DEDEKIND DOMAINS AND RINGS OF QUOTIENTS

LUTHER CLABORN

We study the relation of the ideal class group of a Dedekind domain A to that of A_S , where S is a multiplicatively closed subset of A. We construct examples of (a) a Dedekind domain with no principal prime ideal and (b) a Dedekind domain which is not the integral closure of a principal ideal domain. We also obtain some qualitative information on the number of non-principal prime ideals in an arbitrary Dedekind domain.

If A is a Dedekind domain, S the set of all monic polynomials and T the set of all primitive polynomials of A[X], then $A[X]_S$ and $A[X]_T$ are both Dedekind domains. We obtain the class groups of these new Dedekind domains in terms of that of A.

1. LEMMA 1-1. If A is a Dedekind domain and S is a multiplicatively closed set of A such that A_s is not a field, then A_s is also a Dedekind domain.

Proof. That A_s is integrally closed and Noetherian if A is, follows from the general theory of quotient ring formations. The primes of A_s are of the type PA_s , where P is a prime ideal of A such that $P \cap S = \phi$. Since height $PA_s =$ height P if $P \cap S = \phi$, $P \neq (0)$ and $P \cap S = \phi$ imply that height $PA_s = 1$.

PROPOSITION 1-2. If A is a Dedekind domain and S is a multiplicatively closed set of A, the assignment $C \rightarrow CA_s$ is a mapping of the set of fractionary ideals of A onto the set of fractionary ideals of A_s which is a homomorphism for multiplication.

Proof. C is a fractionary ideal of A if and only if there is a $d \in A$ such that $dC \subseteq A$. If this is so, certainly $dCA_s \subseteq A_s$, so CA_s is a fractionary ideal of A_s . Clearly $(B \cdot C)A_s = BA_s \cdot CA_s$, so the assignment is a homomorphism. Let D be any fractionary ideal of A_s . Since A_s is a Dedekind domain, D is in the free group generated by all prime ideals of A_s , i.e. $D = Q_i^{e_1} \cdots Q_k^{e_k}$. For each $i = 1, \dots, k$ there is a prime P_i of A such that $Q_i = P_i A_s$. Set $E = P_1^{e_1} \cdots P_k^{e_k}$. Then using the fact that we have a multiplicative homomorphism of fractionary ideals, we get

Received December 13, 1963.

LUTHER CLABORN

$$EA_s = (P_1A_s)^{e_1} \cdots (P_kA_s)^{e_k} = Q_1^{e_1} \cdots Q_k^{e_k}.$$

COROLLARY 1-3. Let A be a Dedekind domain and S be a multiplicatively closed set of A. Let \overline{C} (for C a fractionary ideal of A or A_s) denote the class of the ideal class group to which C belongs. Then the assignment $\overline{C} \to \overline{C}\overline{A}_s$ is a homomorphism φ of the ideal class group of A onto that of A_s .

Proof. It is only necessary to note that if C = dA, then $CA_s = dA_s$.

THEOREM 1-4. The kernel of φ is generated by all \overline{P}_{α} , where P_{α} ranges over all primes such that $P_{\alpha} \cap S \neq \phi$.

If $P_{\alpha} \cap S \neq \phi$, then $P_{\alpha}A_s = A_s$. Suppose C is a fractionary ideal such that $\overline{C} = \overline{P}_{\alpha}$, i.e. $C = dP_{\alpha}$ for some d in the quotient field of A. Then $CA_s = dP_{\alpha}A_s = dA_s$, and thus $\overline{C}A_s$ is the principal class.

On the other hand, suppose that C is a fractionary ideal of A such that $CA_s = xA_s$. We may choose x in C. Then $C^{-1} \cdot xA$ is an integral ideal of A, and $(C^{-1} \cdot xA)A_s = A_s$. In other words, $C^{-1} \cdot xA = P_1^{f_1} \cdots P_l^{f_l}$, where $P_i \cap S \neq \phi$, $i = 1, \dots, l$. Then $\overline{C} = \overline{P}_1^{-f_1}, \dots, -\overline{P}_l^{-f_l}$, completing the proof.

EXAMPLE 1-5. There are Dedekind domains with no prime ideals in the principal class.

Let A be any Dedekind domain which is not a principal ideal domain. Let S be the multiplicative set generated by all Π_{α} , where Π_{α} ranges over all the prime elements of A. Then by Theorem 1-4, A_s will have the same class group as A but will have no principal prime ideals.

COROLLARY 1-6. If A is a Dedekind domain which is not a principal ideal domain, then A has an infinite number of non-principal prime ideals.

Proof. Choose S as in Example 1-5. Then A_s is not a principal ideal domain, hence has an infinite number of prime ideals, none of which are principal. These are of the form PA_s , where P is a (non-principal) prime of A.

COROLLARY 1-7. Let A be a Dedekind domain with torsion class group and let $\{P_{\alpha}\}$ be a collection of primes such that the subgroup of the ideal class group of A generated by $\{\overline{P}_{\alpha}\}$ is not the entire class group. Then there are always an infinite number of nonprincipal primes not in the set $\{P_{\alpha}\}$.

Proof. For each α , chose n_{α} such that $P_{\alpha}^{*\alpha}$ is principal, say = $A \cdot a_{\alpha}$. Let S be the multiplicatively closed set generated by all a_{α} . By Theorem 1-4, A_s is not a principal ideal domain, hence A_s must have an infinite number of non-principal prime ideals by Corollary 1-6. These come from non-principal prime ideals of A which do not meet S. Each P_{α} does meet S, so there are an infinite number of non-principal prime jet and prime ideals of non-principal primes outside the set $\{P_{\alpha}\}$.

COROLLARY 1-8. Let A be a Dedekind domain with at least one prime ideal in every ideal class. Then for any multiplicatively closed set S, A_s will have a prime ideal in every class except possibly the principal class.

Proof. By Corollary 1-3, every class of A_s is the image of a class of A. Let \overline{D} be a non-principal class of A_s . $\overline{D} = \overline{CA}_s$, where C is a fractionary ideal of A. By assumption, there is a prime P of A such that $\overline{P} = \overline{C}$. If $PA_s = A_s$, then CA_s is principal and so \overline{D} is the principal class of A_s . This is not the case, so PA_s is prime, and certainly $\overline{PA}_s = \overline{CA}_s = \overline{D}$.

EXAMPLE 1-9. There is a Dedekind domain which is not the integral closure of a principal ideal domain.

Let $A = Z[\sqrt{-5}]$. A is a Dedekind domain which is not a principal ideal domain. In A, $29 = (3 + 2\sqrt{-5}) \cdot (3 - 2\sqrt{-5})$. It follows from elementary algebraic number theory that $\Pi_1 = 3 + 2\sqrt{-5}$ and $\Pi_2 = 3 - 2\sqrt{-5}$ generate distinct prime ideals of A. Let $S = \{\Pi_1^k\}_{k\geq 0}$. Then A_s is by Theorem 1-4 a Dedekind domain which is not a principal ideal domain. Let F denote the quotient field of A and Q the rational numbers. A_s cannot be the integral closure of a principal ideal domain whose quotient field is F since principal ideal domains are integrally closed. If A_s were the integral closure of a principal ideal domain C with quotient field Q, then C would contain Z, and Π_1 and Π_2 would be both units or nonunits in A_s (since Π_1 and Π_2 are conjugate over Q). But only Π_1 is a unit in A_s .

REMARK 1-10. Example 1-9 settles negatively a conjecture in Vol. I of *Commutative Algebra* [2, p. 284]. The following conjecture may yet be true: Every Dedekind domain can be realized as an A_s , where A is the integral closure of a principal ideal domain in a finite extension field and S is a multiplicatively closed set of A.

LUTHER CLABORN

2. LEMMA 2-1. Let A be a Dedekind domain. Let S be the multiplicatively closed set of A[X] consisting of all monic polynomials of A[X]. Let T be the multiplicatively closed set of all primitive polynomials of A[X] (i.e. all polynomials whose coefficients generate the unit ideal of A). Then $A[X]_s$ and $A[X]_r$ are both Dedekind domains.

Proof. A[X] is integrally closed and noetherian, and so both $A[X]_s$ and $A[X]_r$ are integrally closed and noetherian. Let P be a prime ideal of A[X]. If $P \cap A \neq (0)$, then $P \cap A = Q$ is a maximal ideal of A. If $P \neq QA[X]$, then passing to A[X]/QA[X], it is easy to see that $P = QA[X] + f(X) \cdot A[X]$ where f(X) is a suitably chosen monic polynomial of A[X]. In this case $P \cap S \neq \phi$, so $PA[X]_s = A[X]_s$. Thus if $P \cap A \neq (0)$ and $PA[X]_s$ is a proper prime of $A[X]_s$, then P = QA[X] where $Q = P \cap A$. Then height P = height Q = 1. If $P \cap A = (0)$, then PK[X] is a prime ideal of K[X] (where K denotes the quotient field of A). Certainly height P = height PK[X] = 1, so in any case if a prime P of $A[X]_s$ is a Dedekind domain. Since $S \subseteq T$, $A[X]_r$ is also a Dedekind domain by Lemma 1–1.

REMARK 2-2. $A[X]_r$ is customarily denoted by A(X) [1, p. 18]. For the remainder of this article, $A[X]_s$ will be denoted by A^1 .

PROPOSITION 2-3. A^1 has the same ideal class group as A. In fact, the map $\overline{C} \rightarrow \overline{CA^1}$ is a one-to-one map of the ideal class group of A onto that of A^1 .

We can prove that $\overline{C} \to \overline{CA^{i}}$ is a one-to-one map of the ideal class of A into that of A by showing that if two integral ideals D and Eof A are not in the same class, neither are DA^{i} and EA^{i} . Suppose then that $\overline{DA^{i}} = \overline{EA^{i}}$. This implies that there are elements $f_{i}(X)$, $g_{i}(X)$, i = 1,2 in A[X] with $g_{i}(X)$ monic for i = 1,2 such that

$$DA^{\scriptscriptstyle 1} \cdot rac{f_{\scriptscriptstyle 1}\left(X
ight)}{g_{\scriptscriptstyle 1}\left(X
ight)} = EA^{\scriptscriptstyle 1} \cdot rac{f_{\scriptscriptstyle 2}\left(X
ight)}{g_{\scriptscriptstyle 2}\left(X
ight)} \, .$$

Let a_i be the leading coefficient of $f_i(X)$ for i = 1,2, and let $d \in D$. Then we get a relation

$$d\cdot rac{f_1(X)}{g_1(X)} = rac{e(X)}{g(X)} \cdot rac{f_2(X)}{g_2(X)}$$
, $g(X)$ monic,

where e(X) can be chosen as a polynomial in A[X] all of whose coefficients are in E. This leads to $dg_2(X) \cdot f_1(X) \cdot g(X) = e(X) \cdot f_2(X) \cdot g_1(X)$. The leading coefficient on the right is in $a_2 \cdot E$. This shows that $a_1 \cdot D$ $D \subseteq a_2 \cdot E$. Likewise $a_2 \cdot E \subseteq a_1 \cdot D$, thus $a_1 \cdot D = a_2 \cdot E$ and $\overline{D} = \overline{E}$. To prove the map is onto, the following lemma is needed.

LEMMA 2-4. Let A be a Dedekind domain with quotient field K. To each polynomial $f(X) = a_n X^n + \cdots - a_o$ of K[X] assign the fractionary ideal $c(f) = (a_n, \dots, a_o)$. Then c(fg) = c(f) c(g).

Proof. Let V_p (for each prime P of A) denote the P-adic valuation of A. It is immediate that $V_p(c(f)) = \min V_p(a_i)$. Because of the unique factorization of fractionary ideals in Dedekind domains, it suffices to show that $V_p(c(fg)) = V_p(c(f)) + V_p(c(g))$ for each prime P of A. This will be true if the equation is true in each $A_p[X]$. But A_p is a principal ideal domain, and the well-known proof for principal ideal domains shows the truth of the lemma.

To complete Prop. 2-3, let P be a prime ideal of A^1 . The proof of Lemma 2-1 shows that if $P \cap A \neq (0)$, then $P = QA^1$ where Q is a prime of A. Thus $\overline{P} = \overline{QA^1}$ and ideal classes generated by these primes are images of classes of A. Suppose now that P is a prime of A^1 such that $P \cap A = (0)$. Let $P^1 = P \cap A[X]$. Then $P^1 \cap A = (0)$, and $P^1 \cdot K[X]$ is a prime ideal of K[X]. Let $P^1 \cdot K[X] = f(X)K[X]$; we may choose f(X) in A[X]. Let C = c(f). Suppose that $g(X) \cdot f(X) \in$ A[X]. Then because $c(fg) = (c(f)) + (c(g)) \ge 0$ for all P, $g(X) \in C^{-1} \cdot$ A[X]. Conversely if $g(X) \in C^{-1} \cdot A[X]$, then $g(X) f(X) \in A[X]$. Thus $P^1 = f(X)K[X] \cap A[X] = C^{-1} \cdot A[X] \cdot f(X)A[X]$, and $P = P^1 A^1 = C^{-1} \cdot$ $A^1 \cdot f(X)A^1$. This gives finally that $\overline{P} = \overline{C^{-1}A^1}$, and the class is an image of a class of A under our map. Since the ideal class group of A^1 is generated by all \overline{P} where P is a prime of A^1 , this finishes the proof.

COROLLARY 2-5. A^1 has a prime ideal in each ideal class.

Proof. Let w be any nonunit of A. Then $(wX + 1) K[X] \cap A^1$ $(= (wX + 1)A^1)$ is a prime ideal in the principal class. Otherwise let C be any integral ideal in a nonprincipal class \overline{D}^{-1} . C can be generated by 2 elements, so suppose $C = (c_0, c_1)$; then $Q = (c_0 + c_1X) \cdot K[X] \cap A^1$ is a prime ideal in $\overline{C}^{-1}\overline{A}^1 = \overline{D}$.

PROPOSITION 2-6. If A is a Dedekind domain, then A(X) is a principal ideal domain.

Proof. Since $A(X) = A_x^1$, Corollary 1-3 and the proof of Corollary 2-5 show that each nonprincipal class of A(X) contains a prime QA(X), where Q is a prime ideal of A of the type $(c_0 + c_1 X)K[X] \cap A^1$. Clearly $Q \cap A[X] = (c_0 + c_1 X)K[X] \cap A[X] = C^{-1} \cdot A[X] \cdot (c_0 + c_1 X)A[X] \not\subseteq$ PA[X] for any prime P of A. Thus there is in $Q \cap A[X]$ a primitive polynomial of A[X|. Thus QA(X) = A(X). Theorem 1-4 now implies that every class of A becomes principal in A(X), i.e. A(X) is a principal ideal domain.

REMARK 2-7. Proposition 2-6 is interesting in light of the fact that the primes of A(X) are exactly those of the form PA(X), where P is a prime of A [1, p. 18].

REMARK 2-8. If the conjecture given in Remark 1-10 is true for a Dedekind domain A, it is also true for A^1 . For suppose $A = B_M$, where M is a multiplicatively closed set of B and B is the integral closure of a principal ideal domain B_0 in a suitable finite extension field. Let S, S^1 , and T be the set of monic polynomials in A[X], B[X], and $B_0[X]$ respectively. Then $A^1 = A[X]_S = (B_M[X])_S =$ $(B[X]_M)_S = (B[X])_{<M,S>} = (B[X]_{S^1})_{<M,S>}$. The last equality holds because $S^1 \subseteq S \subseteq \langle M, S \rangle$. It is easy to see that $B[X]_{S^1}$ is the integral closure of the principal ideal domain $B_0[X]_T$ in K(X), where K is the quotient field of B.

References

1. M. Nagata, Local rings, New York, Interscience Publishers, Inc. (1962).

2. O. Zariski and P. Samuel, *Commutative algebra*, Vol. I, Princeton, D. Van Nostrand Company (1958).

CORNELL COLLEGE