 and a fundamental system of solutions {ykj(t); 1 ^
j ^ nk, 1 ^ k ^ m} such that

[ p -i rt -|-i

— — - exp Xk{τ)dτ ykj(t) - qkj -> 0, t — co .
( j — 1)! Jίo J

2* We begin the proof by first considering a differential system
of the form

(2.1) y\t) - (A(t)

where A(t) is a matrix with blocks {J3 {t)}T down the main diagonal
and zeros elsewhere, J3(t) being an n3- x n3- matrix with the same
number X3(t) down the main diagonal, 1 down the superdiagonal and
zeros elsewhere, and R(t) has measurable entries with t2q | R(t) \ e L1,
where q + 1 — max {n3, 1 ^ j" ̂  m}.

One fundamental matrix ?Γ for the system

v^ / c/ \^/ ~~~ -^ΛV)y\v)

has blocks {P ĵΓ down the main diagonal and zeros elsewhere, where
Pj is an n5 x ŵ  matrix of the form

(2.3) Pj(t) = exp λ,

1 ί f/2!

0 1 ί

•
•
0 •

h - 1)!

h - 2)!

0 1

This may be checked by a direct computation. Again, it may be easily
checked that
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Pγ\t) = exp - ['
Jί,

and

(2.4)

Ptf)Pϊ\τ) = exp \ λ,

-t f/2l - ί 3 / 3 !

1 - t ί /2!

- 1)!'

1 (t-τ) ( t - τf/2l

0

0

(t-τ)

(t -

(t -

- 1 ) !

- 2 ) !

0

Let us fix k and let Ψ1 be that matrix with zeros everywhere
except for diagonal blocks {Pj j/eii}, where each such P3- has the
same position as in the matrix Ψ. Let Ψ2 be the corresponding type
matrix with diagonal blocks {Pj je 72}. Clearly Ψ = Ψλ + ?Γ2.

Let e4 be the vector with i t h component equal to δijf δi3- being
the Kronecker symbol. Now set i = I + Σ ϊ =ί %> where 1 ^ ϊ ^ wft,
and consider the equation

(2.5) ί4(ί) =

It may be checked by a straightforward computation that, at least
formally, φ is a solution to (2.1). Hence, if it can be shown that a
solution to (2.5) exists, where the integrands are in L1, then this
solution will also be a solution to (2.1).

We proceed by successive approximations. Choose Φ° — 0 and hence
φ1 = W(t)eim It follows that

(2.6) a1 - Φ° I ̂  Γexp Γ
L Jt 3=0

Now, the matrix Ψλ{t)Ψ \τ) has blocks along the main diagonal which
are zero in those positions for which j e I2 and of the form (2.4) in
those positions for which j e Iλ. Hence, using the hypothesis of the
theorem of § 1, for ί0 =

 τ = ^ we have

(2.7)

^ C[\ t - τ | exp ( -

expΓi2eλft ,

exp
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where C is a suitable constant dependent only of q. In the same way,
for ί 5Ξ τ < co,

(2.8) I Ψ lt)Ψ~\τ)R{τ) \ ^ CM[\t - τ\" + 1]\ R(τ) | e x p - [*ReXk .

Using the estimates (2.6), (2.7) and (2.8) we arrive at the estimate

l ^ - ^ l e x p - Γ t f e λ *
(2.9) Jί°

^ CikflΓ I J2(r) I Σ T̂ /iWr + Γ | Λ(τ) | [| ί - r |? + 1] Σ τ V ϋ ^ l .
U*o j=o Jί i=o J

Now using the fact that τ2q \ R(τ) \e L1 we can choose t0 so large so
that

(2.10) - Φ11 exp - Γ i2eλ, ^ 1/2 for ί ^ ί0 .
J ί o

Using (2.7), (2.8) and (2.10) and proceeding by induction we find that
for j ^ 1,

__ ψi I exp

(2.11) ^

^ (1/2V

R(τ) \ dτ | t - τ |

This means that there exists a function Φ so that on every compact sub-
interval of [ί0, oo), φj goes uniformly to φ, and indeed, using (2.6),

(2.12) φj ^ exp Γ ^ C[P + 1] exp Γ ReXk .

The estimates (2.12) taken together with the estimate (2.8) shows that
the integrands in (2.5) are in L1 and that indeed Φ is a solution of
that equation.

We claim that

(2.13) [φ(t) - W(t)ei\ exp - Γ λfc --> 0 as ί -> α> .

To show this, it is enough to show that

Ψ^ψ-^Riφi^dτ -> 0 as t — oo, and

(2.15) exp ( - Γ Rexλ^Ψ^W-^Riφiφτ -> 0 as t -> co .

Using (2.12) and (2.8) we see that the norm of (2.15) is less than or
equal to

(2.14) exp f- Γ
V J ί
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CWΓ[| t - τ I* + l][r< + 1] | R(τ) \ dτ,

()

Γexp - Γ λJsPXί)^ has the entry t1-*-1!^ — j - 1)! in the

^ j ^ i 1 d l h H

which goes to zero as t—>co. To prove (2.14) we use the fact that

t~q exp Γ dkj -> oo. Choose ix so that CM[° \ R(τ) \ \ φ{τ) \ dτ < ε. Then
}t0 J ί x

the norm of (2.14) is less than or equal to

ε + exp ( - Γ ifeλ*) I Ψx{t) | Γ | ψ-\τ) \ \ R(τ) | | φ(τ) \ dτ .
\ jt0 / J ί 0

N o w ,

e x p ( - Γ JBeλΛ | ^ ^ ί ) | g CP Σ e x p - Γ dkj-> 0 a s ί - > o o ,
\ Jί 0 / ie i i Jί 0

Hence we see that (2.14) is valid.

The vector p Γ

i + j position, 0 5̂  j ^ i — 1, and zero elsewhere. Hence

(2.16) {,/"* , ^ P Γ λΛ"V(«) - β, -> 0 a s ί - o o .
l(ί — 1)! Jί0 J

Let us designate the solution we have obtained in the previous
considerations by φ{. Then the set of solutions {<£$ is a fundamental
system for (2.1). Indeed, it is clear that the determinant of the matrix
Φ with the vectors φt as columns is nonzero for t sufficiently large.

3* In order to use the results of §2 to prove the theorem of §1
it will be necessary to establish the following.

LEMMA. Suppose the matrix A + V(t) satisfies the conditions of
the theorem of § 1. Then for all sufficiently large t there exists a
differentiable and invertible matrix P(t) such that tfq \ P~\t)Pr(t) \ e L1,
P(t)[A + V(t)]P~\t) is a Jordan canonical form, P(t)—*P and
P~\t)—+ P~x as t—> co, where PAP~λ is a corresponding Jordan
canonical form for A, and the columns of P " 1 are a given set of
principal vectors for A.

Proof. Let X19 λ2, , λm be the distinct eigenvalues of A. Since
the coefficients of the characteristic polynomial of A + V(t) are con-
tinuous functions of t in a neighborhood of oo, using the hypothesis
of the theorem, there exists a neighborhood of oo so that A + V{t)
has eigenvalues λ^ί), * ,λm(£) which are continuous for all t in that
neighborhood. In particular, this means that λΛ(ί)—>λΛ as t—» oo.

In fact, for t sufficiently large, each λfc(t) is (q + l)-times contiiri»
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ously differentiable. To see this, we consider the characteristic poly-
nomial

(3.1) F(X, t) = Σ /y(ί)λ"-' = (-1)" Π (λ - **(«))"' ,
3=0 j=l

where fό{t) is (q + l)-times continuously diίferentiable. If we set
Gk(X, t) = β ^ - ^ λ , ί)/0λn*-\ then Gfc(λfc(r), τ) = 0, but θGk(\k(τ), τ)/θλ Φ 0.
Hence, the implicit function theorem tells us that there exists a neigh-
borhood about τ and a (q + l)-times continuously differentiable function
μk, defined in this neighborhood, so that μk(τ) = λfc(τ) and Gk(μk(t), ί) = 0.
Moreover, if any other continuous function satisfies the last two con-
ditions, then this other function coincides with μk in some neighbor-
hood of τ. Hence Xk(t) — μk(t) in some neighborhood of τ, which
proves our assertion.

Let {qkj; 1 ^ j ^ wj be a given set of principal vectors for λ̂  and
let Q be the matrix whose columns are {qll9 , qlnχ1 qn, •• ,g2%2, •••,
Qmi, ' *, QmnJ, in the given order. Then, since the minimal and charac-
teristic polynomials of A are of the same degree, Q~XAQ is in the
Jordan canonical form (see e.g. [1], Ch. XVII). If Vk is the subspace
generated by {gkj\ 1 ^ j ^ nk}, then A is reduced by Vk. Hence, if
we set

*k(A) = Π (A - λ^ i ,

then this matrix is reduced by Vk and the restriction of πk(A) to Vk

has an inverse. Let us set hk — πi\A)qknk, where by ΊZ^\A) we mean
the inverse of the restriction of πk(A) to Vk.

Let us write the minimal polynomial, χ(λ, t), of A + V(t) as

χ(λ, t) = (λ - λ,(£)r*τr,(λ, ί) ,

where

^(λ, t) = Π (λ - λy(ί)) ' .

Set gfcWfc(ΐ) = τrfc(A + F(ί), t ) ^ ; then since πk{A + V(t),t)-»πh(A) as
ί —•* oo f it follows that if we set

qkj(t) = (A + V(t) - \k(t)Y*-'qk%h(t)

the set {qkj{t)}ι* forms a set of principal vectors for the eigenvalue
λ/c(ί), provided t is sufficiently large. Indeed for t sufficiently large,

(A + V(t) - Xk{t)f^qknk{t) Φ 0 ,

but

(A + V(t) - λ^t))"*?*,"' = X(A + V(t), t)hk = 0 .
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If Q(t) is the matrix whose columns are the vectors

{ffu(*), , Qiφ), 9n(ί), , ?*a(ί), , ?mi(<), , tfm.m(*)} ,

in the order given, then Q~\t)[A + V(t)]Q(t) is in the Jordan canonical
form ([1]).

Notice that the elements of Q(t) are polynomial functions in
{λ*(£)}Γ and the elements of A + V(t), and hence the elements of Q~\t)
are rational functions in these variables, where the denominator of each
rational function is det Q(t). Hence, if we set P(ί) = [det Q{t)]Q~\t),
then the elements of P(t) are polynomials in the previously mentioned
variables and P(t)[A + V(t)]P~\t) is in the Jordan canonical form*
Further, from the assumptions of the lemma, and the manner of con-
struction of Q(t), it is clear that Q(t)-+Q, where Q~ιAQ is in the
Jordan canonical form. Hence P(t) —• P, where PAP"1 is in the Jordan
canonical form.

Since P~\t) —> P~\ it is clear that P~\t) is bounded in a neigh-
borhood of infinity. Hence, if we can show that t2g \ Pf{t) \e L1 we
will have proved the lemma. The elements of P'(t) are linear functions
of {λ£(t)}r and {v'iS(t)} (the entries of V\t)) with coefficients which are
bounded in a neighborhood of infinity. Since, by hypothesis tfg \ v\j{t) | e L1

f

if we can show that t2Q \ X'k(t) \ e L1 we will be done.
Use (3.1) to obtain

l Π (λ4(t) -

Since Πî fc (λ*(ί) — \{t))nj is uniformly bounded away from zero and
Xk(t) is bounded, in a neighborhood of oo, it follows that there exists
a constant N such that

(3.2) i

Each function fd is the sum of suitably signed products of elements
of A + F(£). A typical term in the sum representing fs is say
OjKt) dj(t)f where a{(t) is an entry of A + F(ί). The &̂ derivative
of this product is given by

where Civ...tij are the constants which appear in the multinomial ex-
pansion of (a?! + + α^fc and the sum is taken over all j-tuples of
nonnegative integers, (iu •• ,ΐy), whose sum is nk. Hence if
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(3.3) t* I αί'i* φ > p/ * e L1

it will follow that ί2* | X'k | e U and hence t2q \ P'(t) \ e L.

If Σr=i^r = Uk, we may apply Holder's inequality to get,

ί2' Π <ir) ^ Π *2'l < * ' \Vir \irln« ,
t0 r=l r=l LJί0 J

where we make the convention that if % = 0, then

|| αr |U = sup I αr(ί) | = Γ Γ V | α«'> I1"'?''"* .
ί̂ *o LJt0 -J

From the hypothesis of the lemma it follows from (3.4) that (3.3) is
satisfied and hence lemma is proved.

4* Using the results of § 2 and § 3 it is now an easy matter to
finish the proof of the theorem stated in § 1. Make the transformation
x(t) = P(t)y{t) in (1.1) and we get the equation

(4.1) x* = [P(A + V)P'1 - P-χP' + PRP-^x .

The matrix P(A + V)P~X is in the Jordan form of the matrix A(t) of
(2.1) and P< \ PRP"1 - P-ψ' \ e L\ Hence, we may apply the results
of §2 and for i — I + Σi=ί^i> 1 = I ^ nk, we find a solution xt such
that

a s t —• oo .

Hence, if y^t) — P~\t)xiy we get

^ exp 5 4

t o

λ*]"W*) - P ' \ - 0 a s t - o o ,

where P " 1 = l im,^ P " 1 ^ ) .
The vector P " 1 ^ is the ith column of P " 1 which by Lemma 3 can

be taken to be the given principal vector qki. Since the vectors
{Qki't 1 ^ I ^ nkf 1 ^ fc ^ m} are linearly independent, the vectors {^(ί)}Γ
form a fundamental set of solutions of (1.1). This completes the proof
of the theorem.

Note added in proof. The theorem of this paper can be gener-
alized in the following way. Using the same notation as in the theorem
let p be a real number satisfying the inequality 0 ^ p ^ q. Suppose
further that for each given k all integers j , 1 ^ j ^ n, fall into two
classes I± and /2 where Iλ is the same as in the hypothesis of the
theorem but now I2 is the collection of j so that
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(I ί - τ Y + 1) exp Γ dkj < M < oo for t ^ τ ^ 0 .

Then under the hypothesis that fq~p \ v#(t) |1/r, 1 ^ r ^ q + 1, and
£2g-p i j^>^ I a r e summable, the conclusion of the theorem holds. The

proof of the generalized theorem follows the proof given in the text
mutatis mutandis.
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