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TOPOLOGICAL SEMILATTICES ON THE TWO-CELL

To Professor A, D. Wallace on his 60th birthday

DeNNISON R. BrROWN

Topological lattices on the n-cell have been studied by
L.W. Anderson, A.D. Wallace, A.L. Shields, and L.E, Ward,
Jr. In particular, these authors have papers setting forth
conditions under which a topological lattice on the two-cell
is topologically isomorphic to the preduct lattice IXx1I,

The primary purpose of this paper is the investigation of
topological semilattices (commutative, idempotent topological
semigroups) on the two-cell which retain the lattice like pro-
perty that for each element xz, {y:2 < y} is a connected set,
Specifically, it is shown that any such entity is the continuous
homomorphic image of one of a fixed pair of semilattices on
the two-cell, where the choice of domain depends on the loca-
tion of the zero element.

It is also proved that a TSL on the two-cell has an identity
(a unique maximal element) and {y: © < y} connected for each
element 2z if and only if it is the continuous homomorphic
image of I X I. Also, if {y:2 < y} is connected for each ele-
ment 2, then S, a TSL on the two-cell, is generated by its
boundary B in the sense that B? =S,

Semilattices on the #-cell are also discussed. Let S be such
an object with boundary B, It is proved that if x is a max-
imal element of S, then x € B, If S has an identity, 1, and
T is a continuum chain from 1 to 0, then S = BT.

Finally, let S be a continuum TSL with 1 and let A be the
subset defined by « € A if and only if {y:x < y} is connected.
Then (1) x € A if and only if there is a continuum chain from
1 to 2; and(2) A is a nondegenerate continuum sub-TSL of S,

Topological lattices on the m-cell have been studied in [1], [6],
and in [8]. In particular, these papers set forth conditions under
which a topological lattice on the two-cell is iseomorphic (topologically
isomorphic) to the product lattice I x I.

The primary purpose of this paper is the investigation of topolo-
gical semilattices (commutative, idempotent topological semigroups) on
the two-cell which retain the lattice-like property that for each ele-
ment », M(x) is a connected set (see below). Specifically, we show
that any such entity is the continuous homomorphic image of one of
a fixed pair of semilattices, where the choice of domain depends upon
the location of the zero.
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36 DENNISON R. BROWN

Section 3 discusses semilattices on the m-cell. The role of the
boundary sphere in determining the multiplication is seen to be quite
important.

The next section is the main body of the paper. In addition to
the theorems indicated above, we prove that any topological semilattice
on the two-cell which has a unique maximal element and all M(x)
connected must be the continuous homomorphic image of I x I. In
particular, any topological lattice has these properties. We also show
that, if each M(x) is connected, then a topological semilattice S on
the two-cell is generated by its boundary B in the sense that B*= S.

In §5 we prove that if S is a compact, connected topological semi-
lattice with identity, then the subset of elements x such that M(x)
is connected is a compact connected subsemilattice of S.

We are indebted to Professors H. Cohen and R.J. Koch for their
helpful comments and support.

2. Preliminaries. A topological semilattice (hereafter TSL) is
a pair (S, =) such that S is a Hausdorff topological space, < is a
continuous semilattice ordering on S. Egquivalently, S is a commuta-
tive, idempotent topological semigroup with o <y if and only if
XY = .

An element « of S is maximal if it is dominated by no other
element of S; that is, ay = « implies y = x. A minimal element is.
defined dually. It is well known that a compact TSL has maximal
elements and a unique minimal element. For x € S, let M(x) =
(e =y}, Lix)={y:y=a}). It is easy to verify that L(x) = Sz.
These are closed subsemilattices of S [10].

A chain is a totally ordered subset of S. Of primary interest
here are compact, connected chains; in case S is metric these are
known to be arcs [13] and will be referred to henceforth as arc chains.

The following theorem, due to Koch [4], is stated without proof.

THEOREM A. If S is a compact, connected, metric TSL with
zero (0), then every x € S is conmmected to 0 by an arc chain.

If S is as stated in Theorem A and has also M(x) connected for
each 2z € S, then, by replacing S by M(x) in the theorem, is may be
seen that any pair of comparable elements in S is connected by an arc:
chain.

A space S is homotopically trivial if 7,(S) = 0, © > 0 where 7,(S)
is the 4th homotopy group of S. The following result extends slightly
a theorem of Anderson and Ward [2].

THEOREM B. If S is an arcwise connected idempotent semigroup-
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with (0), them S is homotopically trivial.

Proof. Let f:I x --- x I,— S with f(Bndry (I X -+ x I) = 0.
Define g: (I, X -+« X I) x I— S by

g(xu oty Xy ”i") :f(xu ct xn)f(xx =Ty, X, — 0 ’i”) .

n

Henceforth, the letter I will be reserved to represent the TSL on
the arc [0, 1] defined by xy = min (2, ), where the ordering is that

inherited from the real numbers. Any arc chain is iseomorphic to
I][5].

3. Semilattices on the #%-cell. Throughout this section, S re-
presents a TSI whose underlying space is an n-cell, and B the boundary
7 — 1 sphere of S. If S has an identity, 1, then 1 is clearly the
unigue maximal element of S. It is well-known [7] that 1 € B. The
following order—theoretic version of the maximum modulus theorem
generalizes this statement.

THEOREM 1. Let x be o maximal element of S. Then » ¢ B.

Proof. By the maximality of 2, and Theorem B, S\{x} is a sub-
semilattice, homotopically trivial. Hence z ¢ S\B.

In [3] and in |[5] it was shown that, under certain conditions, the
multiplication in S is determined by that in B together with that in
a certain arc subsemigroup. The next theorem is of a similar nature.

THEOREM 2. Let S have a 1, and let T be any arc chain from
1t 0. Then S = BT.

Proof. Since B c BT, it suffices to show BT is contractible.
Since T is an interval, define g¢:(BT) x T— BT by g(bt, r) = btr.
Then g(bt, 1) = bt, and g(bt, 0) = 0. The function g is clearly con-
tinuous, hence the proof is complete.

4. Semilattices on the 2-cell. The following lemmas will be
useful in the sequel.

LEMMA 1. Let S be a topological semilattice wn which, for each
x, M(x) ts a connected set. Let f:S— T be a continuous homomor-
phism of S onto T. Then, for each ye T, M(y) is connected;
JSurthermore f is a monotone map.
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Proof. The continuous homomorphic image of an are chain is clearly
an arc chain, although possibly degenerate. Let ye T, ze€ M(y), y =
f(@), 2 = f(b). Then y = yz = f(a)f(b) = f(ab). Let C be an arc chain
in S from b to ab. Then f(C) is again such from z to ¥.

Now let X = f(y), @, be X. Let C, D be arc chains from a to
ab, b to ab respectively. Then C Uy D S X, hence X is connected.

LeEMMA 2. Let S be a two cell, S=C U D, CN D=, where
C and D are arc wise connected sets. Let B be the boundary of S and
suppose BNC#[]#BND. Then C N B and DN B are each connected
sets.

Proof. If C N Bis not connected, then clearly neither is D N B.
Choose a, b from different components of C N B, and let T be an are
in C connecting «, b. Choose d, ¢ from different components of DN B,
so that {a, b} separates d and ¢ in B, and let J be an arc in D con-
necting d, e. Then J and T cannot be disjoint [13], which contradicts.
CnD=1.

In the remainder of this section, S will represent a TSL whose
underlying space is a two-cell, and B the boundary circle of S.

COROLLARY. Let a, b € B, with M(ab) a connected set. Decompose
B into ares P, Q with PN Q = {a, b}. Then either P < M(ab) or
Q S M(abd).

Proof. M(ab) is arcwise connected by Theorem A. On the other
hand, any = € S\M(ab) can be connected to 0 by an arc chain T in S.
Clearly T N M(ab) = O. Hence S\M(ab) is arcwise connected. By
the lemma above, M(ab) N B is therefore connected and the result
follows.

Methods used in portions of the proof of the following theorem
are similar to those used in [8].

THEOREM 3. Suppose S has a 1. These are equivalent:
(i) for each x, M(x) is a connected set;
(ii) B s the union of two maximal arc chains of S;
(iii) S s the continuous homomorphic image of I x I.

Proof. (i) implies (ii). Fix ae B, a = 1. By the above corollary,
M(a) must contain one of the boundary arcs between a and 1. De-
signate this arc by @ and let p ¢ Q, p+#a. Let P be the boundary arc
between p and 1 which is contained in Q. Then P & M(p), for if not
then a € M(p), which is false. It follows that any element of @
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compares with p, and hence @ is totally ordered. Let J be a maximal
chain in B, with a, 1€ J. By continuity of multiplication, J is
closed and therefore proper in B. Let te B\J, and let K be a maxi-
mal chain in B, with ¢, 1 € K. By the maximality of J and K, B=
J U K. From the anti-symmetry of the relation (=), J and K have the
same minimal element, z. Now M(z) is a compact, connected semilat-
tice, homotopically trivial by Theorems A and B. Since B <& M(2),
M(z) = S, and hence 2z = 0. The arc chains J, K are thus maximal
in B. If ce S\B, then M(c) N J and L(c) N J are closed, disjoint sub-
sets of J, and hence fail to exhaust J. Then maximality of J, K in
S is now immediate.

(ii) implies (iii). Let R be the closed ideal (I x {0}) U ({0} X I) of
Ix I; and let M be the Rees quotient (I X I)/R. This TSL on the
2-cell has the properties that every nonzero element of M is repre-
sented uniquely as a product of two boundary elements, one from each
of the maximal chains composing the boundary of M (if a € C, then
a=a-+1), and ab =0 implies either ¢ =0 or b = 0. Denote the
boundary of M by C =V U W, and the boundary of S by B=J U K,
with V, W, J, K maximal arc chains.

Let fi: V—Jand f,: W— K be iseomorphisms. Define f*: M — S
by f*(x) = fi(a)fy(b), where ab = x, ac V, be W. The only element
of M which has a nonunique representation in this manner is 0; but
ab = 0 requires that one of a, 6 = 0. Hence f* is well defined, and
the following diagram is commutative:

M —I s

T

vx WL ek

Here, the vertical arrows represent the respective multiplication
functions. Since these functions, together with f; and f,, are con-
tinuous, and V and W are compact, it follows that f* is continuous.

Next, let a = v,w,, b = v,w, be elements of M. Then

SH(ab) = fH(vww,w,) = f*((0,0:)(w,w,)) = f(v0)fo(w,w,)
- f 1('01)f 1(vz)f 2(w1)f 2(“’2) = f *(vlwl)f *('vz'wz) - f *(a')f *(b) .

Hence f* is a homomorphism.

Finally, f*(M) is a compact connected TSL containing B; by
Theorems A and B it follows that f*(M) = S. The natural map of
Ix I onto (I X I)/R is now composed with f* to obtain the desired
result.

(iii) implies (i). Clearly I x I has M(x) connected for each z. By
Lemma 1, S has this property also.



40 DENNISON R. BROWN

COROLLARY 3.1. If S has a 1 and M(x) connected for each x € S,
then 0 € B.

COROLLARY 3.2. If S s a topological lattice on the 2-cell, then
S is the continuous (semilattice) homomorphic image of I x I.

Proof. As a topological lattice, S has a 1 and has M(x) connected
for each x € S.

THEOREM 4. If M(x) is connected for each x € S, then B*= S.

Proof. Suppose 0 € B. It will first be shown that B* S B Let
a, b, ce B. In order to prove that abc € B? it suffices to assume that
a, b, ¢ are distinct and nonzero. Assume also that these points are
named so that 0, b are in different components of B\{a, ¢}. By the
corollary to Lemma 2, one component of B\{a, ¢} lies in M(ac). Since
0 ¢ M(ac), it follows that b€ M(ac), hence abc = ac and B®< B
Hence B*= B°B < B’B<S B®. Since B® is a compact connected TSL,
and B & B?, it follows from Theorems A and B that B*= S.

Now suppose 0€ S\B, and again select a, b, ¢ distinct elements
of B. If any of ab, ac, be, abc € B, then immediately abc € B2
Similarly, it may be assumed that a ¢ M(bec), b ¢ M(ac), c ¢ M(ab).
By the corollary to Lemma 2, it follows that B = M(ab) U M(ac) U M(bc).
But the latter subset is included in M(abc). Since M(abc) is a compact, con-
nected TSL and B & M(abc), it again follows that M(abc)= S, and therefore
abec = 0. It has now been shown that B*= B*U {0}; thus B*U {0} is
compact and connected. Furthermore, (B*U {0})’<S B*U {0} & B* U {0};
hence B* U {0} is a subsemilattice containing B. This yields B*U{0}=S.
But B? is compact, hence 0 € B*. Consequently B*< B?, and as before,
B*=S.

The next pair of theorems shows that the structure of S when
0e B is essentially different from that occurring when 0e S\B. Let
T={=x, yelxI:x+y=1}. Note T is a subsemilattice of I x I.

THEOREM 5. The semilattice S has 0€ B and M(x) connected for
each x tf and only 1f S is a continuous homomorphic image of T.

Proof. As in Theorem 3, let R = (I x {0})) U ({0}) x I). Let N =
T/R, the Rees quotient of 7. Let D be the boundary circle of N.
Note that every nonzero element of N has a unique representation as
a product of two not necessarily distinct elements of D, and that ab =0
implies ¢ =0 or b=0. Now let f: D— B homeomorphically, with
f(0) = 0, and extend fto f*: N— S by f*(c) = f(a)f(b), where a, be D.
As in Theorem 3, f* is well defined, and the following diagram is
commutative :
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*

N ——— S

P

DxD—-— sBxB

Vertical arrows represent the respective multiplication functions of
N and S. Since these functions and f are continuous and D is com-
pact, f* is continuous. By Theorem 4, f* maps N onto S.

It remains to show that f* is a homomorphism. To this end, let
c¢=ab, a=pq, b=rs, with p, q, 7, s distinct nonzero elements of
D. Some unique pair of p, ¢, 7, s separates the remaining pair from
0 on D; suppose p, » and 0 lie in different components of D\{q, s}. By
the corollary to Lemma 2, {p, r} S M(qs). Hence ab = pgrs = gs, and
f*(c) = f*(ab) = f*(gs) = f(@)f(s). On the other hand, since f is a
homeomorphism on D, it follows that {f(p), f(r)} and {f(0) = 0} lie in
different components of B\{f(q), f(s)}. Hence {f(p), f(r)} S M(f(q)f(s))
and therefore f(q)f(s) = f(p)f(Q)f(r)f(s) = [*(pQ)Sf*(rs) = f*(a)f*(D).
The argument is similar if p, ¢, #, s cecur in a different order in D.
This portion of the proof is now complete.

The converse follows from the fact that T has M(x) connected
for each # and Lemma 1, together with the fact that a monotone map
of a a two-cell onto a two-cell must take boundary onto boundary [12].

Now, let W be the disk of radius one, centered at the origin of
a plane, and let F' be the boundary circle of W, If z, ye F, let xy
be the midpoint of the chord joining x and y. This is transparently
continuous, and note that a nonzero point of W is uniquely repre-
sented as the product of two boundary points. To extend the multi-
plication to all of Wlet a = wx, b = yz where a, be Wand w,z,y,z¢€ F}
set ab=0 if each boundary arc containing w, x, ¥ and z has length =z, and
otherwise let ab be the product of these two of the four elements w, x, y
and z whose distance apart is a maximum. Again continuity is obvious,
as is the fact that multiplication is commutative and idempotent.

It is certainly desirable to give an alternative, order-theoretic
description of W. For each x¢ W let L(x) be the intersection of all
circular disks which are tangent to F, which contain x, and whose
boundaries contain 0. This is a semilattice partial order and L(x) N L(y)
is precisely L(z) for that z( = xy) e L(x) N L(y) which is at maximum
distance from 0. In this manner, it if easily seen that M(x) is con-
nected for each x€ W. Note that, if a, b, ¢, de F, then abed = 0 if
and only if one of these elements, say @, has the property that b, ¢, d
lie in the same component of F\{a, — a}, where (— a) represents the

1 The author is indebted to the referee for improving the description of the
semigroup W.
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point of F' antipodal to a.®

THEOREM 6. Let 0 S\B. Then M(x) is a connected set for cach
xe S if and only 1f S is the continuous homomorphic vmage of W.

Proof. One implication is an immediate consequence of Lemma 1,
since W has M(x) connected for all x. Therefore, assume that S has
M(x) connected for all 2, 0¢ B. It will be shown that S is the con-
tinuous homomorphic image of W.

First, suppose that f is a continuous map of F onto B. Define
f*W—S8 by f*x)= f(a)f(b), where x = ab, a, be F. Recall that,
if £+#0, then this representation of 2 is wunique, and f*(x) is
therefore well defined. On the other hand 0 may be expressed only
as the product of any pair of antipodal elements of F. Hence, in
order that f* be well defined, ab = 0, a, be F must imply f(a)f(d) = 0
in S. The construction of a continuous map f with this property is
the major portion the proof. For xe B, define A(x) ={ye B:xy = 0}.
In the sequel, the expression [a, b], @, b€ B, will represent the counter-
clockwise arc of B from a to b.

(A) For each xe B, A(x) is a continuwm, further, there exist
Y, 2€ B such that yz =0, z<cly, 2] and A(x) N[z, y] is monempty.
By Theorem 4, B* = S; hence there exist y, z€ B such that yz = 0.
Let zely, 7], tel?, y]. By the corollary to Lemma 2, then either
ye M(xt) or ze€ M(xt). Hence z[z2, y] S L(y) U L(2). Since x|z, y] is
connected and L(y) N L(z) = {0}, it follows that for some te€ [z, ¥],
xt = 0; hence A(x) # 0. Next, let a,be A(x), xzecla,b], teld,al.
Again by the corollary to Lemma 2, either a € M(xt) or be M(xt). Say
a € M(xt); then xt = a(xt) = (ax)t = 0. Therefore [b, a] & A(x); by using
the compactness of B to obtain a maximal interval, it may be seen
that A(x) is an (possibly degenerate) arc in B.

(B) There exist a, a,€ B such that aa, =0 and for every
x e (ay, a), A(x) S (ay, a;). Let ac B; there exists a,¢ A(a) such that
[a, a,] N A(a) = {a,} and there exists a,€ A(a,) such that [a,, a,]N A(a,) =
{as}. Then a,a, = 0 and we observe that a€[a, a]. It z€ (a, a,) then
it is obvious that a,x # 0 # ax. Now by (4), A(x) meets [a,, a] and,
since it is connected, A(x)C (a,, @) C (a,, ).

(C) Let a, b, ¢, d, ¢ be five elements of B occurring in counter
clockwise order as listed; suppose also that ac = 0= bd and that
be = 0+ ce. Then A(e)=(b,c). For, from ac =0, ec # 0, ec (c, a),
we have A(e) = (e, ¢) by (A). Similarly, from bd =0, eb == 0, ec (d, b),
we have A(e) C (b, e). Therefore A(e) C (e, ¢) N (d, b) = (b, ¢).
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The function f: F— B will now be defined.

(D) Choose elements a, a, of B as in part B above. For con-
venience, the antipodal point of x € Fis denoted by — 2. Fixany xe F
and define f(x) = d,. f(—x)=a,. Fis now decomposed into the two closed
intervals [z, — 2] and | — =, #], while B = [a,, a,] U [a,, @]. The scheme
is now as follows: f will map a dense subset of [x, — «] onto a dense
subset of [a,, ¢,], and a dense subset of [— x, 2] onto a dense subset
of [a;, @] in an order preserving manner; furthermore f(y)f(—y) will
be 0 for every ¥ in either the dense subset of [#, — «] or the dense
subset of [— x,2]. The function f will then be extended through
standard methods into a continuous map of F' onto B; that f(¥) f(—y)=
0 for all ye F' will be a consequence of this method of construction.

For ease of notation, set —x=2,=v, %, =x=1v, in F and a,=b,,
b, =a, in B. Now F =[xy, 2] U [¥, %.], B = [a, a,] U|b, b]. Let ay
be the mid-point of [a,, @], 2, the mid-point of [z, 2], Yu(= — %) that
of [4o, ¥:]. Define f(xy;) = a,,. By part B), A(a,) S (b, by); let by, € A(ay,)
and define f(¥,) = by,.

(E) Next, let b, be the mid-point of [b,, by], Yo that of [¥o, ¥ul,
and define f(Yp) =bo;. Lt Toy=—Yo. It is necessary to map x,, into
some point a,, of the interval [a,, a,]. To this end, suppose that
@by, = 0 = ay,by,. Then by (A) above [a,, an] & A(by). In this case
choose ay, to be the mid-point of [a,, ay,]. If, on the other hand, ab,, =
0 # ayby,, then let ay, = ag; if Aoy #= 0 = Qyby,, let ay, = a,,. Finally,
if aboy = 0 = anbyy,, then, on applying (C) with @ = by, b = ay, ¢ = ay,
d = by, €= by, it follows that A(by) < (¢, @y). In this case, choose
Qoo arbitrarily in A(by,). Similarly, let b, be the mid-point of [b,, b,];
by an argument similar to the one above, there exists a,, € [ay, @] such
that ag,b,,; = 0. Choose the appropriate ¥,,, %,; in F' and define f(x,,) =
o1y f(?/on) :b011°

(F) In the next stage, mid-points ayy, of [@y, Gl, Beon OF [Gosr, Tunl, Ao
of [y, G ] and @oy, of [@ey, @] are chosen as images of the appropriate
2,. As many as two of the four intervals listed may be degenerate;
it is still possible to choose a ‘‘mid-point ’’. Suppose, for example,
that au, = @) = Q. Then @ogr+bey = 0 = ageoi - by, hence by (E) above,
bwu may be chosen as the mid-point of [by, by,].

(G) At any stage, suppose a, is the mid-point of [a;, a,]. It is
then necessary that b€ [b;, b,]. By examining the products a;b; and
ab,, b, may be chosen precisely by means of the argument used in
part (E). A dual argument is obvious in the event that the original
choice of mid-point is from a subinterval of [b,, b,], rather than [a,, a.].
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(H) By (G) it may be assumed that f has been defined on a dense
subset D of F into B. The image subset f(D) is dense in B, since
lengths of complementary intervals clearly approach zero. Also, f is
monotonic within [x,, #,] and [y, ¥:]. It is therefore possible to extend
f to a continuous map of F onto W. Furthermore, choose x¢ F. It
must be shown that f(x)f(— x) =0. Let xelx, z,]. It may be as-
sumed that xz¢ D; let {x;}—=«, {}=SD. Then {— x;}— — 2 and
{— 2= D. By the continuity of f, {f(x,)} — f(x), {f(— )} — f(— ).
Finally, {0 = f(z,) f(— z,)} — f(®x) f(— x), by the continuity of multi-
plication in S. Hence f(x)f(— z) = 0.

(I) From the discussion prior to (A), the function f* is now well
defined from W into S, and the following diagram is commutative:

w I, s

I I

FxF-7 .pup

Since F' is compact, f* is continuous; by Theorem 4, f* maps W onto
S. It remains to show that /* is a homomorphism. Let ab =ce W, and
suppose @ = wx, b = yz, with w, «, y, z€ F. Then ¢ = wayz. If ¢ # 0,
then recall that one of these factors of ¢, say w, must have the pro-
perty that x, y, 2z are all in the same component of F\{w, — w}. Sup-
pose further that {x, 2} = [w, y] S [w, —w], where all intervals represented
are counter clockwise. Then ¢ = wy, hence f*(¢) = f(w)f(y). On the
other hand, since f is monotone on [w, y], {f(%), FR)} <= [f(w), f(y)]
in B, and f(— w) e [f(y), f(w)]. If f(y) = f(— w), then f(w)f(y) = 0=
f*(@) = f*(a)f*@®). If f(y) #+ f(— w), then by the corollary of Lemma
2, [f(w), F(P] S M (f(w)f(y)), hence [f*(a)f*(b)= f(w)f(2)f(y)f(z)=
Sf(w)f(y) = f*(c).. The other cases are handled similarly.

If ab=¢=0 in W, again with ¢« = wx, b = %z, then it must be
shown that f(w)f(x)f(y)f(z) = 0. Since ¢ =0, x,y,z cannot all be in
the same component of F\{w, — w}. Suppose y is in one component
of F\{fw, — w}, and {x, 2} in the other. Then, within the component
containing {x, z}, — y must be separated from — w by one of =z, z;
otherwise w, x, 2, are in the same component of F\{y, — y}. Suppose
2 separates — y from — w. Then, applying the corollary to Lemma
2, —ye€ M(wx). Hence f(—vy)e M(f(w)f(x)), and therefore

F*(@) f*(b) = f(w) f(2) f(y) f(2) = [f(— ) f(w) f(@)]f () f(2)
= [f (=) fW]f(w) f(2)f(2) = 0 = f*() .

The remaining cases are similar. This completes the proof.
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5. Remarks on the general case. It is easy to construct a
TSL in which M(x) fails to be connected for some x. For example,
let J be the arc subsemilattice of I x I consisting of

{0y x I U ({1} x I) U (I x{0}) .

Then M((0, y)) is not connected for any y > 0. Similarly, the product
TSL on the disk J x J contains points of this nature. For a more
complicated example, let K be a subset of IxI defined as follows:
Let a canonical Cantor set C be constructed on the arc I, and let D,
be the union of the open intervals deleted from C at the ith stage in
its construction. Let K, = {(z,y):2€e D,, 3" —1)/3 =y =1}. Let
K= {IxI\U;K;,. Then K is a subsemilattice and is topologically a
disk. Set z =(0,1). Then M(z) is a Cantor set.

LEMMA 3. Let S te any compact connected metric TSL with
identity. Let A = {2 :M(x) is a connected subset of S}. Then xc A
aof and only +f © lies on an arc chain containing 1.

Proof. Suppose x€ A. Then M(x) is a compact connected TSL, and
by Thecrem A, there exists an arc chain 7" from 1 to . Conversely, let
T be an arc chain from 1 to x. Clearly TS M(x). Let ye M(x).
Then yT is connected, and contains « and ¥, and is a subset of M (x).
Hence every element of M(x) is connected to & by a connected subset
of M(x), and therefore M(x) is connected.

Recall that, if {A4,},c., is a collection of closed subsets of a space
S, then lim sup{A4,} = {xe S; if xe U, U open in S, nec w, then there
exists m > n such that 4, N U =+ O}.

THEOREM 7. Let S and A be as in Lemma 3. Then A is a
compact connected subsemilattice of S containing 0 and 1.

Proof. Clearly 0,1¢ A. Let xz,yc A, and let I, J be arc chains
from 1 to w, vy, respectively. Then IU xJ is an arc chain from 1 to

x2y; by Lemma 3, xyc A. Hence A is a subsemilattice. Furthermore,
since IS A, every element of A lies in a connected subset of A which
also includes the element 1; hence A is connected. It remains to show
that A is closed. Let {x,} be a sequence in 4, and let {x,} converge
to z. For each n, let T, be an arc chain from 1 to z,. Let T = lim
sup{7,}. The set T is known to be connected [12]. To see that
T < M(x), choose a€ T, let {a,} cluster to @, a,€ T,. Then {x,}={a,x,}
clusters to ax, hence ax = x. Therefore a € M(x), and z is connected to
1 inside of M(x). It now follows easily that every element of M(x)
lies in a connected set containing x within M (x), hence x € A and the
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proof is complete.

In all examples on the 2-cell known to the author, A is also lo-
cally connected; it is conjectured that if S is locally connected, then
A is also. Indeed, it may be that A is a homomorphic retract of S.

If S is not assumed to have a 1, none of the conclusions of the above
theorem need hold. In particular, certain subsemilattices of the TSL
J x J mentioned earlier in this section fail in these respects.
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