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DEDEKIND DOMAINS AND RINGS OF QUOTIENTS

LUTHER CLABORN

We study the relation of the ideal class group of a
Dedekind domain A to that of As, where S is a multiplicatively
closed subset of A. We construct examples of (a) a Dedekind
domain with no principal prime ideal and (b) a Dedekind
domain which is not the integral closure of a principal ideal
domain. We also obtain some qualitative information on the
number of non-principal prime ideals in an arbitrary Dedekind
domain.

If A is a Dadekind domain, S the set of all monic poly-
nomials and T the set of all primitive polynomials of A[X],
then A[X]<? and A[X]T are both Dadekind domains. We obtain
the class groups of these new Dsdekind domains in terms of
that of A.

1* LEMMA 1-1. If A is a Dedekind domain and S is a multi-
plicatively closed set of A suoh that As is not a field, then As is
also a Dedekind domain.

Proof. That As is integrally closed and Noetherian if A is, follows
from the general theory of quotient ring formations. The primes of
As are of the type PAS) where P is a prime ideal of A such that
PΓ)S = ψ. Since height PAS = height P if PΠS = φ, P Φ (0) and
PΠS = φ imply that height PAS = 1.

PROPOSITION 1-2. If A is a Dedekind domain and S is a multi-
plicatively closed set of A, the assignment C —» CAS is a mapping of
the set of fractionary ideals of A onto the set of fractionary ideals
of As which is a homomorphism for multiplication.

Proof. C is a fractionary ideal of A if and only if there is a
d G A such that dC S A. If this is so, certainly dCAs S ASj so CAS

is a fractionary ideal of As. Clearly (J5 C)AS ~ BAS-CAS, so the
assignment is a homomorphism. Let D be any fractionary ideal of
As. Since As is a Dedekind domain, D is in the free group generated
by all prime ideals of As, i.e. D = Q -1 Qlk. For each i — 1, , k
there is a prime Pi of A such that Qi = P{ASa Set E = Pi1 Pn

kK
Then using the fact that we have a multiplicative homomorphism of
fractionary ideals, we get
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EAa = (P1AS)^ (PkAsy* = Q i . . . QlK

COROLLARY 1-3. Let A be a Dedekind domain and S be a multi-
plicatively closed set of A. Let C (for C a fractionary ideal of A
or As) denote the class of the ideal class group to which C belongs.
Then the assignment C —* CAS is a homomorphism φ of the ideal
class group of A onto that of As.

Proof It is only necessary to note that if C = dA, then CAS =
dAs.

THEOREM 1-4. The kernel of φ is generated by all Pω, where
Pa ranges over all primes such that P#OS Φ Φ.

If PaΠS Φ φ, then P^As — As. Suppose C is a fractionary ideal
such that C = Pay i.e. C = dPω for some d in the quotient field of
A. Then CAS — dPaAs = dAs, and thus^CA? is the principal class.

On the other hand, suppose that C is a fractionary ideal of A
such that CAS — xAs. We may choose x in C. Then C~x xA is an
integral ideal of A, and (C~1 xA)As — As. In other words, C~1 xA =
P{i... P{i9 where Pi f)S Φ φ, i = 1, . . . , I. Then C = Pτf\ , ~Pϊfι,
completing the proof.

EXAMPLE 1-5. There are Dedekind domains with no prime ideals
in the principal class.

Let A be any Dedekind domain which is not a principal ideal
domain. Let S be the multiplicative set generated by all Πa, where
Πa ranges over all the prime elements of A. Then by Theorem 1-4,
As will have the same class group as A but will have no principal
prime ideals.

COROLLARY 1-6. If A is a Dedekind domain which is not a
principal ideal domain, then A has an infinite number of non-
principal prime ideals.

Proof. Choose S as in Example 1-5. Then As is not a principal
ideal domain, hence has an infinite number of prime ideals, none of
which are principal. These are of the form PAS, where P is a (non-
principal) prime of A.

COROLLARY 1-7. Let A be a Dedekind domain with torsion class
group and let {Pa} be a collection of primes such that the subgroup
of the ideal class group of A generated by {P0} is not the entire
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class group. Then there are always an infinite number of non-
principal primes not in the set {Pa}.

Proof. For each a, chose nΛ such that Pl<* is principal, say =
A aa. Let S be the multiplicatively closed set generated by all aa.
By Theorem 1-4, As is not a principal ideal domain, hence A8 must
have an infinite number of non-principal prime ideals by Corollary 1-6.
These come from non-principal prime ideals of A which do not meet
S. Each P« does meet S, so there are an infinite number of non-
principal primes outside the set {Pa}.

COROLLARY 1-8. Let A be a Dedekind domain with at least one
prime ideal in every ideal class. Then for any multiplicatively
closed set S, As will have a prime ideal in every class except pos-
sibly the principal class.

Proof. By Corollary 1-3, every class of As is the image of a
class of A. Let D be a non-principal class of As. D = UAS, where
C is a fractionary ideal of A. By assumption, there is a prime P of
A such that P'= C. If PAS — As, then CAS is principal and so D is
the principal class of As. This is not the case, so PAS is prime, and
certainly PAS = *CAS = D.

EXAMPLE 1-9. There is a Dedekind domain which is not the
integral closure of a principal ideal domain.

Let A — Z[V — 5]. A is a Dedekind domain which is not a
principal ideal domain. In A, 29 = (3 + 2 t/" : = Γ5) (3 - 2
follows from elementary algebraic number theory that / 7 1 = 3
and J T 2 = 3 - 2 l / - 5 generate distinct prime ideals of A. Let S =
{Πi}^. Then As is by Theorem 1-4 a Dedekind domain which is not
a principal ideal domain. Let F denote the quotient field of A and Q
the rational numbers. As cannot be the integral closure of a principal
ideal domain whose quotient field is F since principal ideal domains
are integrally closed. If As were the integral closure of a principal
ideal domain C with quotient field Q, then C would contain Z, and
Π1 and Π2 would be both units or nonunits in As (since Π1 and Π2

are conjugate over Q). But only Π1 is a unit in As.

REMARK 1-10. Example 1-9 settles negatively a conjecture in
Vol. I of Commutative Algebra [2, p. 284], The following conjecture
may yet be true: Every Dedekind domain can be realized as an ASf

where A is the integral closure of a principal ideal domain in a finite
extension field and S is a multiplicatively closed set of A.
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2 LEMMA 2-1. Let A be a Dedekind domain. Let S be the
multiplicatively closed set of A[X] consisting of all monic poly-
nomials of A[X]. Let T be the multiplicatively closed set of all
primitive polynomials of A[X] {i.e. all polynomials whose coefficients
generate the unit ideal of A). Then A[X]S &nd A\X\T are both
Dedekind domains.

Proof. A[X] is integrally closed and noetherian, and so both
A[X]s and A[X]y are integrally closed and noetherian. Let P be a
prime ideal of A[X]. If PnAΦ(0), then PΓ)A = Q is a maximal
ideal of A. If P Φ QA[X], then passing to A[X]/QA[X], it is easy
to see that P= QA[X] + f(X)Ά[X] where f(X) is a suitably chosen
monic polynomial of A[X]. In this case PΓ\ S Φ φ, so PA[X]S = A[X]S.
Thus if PΠAΦ(O) and PA[X]^ is a proper prime of A[X]S, then
P=QA[X] where Q = PΠA. Then height P = height Q = 1. If
P Π i = ( 0 ) , then PK[X] is a prime ideal of K[X] (where K denotes
the quotient field of A). Certainly height P = height PK[X] = 1, so
in any case if a prime P of A[X] is such that PflS = φ, then height
P ^ 1. This proves that A[X]S is a Dedekind domain. Since S ^ T,
A[X]T is also a Dedekind domain by Lemma 1-1.

REMARK 2-2. A[X]T is customarily denoted by A(X) [1, p. 18].
For the remainder of this article, A[X]^ will be denoted by A1.

PROPOSITION 2-3. A1 has the same ideal class group as A. In

fact, the map C —> UAL is a one-to-one map of the ideal class group of

A onto that of A1.

We can prove that C —> CΆ1 is a one-to-one map of the ideal class

of A into that of A by showing that if two integral ideals D and E

of A are not in the same class, neither are DA1 and EA1. Suppose

then that DA1 — EA1. This implies that there are elements f (X),

9i(X), i = 1,2 in A[X] with ^(X) monic for i = 1,2 such that

DA1-
gi(X)

Let a{ be the leading coefficient of fι{X) for i = 1,2, and let deD.
Then we get a relation

d. ΛWL = jl(XL . MXL, g{X) mOnic,
(X) g(X) {X) yX }

where e{X) can be chosen as a polynomial in A[X] all of whose coef-
ficients are in E. This leads to d g2(X)'f(X)'g(X) - e(X) /2(X) ^(X).
The leading coefficient on the right is in a2 E. This shows that aλ-D
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D S a2Έ. Likewise a2 E £ ax Ώ, thus a^D = a2Έ and D = E.
To prove the map is onto, the following lemma is needed.

LEMMA 2-4. Let A be a Dedekind domain with quotient field
K. To each polynomial f{X) ~ anX

n + V a0 of K[X] assign
the fractionary ideal c(f) = (αΛ, , a0). Then c(fg) = c(f) c(g).

Proof Let Vv (for each prime P of A) denote the P-adic valua-
tion of A. It is immediate that Vp(c(f)) — min F^αJ. Because of
the unique factorization of fractionary ideals in Dedekind domains, it
suffices to show that Vp(c(fg)) = Vp(c(f))+ Vp(c(g)) for each prime
P of A. This will be true if the equation is true in each AP[X].
But Ap is a principal ideal domain, and the well-known proof for
principal ideal domains shows the truth of the lemma.

To complete Prop. 2-3, let P be a prime ideal of A1. The proof
of Lemma 2-1 shows that if P[\Aφ (0), then P = QA1 where Q is a
prime of A. Thus P = QA1 and ideal classes generated by these primes
are images of classes of A. Suppose now that P is a prime of A1

such that PΓ)A=(0). Let P1 = Pf\A[X]. Then P1^ A = (0), and
P^K[X] is a prime ideal of K[X]. Let P^K[X] = f(X)K[X]; we
may choose f(X) in A[X]. Let C = c(f). Suppose that g(X)-f(X)e
A[X]. Then because c(fg) = (c(/)) + (c(^» ^ 0 for all P, g(X)eC~1'
A[X]. Conversely if g(X)e C-^A[X]9 then g(X) f(X) e A[X]. Thus
P1 - /(I)K[I]ΠA[I] = C-1- A[X]-f{X)A[X], and P = P1 A1 - C"1-

This gives finally that P = C~λA\ and the class is an
image of a class of A under our map. Since the ideal class group of
A1 is generated by all P where P is a prime of A1, this finishes the
proof.

COROLLARY 2-5. A1 has a prime ideal in each ideal class.

Proof Let w be any nonunit of A. Then (wX +
(= ( r f + 1)A1) is a prime ideal in the principal class. Otherwise let
C be any integral ideal in a nonprincipal class D~x. C can be
generated by 2 elements, so suppose C — (c0, Cj); then Q — (c0 + ^X)-
K[X] Π A1 is a prime ideal in C717!"1 = D.

PROPOSITION 2-6. If A is a Dedekind domain, then A(X) is a
principal ideal domain.

Proof. Since A(X) = Ai , Corollary 1-3 and the proof of Corollary
2-5 show that each nonprincipal class of A(X) contains a prime QA(X),
where Q is a prime ideal of A of the type (c0 + c1 X)K[X] Π A1.
Clearly Q n A[X] = (cQ + ClX)K[X] Π A[X] = C"1- A[X] (c0
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PA[X] for any prime P of A. Thus there is in Q Π A[X] a primitive
polynomial of A[X\. Thus QA(X) = A(X). Theorem 1-4 now implies
that every class of A becomes principal in A{X), i.e. A(X) is a
principal ideal domain.

REMARK 2-7. Proposition 2-6 is interesting in light of the fact
that the primes of A(X) are exactly those of the form PA(X), where
P is a prime of A [1, p. 18].

REMARK 2-8. If the conjecture given in Remark 1-10 is true for
a Dedekind domain A, it is also true for A1. For suppose A = BM,
where M is a multiplicatively closed set of B and B is the integral
closure of a principal ideal domain Bo in a suitable finite extension
field. Let S, S1, and T be the set of monic polynomials in A[X],
B[X], and B0[X] respectively. Then A1 = A[X]S = (BM[X])S =
(B[X]M)s = CB[X])<M,s> = (J5[-X"l*i)<jff*. The last equality holds because
S1 S S S <Λf, S>. It is easy to see that B[X]sι is the integral closure
of the principal ideal domain BO[X]T in K(X), where K is the quotient
field of B.
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