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TOPOLOGICAL SEMILATTICES ON THE TWO-CELL

To Professor A. D. Wallace on his 60th birthday

DBNNISON R. BROWN

Topological lattices on the n-cell have been studied by
L.W. Anderson, A.D. Wallace, A.L. Shields, and L.E. Ward,
Jr. In particular, these authors have papers setting forth
conditions under which a topological lattice on the two-cell
is topologically isomorphic to the product lattice Ixl.

The primary purpose of this paper is the investigation of
topological semilattices (commutative, idempotent topological
semigroups) on the two-cell which retain the lattice like pro-
perty that for each element x, {y: x ^ y) is a connected set.
Specifically, it is shown that any such entity is the continuous
homomorphic image of one of a fixed pair of semilattices on
the two-cell, where the choice of domain depends on the loca-
tion of the zero element.

It is also proved that a TSL on the two-cell has an identity
(a unique maximal element) and {y: x ^ y} connected for each
element x if and only if it is the continuous homomorphic
image of I x I. Also, if {y:x ^ y} is connected for each ele-
ment x, then S, a TSL on the two-cell, is generated by its
boundary B in the sense that B2 = S.

Semilattices on the n-cell are also discussed. Let S be such
an object with boundary B. It is proved that if x is a max-
imal element of S, then x e B. If S has an identity, 1, and
T is a continuum chain from 1 to 0, then S = BT.

Finally, let S be a continuum TSL with 1 and let A be the
subset defined by x e A if and only if {y: x ^ y] is connected.
Then (1) x e A if and only if there is a continuum chain from
1 to x; and(2) A is a nondegenerate continuum sub-TSL of S.

Topological lattices on the w-cell have been studied in [1], [6],
and in [8]. In particular, these papers set forth conditions under
which a topological lattice on the two-cell is iseomorphic (topologically
isomorphic) to the product lattice Ixl.

The primary purpose of this paper is the investigation of topolo-
gical semilattices (commutative, idempotent topological semigroups) on
the two-cell which retain the lattice-like property that for each ele-
ment x, M(x) is a connected set (see below). Specifically, we show
that any such entity is the continuous homomorphic image of one of
a fixed pair of semilattices, where the choice of domain depends upon
the location of the zero.
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Section 3 discusses semilattices on the n-cell. The role of the
boundary sphere in determining the multiplication is seen to be quite
important.

The next section is the main body of the paper. In addition to
the theorems indicated above, we prove that any topological semilattice
on the two-cell which has a unique maximal element and all M{x)
connected must be the continuous homomorphic image of I x /. In
particular, any topological lattice has these properties. We also show
that, if each M(x) is connected, then a topological semilattice S on
the two-cell is generated by its boundary B in the sense that B2 = S.

In § 5 we prove that if S is a compact, connected topological semi-
lattice with identity, then the subset of elements x such that M(x)
is connected is a compact connected subsemilattice of S.

We are indebted to Professors H. Cohen and R.J. Koch for their
helpful comments and support.

2* Preliminaries* A topological semilattice (hereafter TSL) is-
a pair (S, S) such that S is a Hausdorff topological space, ^ is a
continuous semilattice ordering on S. Equivalently, S is a commuta-
tive, idempotent topological semigroup with x fg y if and only if
xy — x.

An element x of S is maximal if it is dominated by no other
element of S; that is, xy = x implies y — x. A minimal element is.
defined dually. It is well known that a compact TSL has maximal
elements and a unique minimal element. For x e S, let M(x) =
{y: x g y}, L(x) — {y:y ^ cc}. It is easy to verify that L(x) — Sx.
These are closed subsemilattices of S [10].

A chain is a totally ordered subset of S. Of primary interest
here are compact, connected chains; in case S is metric these are
known to be arcs [13] and will be referred to henceforth as arc chains.

The following theorem, due to Koch [4], is stated without proof.

THEOREM A. If S is a compact, connected, metric TSL with
zero (0), then every x e S is connected to 0 by an arc chain.

If S is as stated in Theorem A and has also M(x) connected for
each x e S, then, by replacing S by M(x) in the theorem, is may be
seen that any pair of comparable elements in S is connected by an arc:
chain.

A space S is homotopically trivial if TΓ^S) = 0, i > 0 where TΓ^S)
is the ΐth homotopy group of S. The following result extends slightly
a theorem of Anderson and Ward [2].

THEOREM B. If S is an arcwise connected idempotent semigroup*
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with (0), then S is homotopically trivial.

Proof. Let / : ii x x In~>S with /(Bndry (I x x I) = 0.
Define g: (Iλ x x JΛ) x /—> S by

^(^i, , &*, r) =f(x19 , x j/fe - xjr, , αw - a?Λr) .

Henceforth, the letter I will be reserved to represent the TSL on
the arc [0, 1] defined by xy — min (x, y), where the ordering is that
inherited from the real numbers. Any arc chain is iseomorphic to
I [5].

3. Semilattices on the n»cell. Throughout this section, S re-
presents a TSL whose underlying space is an n-cell, and B the boundary
% — 1 sphere of S. If S has an identity, 1, then 1 is clearly the
unique maximal element of S. It is well-known [7] that 1 e B. The
following order—theoretic version of the maximum modulus theorem
generalizes this statement.

THEOREM 1. Let x be a maximal element of S. Then x e B.

Proof. By the maximality of x, and Theorem B, S\{x} is a sub-
semilattice, homotopically trivial. Hence x £ S\B.

In [3] and in [5] it was shown that, under certain conditions, the
multiplication in S is determined by that in B together with that in
a certain arc subsemigroup. The next theorem is of a similar nature.

THEOREM 2. Let S have a 1, and let T be any arc chain from
1 to 0. Then S = BT.

Proof. Since B c BT, it suffices to show BT is contractible.
Since T is an interval, define g:(BT) x T -> BT by g(bt, r) = btr.
Then g(bt, 1) = bt, and g(bt, 0) = 0. The function g is clearly con-
tinuous, hence the proof is complete.

4* Semilattices on the 2-celL The following lemmas will be
useful in the sequel.

LEMMA 1. Let S be a topological semilattice in which, for each
x, M(x) is a connected set. Let f:S-^Tbea continuous homomor-
phism of S onto T. Then, for each y £ T, M(y) is connected
furthermore f is a monotone map.
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Proof. The continuous homomorphic image of an arc chain is clearly
an arc chain, although possibly degenerate. Let y e T, z e M(y), y =
/(α), z — f(b). Then y = yz = f(a)f(b) = /(αδ). Let C be an arc chain
in S from 6 to αδ. Then f(C) is again such from z to 2/.

Now let X — f~\y), a, b e X. Let C, D be arc chains from a to
αδ, δ to αδ respectively. Then C \J D Q X, hence X is connected.

LEMMA 2. Lei S be a two cell, S = C U A C Π # = D, where
C and D are arc wise connected sets. Let B be the boundary of S and
suppose BΓiCφ\Z\φBf]D. Then C Π B and Df]B are each connected

Proof. If C Π B is not connected, then clearly neither is D Π B.
Choose α, δ from different components of C (Ί J5, and let T be an arc
in C connecting α, δ. Choose d, e from different components of D Π B,
so that {α, δ} separates d and e in By and let J be an arc in D con-
necting d, e. Then J and T cannot be disjoint [13], which contradicts

In the remainder of this section, S will represent a TSL whose
underlying space is a two-cell, and B the boundary circle of S.

COROLLARY. Let a, b e B, with M(ab) a connected set. Decompose
B into arcs P, Q with P Π Q — {α, δ}. Then either P S M(ab) or
Q S M(ab).

Proof. M(ab) is arcwise connected by Theorem A. On the other
hand, any x e S\M(ab) can be connected to 0 by an arc chain T in S.
Clearly T Π M(ab) ~ D. Hence S\M(ab) is arcwise connected. By
the lemma above, M(ab) Π B is therefore connected and the result
follows.

Methods used in portions of the proof of the following theorem
are similar to those used in [8].

THEOREM 3. Suppose S has a 1. These are equivalent:
( i ) for each x, M(x) is a connected set;
(ii) B is the union of two maximal arc chains of S;
(iii) S is the continuous homomorphic image of I x I.

Proof, (i) implies (ii). Fix a e δ , α ^ l . By the above corollary,.
M(a) must contain one of the boundary arcs between a and 1. De-
signate this arc by Q and let p e Q, p Φ a. Let P be the boundary arc
between p and 1 which is contained in Q. Then P g M(p), for if not
then a e M(p), which is false. It follows that any element of Q
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compares with p, and hence Q is totally ordered. Let J be a maximal
chain in J5, with α, 1 e J. By continuity of multiplication, J is
closed and therefore proper in B. Let t e B\J, and let K be a maxi-
mal chain in B, with t, 1 e K. By the maximality of J and K, B =
J{J K. From the anti-symmetry of the relation (^), /and K have the
same minimal element, z. Now M(̂ ) is a compact, connected semilat-
tice, homotopically trivial by Theorems A and B. Since B g M(z),
M(z) = S, and hence z = 0. The arc chains J, Z" are thus maximal
in B. If ce S\B, then ikf(c) Π J and L(c) Π J are closed, disjoint sub-
sets of J, and hence fail to exhaust J. Then maximality of /, K in
S is now immediate.

(ii) implies (iii). Let R be the closed ideal (Ix {0}) U ({0} x I) of
I x I; and let M be the Rees quotient (/ x I)/R. This TSL on the
2-cell has the properties that every nonzero element of M is repre-
sented uniquely as a product of two boundary elements, one from each
of the maximal chains composing the boundary of M (if a e C, then
a = a 1), and ah = 0 implies either a = 0 or 6 = 0. Denote the
boundary of M by C = 7U TΓ, and the boundary of S by 5 = J u Kf

with F, IF, J, K maximal arc chains.
Let fx\ F—> /and /2: TF—+ i£ be iseomorphisms. Define /*: M—> S

by f*(x) = /i(α)/2(δ), where db — x, ae V, be W. The only element
of ikf which has a nonunique representation in this manner is 0; but
db — 0 requires that one of α, b — 0. Hence /* is well defined, and
the following diagram is commutative:

M — > S

V x W

 / l X / 2

 > J x K

Here, the vertical arrows represent the respective multiplication
functions. Since these functions, together with fx and /2, are con-
tinuous, and V and W are compact, it follows that /* is continuous.

Next, let a = vλwlf b — v2w2 be elements of M. Then

f*((ώ) = /*(v1w1ι;2w2) = /*((v1

2 ) - / * ( ^ ^ i ) / ^ 2 ^ 2 ) = f*(a)f*(b)

Hence /* is a homomorphism.
Finally, f*(M) is a compact connected TSL containing B; by

Theorems A and B it follows that f*(M) = S. The natural map of
I x I onto (JΓ x I)/J2 is now composed with /* to obtain the desired
result.

(iii) implies (i). Clearly I x I has M(x) connected for each x. By
Lemma 1, S has this property also.
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COROLLARY 3.1. If S has a 1 and M(x) connected for each x e S,
then 0 G B.

COROLLARY 3.2. If S is a topological lattice on the 2-cell, then
S is the continuous (semilattice) homomorphic image of I x I.

Proof As a topological lattice, S has a 1 and has M(x) connected
for each x e S.

THEOREM 4. If M(x) is connected for each x e S, then B2 — S.

Proof. Suppose 0 e B. It will first be shown that B3 S B\ Let
a, b, c e B. In order to prove that abc e B2, it suffices to assume that
a, 6, c are distinct and nonzero. Assume also that these points are
named so that 0, b are in different components of B\{a, c}. By the
corollary to Lemma 2, one component of B\{a, c] lies in M(ac). Since
0 ί M(ac), it follows that b e M{ac), hence abc = ac and B* g B\
Hence B* = B*B g B2B £ B\ Since B2 is a compact connected TSL,
and B S B2, it follows from Theorems A and B that B2 = S.

Now suppose 0 e S\B, and again select α, 6, c distinct elements
of B. If any of άb, ac, 6c, abc e 5, then immediately αδc e B\
Similarly, it may be assumed that a $ M{bc), b 0 M(ac), c ί M(ab).
By the corollary to Lemma 2, it follows that B = M(ab){jM(ac)UM(bc).
But the latter subset is included in M(abc). Since M(abc) is a compact, con-
nected TSL and B £ M(abc), it again follows that M(abc) — S, and therefore
abc = 0. It has now been shown that S 3 = B2 (J {0}; thus S 2 U {0} is
compact and connected. Furthermore, (B2 U {0})2 g B 4 U {0} g 5 3 U {0};
hence J32 U {0} is a subsemilattice containing B. This yields B2 U {0} = S.
But JB2 is compact, hence 0 e B2. Consequently B3 £ β2, and as before,
B2 = S.

The next pair of theorems shows that the structure of S when
OeB is essentially different from that occurring when 0eS\B. Let
T — {(x, y)e I x I : x + y ^ 1}. Note Γ is a subsemilattice of I x J.

THEOREM 5. T%e semilattice S has OeB and M(x) connected for

each x if and only if S is a continuous homomorphic image of T.

Proof. As in Theorem 3, let R = (I x {0}) U ({0}) x I ) . Let N =
T/R, the Rees quotient of T. Let D be the boundary circle of N.
Note that every nonzero element of N has a unique representation as
a product of two not necessarily distinct elements of D9 and that db — 0
implies a — 0 or 6 = 0. Now let f\D—>B homeomorphically, with
/(0) = 0, and extend / t o / * : N-> S by /*(c) = /(α)/(δ), where a,beD.
As in Theorem 3, / * is well defined, and the following diagram is
commutative:
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f*
N — - > S

DxD f X f ) BxB

Vertical arrows represent the respective multiplication functions of
N and S. Since these functions and / are continuous and D is com-
pact, / * is continuous. By Theorem 4, /* maps N onto S.

It remains to show that /* is a homomorphism. To this end, let
c — ab, a — pq, b = rs, with p, q9 r, s distinct nonzero elements of
D. Some unique pair of p, g, r, s separates the remaining pair from
0 on D; suppose p, r and 0 lie in different components of D\{q, s}. By
the corollary to Lemma 2, {p, r}^M(qs). Hence ab = pqrs = qs, and
f*(c) = f*(ab) — f*(qs) = f(q)f(s). On the other hand, since / is a
homeomorphism on D9 it follows that {f(p),f(r)} and {/(0) = 0} lie in
different components of B\{f(q), /(β)}. Hence {f(p), f(r)} g M(f(q)f(s))
and therefore f(q)f(s) =f(p)f(q)f(r)f(8)=f*(pq)f*(r8) = /*(α)/*(δ).
The argument is similar if p, q9 r, s occur in a different order in D.
This portion of the proof is now complete.

The converse follows from the fact that T has M(x) connected
for each x and Lemma 1, together with the fact that a monotone map
of a a two-cell onto a two-cell must take boundary onto boundary [12].

Now, let W be the disk of radius one, centered at the origin of
a plane, and let F be the boundary circle of W. If x, ye F, let xy
be the midpoint of the chord joining x and ya This is transparently
continuous, and note that a nonzero point of W is uniquely repre-
sented as the product of two boundary points. To extend the multi-
plication to all of Wlet a = wx9 b — yz where α, be Wand w,x,y,ze F;
set ab — 0 if each boundary arc containing w9 x9 y and z has length Ξ>τr, and
otherwise let ab be the product of those two of the four elements w, x9 y
and z whose distance apart is a maximum. Again continuity is obvious,
as is the fact that multiplication is commutative and idempotent.

It is certainly desirable to give an alternative, order-theoretic
description of W. For each x e W let L(x) be the intersection of all
circular disks which are tangent to F9 which contain x, and whose
boundaries contain 0. This is a semilattice partial order and L(x)Γ\L(y)
is precisely L(z) for that z( = xy) e L(x) Π L(y) which is at maximum
distance from 0. In this manner, it if easily seen that M(x) is con-
nected for each x e W. Note that, if α, b, c9 de F9 then abed Φ 0 if
and only if one of these elements, say α, has the property that 6, c, d
lie in the same component of F\{a, — a}, where (— α) represents the

1 The author is indebted to the referee for improving the description of the
semigroup W.
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point of F antipodal to α.(1)

THEOREM 6. Let Oe S\B. Then M(x) is a connected set for each
xe S if and only if S is the continuous homomorphic image of W.

Proof One implication is an immediate consequence of Lemma 1,
since W has M(x) connected for all x. Therefore, assume that S has
M(x) connected for all x, OίB. It will be shown that S is the con-
tinuous homomorphic image of W.

First, suppose that / is a continuous map of F onto B. Define
/*: W-> S by f*(x) = f(a)f(b), where x = αδ, α, be F. Recall that,
if x Φ 0, then this representation of x is unique, and f*(x) is
therefore well defined. On the other hand 0 may be expressed only
as the product of any pair of antipodal elements of F. Hence, in
order that /* be well defined, ab = 0, α, be F must imply f(a)f(b) = 0
in S. The construction of a continuous map / with this property is
the major portion the proof. For xe Bf define A(x) — {ye B : xy — 0}.
In the sequel, the expression [a, b], α, be B, will represent the counter-
clockwise arc of B from a to b.

(A) For each xe Bf A(x) is a continuum; further, there exist
yy ze B such that yz = 0, xe [y, z] and A(x) Π [z, y] is nonempty.
By Theorem 4, B2 = S; hence there exist y, ze B such that yz = 0.
Let xe[y, z], te[zf y]. By the corollary to Lemma 2, then either
yeM(xt) or zeM(xt). Hence x[z, y] g L(y) U L(z). Since x[z, y] is
connected and L(y) f] L(z) = {0}, it follows that for some te[z, y],
xt = 0; hence A(x) Φ Π. Next, let α, be A(x), xe [a, 6], ί€ [6, α].
Again by the corollary to Lemma 2, either ae M(xt) or be M(xt). Say
ae M(xt); then αtf = a(xt) — (ax)t = 0. Therefore [6, α] £ A(a?); by using
the compactness of B to obtain a maximal interval, it may be seen
that A(x) is an (possibly degenerate) arc in B.

(B) There exist α0, aλe B such that aoa1 = 0 ami /or every
xe(aQ, ax), A(OJ)£((&!, a0). Let a e δ ; there exists ^ 6 ^ ) such that
[α, αj ΓΊ A(a) = {αj and there exists α0 e A(αx) such that [α0, αj Π A{a^ =
{α0}. Then αoαi = 0 and we observe that αe [a19 α0]. It xe (α0, αj then
it is obvious that ĉ x ^ 0 Φ ax. Now by {A), A(x) meets [α1? α] and,
since it is connected, A(x) c (alf a) c (a13 a0).

(C) Lei α, 6, c, cί, e 6e five elements of B occurring in counter
clockwise order as listed; suppose also that ac = 0 = bd and that
be Φ 0 Φ ce. Then A(e)£(6, c). For, from ac — 0, βc ^ 0, ee (c, α),
we have A(β)c (e, c) by (A). Similarly, from bd =0, eb Φ 0, ee (d, 6),
we have A(e) c (6, e). Therefore A(e) c (e, c) Π (d, b) = (&, c).
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The function f:F—>B will now be defined.

(D) Choose elements α0, α t of B as in part B above. For con-
venience, the antipodal point of xe FΊs denoted by — x. Fix any xe F
and define f(x) — α0. /(—x) — alm i^is now decomposed into the two closed
intervals [x, — x] and [— x, %\, while B = [α0, α j U [au α0]. The scheme
is now as follows: / will map a dense subset of [x, — x] onto a dense
subset of [α0, α j , and a dense subset of [— x, x] onto a dense subset
of [au a0] in an order preserving manner; furthermore f(y)f(—y) will
be 0 for every y in either the dense subset of [x, — x] or the dense
subset of [— x, x]. The function / will then be extended through
standard methods into a continuous map of Fonto B; that f{y)f{ — y) —
0 for all yeF will be a consequence of this method of construction.

For ease of notation, set — x— χ1 — yOf χoz=zχ — y1 in .Fandα^&o*
6χ = a0 in 5 . Now F= [xθ9 &J U bo, 2/J, •# = K, α j U [δ0, δ j . Let α01

be the mid-point of [α0, αx], £c01 the mid-point of [x0, ccj, 2/Oi(= — #oi) that
of [l/o, l/i]. Define f(x01) = a01. By part B), A(α01) £ (δ0, δx); let &01 e A(α01)
and define f(y01) = δOi

(E) Next, let &Ooi be the mid-point of [60, δ01], ym that of [yOf y01],
and define f(y0oi)~b0oi Let xOoi= — 2/ooi It is necessary to map xOoi into
some point α001 of the interval [α0, α01]. To this end, suppose that
aobm = 0 = αolδOoi. Then by (A) above [a09 α01] g A(bm). In this case
choose α001 to be the mid-point of [α0, α01]. If, on the other hand, αQδ001 =
0 Φ α01δ00i, then let am = αo; if αo&OOi ^ 0 = α01&001, let α001 = α01. Finally,
if αo6ool Φ 0 ^ α016001, then, on applying (C) with a = b01, b = α0, c = α01,
d — bQy e — δOoi, it follows that A(δOOi) S (α0, «ΌI) I n this case, choose
αOOi arbitrarily in A(b001). Similarly, let bon be the mid-point of [δ01, δ2];
by an argument similar to the one above, there exists aon e [a01, α j such
that α011δ0n — 0. Choose the appropriate y011, x011 in F and define f(xou) =

^oii, f(yon) = δou

(F) In the next stage, mid-points α0001 of [α0, α001], ami of [α001, α01], αo i w

of [α01, α011] and α0111 of [α011, α j are chosen as images of the appropriate
xiu As many as two of the four intervals listed may be degenerate;
it is still possible to choose a "mid-point". Suppose, for example,
that am = a0 = α0001. Then aOQO1-bool = 0 = aom bo, hence by (E) above,
δoooi m a Y be chosen as the mid-point of [60, 6001].

(G) At any stage, suppose ai is the mid-point of \ah ak]. It is
then necessary that bie[bj,bk]. By examining the products afij and
dibk, bi may be chosen precisely by means of the argument used in
part (E). A dual argument is obvious in the event that the original
choice of mid-point is from a subinterval of [δ0, δ j , rather than [α0, α j .
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(H) By (G) it may be assumed that / has been defined on a dense
subset D of F into B. The image subset f(D) is dense in B9 since
lengths of complementary intervals clearly approach zero. Also, / is
monotonic within [xθ9 xτ] and [yθ9 yx]. It is therefore possible to extend
/ to a continuous map of F onto W. Furthermore, choose xe F. It
must be shown that f{x)f{— x) = 0. Let xe [xθ9 x j . It may be as-
sumed that x £ D; let {ccj —*x, {a J S ΰ . Then {— xJ —> — x and
{- x{} S Zλ By the continuity of /, {fix,)} - f(x), {/(- »,)} - / ( - x).
Finally, {0 =/(x^fi—x,)}—> f(x)f(—x)9 by the continuity of multi-
plication in S. Hence f(x)f(— x) = 0.

(I) From the discussion prior to (A), the function / * is now well
defined from W into S, and the following diagram is commutative:

W — > S

FxF f X f >BxB

Since F is compact, / * is continuous; by Theorem 4, / * maps W onto
S. It remains to show that /* is a homomorphisπu Let ab — c e W, and
suppose a = wx, b = yz, with w, x9 y9 ze F. Then c = wxyz. If c Φ 0,
then recall that one of these factors of c, say w, must have the pro-
perty that x, y, z are all in the same component of F\{w, — w}. Sup-
pose further that {x, z} S [w, y] S [w, — w], where all intervals represented
are counter clockwise. Then c — wy, hence f*(c) — f(w)f{y). On the
other hand, since / is monotone on [w,y], {f(x), f(z)} S [f(w), f(v)]
in B, and / ( - w) e [f(y), f(w)]. If f(y) = / ( - w), then f(w)f(y) = 0 =
/*(c) = f*(a)f*(b). If /(i/) ̂  / ( - w), then by the corollary of Lemma
2, [/(^),/(?/)]^M(/(^)/(7/)), hence f*(a)f*(b) = f(w)f(x)f(y)f(z) =
f(w)f(y) — /*(c)., The other cases are handled similarly.

If α& = c = 0 in FT, again with α = wx, b = #z, then it must be
shown that f(w)f(x)f(y)f(z) = 0. Since c — 0, x,y,z cannot all be in
the same component of F\{w, — w}. Suppose y is in one component
of F\{w, — w}9 and {x, z} in the other. Then, within the component
containing {x, z}9 — y must be separated from — w by one of x, z;
otherwise w, x9 z9 are in the same component of F\{y, — y). Suppose
x separates — y from — w. Then, applying the corollary to Lemma
2, —y e M(wx). Hence f( — y) e M(f(w)f(x)), and therefore

f*(a)f*(b) = f(w)f(x)f(y)f(z) = [f(-y)f(w)f(x)]f(y)f(z)

= lf(-y)f(y)]f(w)f(χ)f(z) = o = f*(c).

The remaining cases are similar. This completes the proof.
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5* Remarks on the general case* It is easy to construct a
TSL in which M(x) fails to be connected for some x. For example,
let J be the arc subsemilattice of I x I consisting of

( {0}xJ)U({ l }x/)U(Ix{0}) .

Then M((0, y)) is not connected for any y > 0. Similarly, the product
TSL on the disk JxJ contains points of this nature. For a more
complicated example, let K be a subset of Ixl defined as follows:
Let a canonical Cantor set C be constructed on the arc /, and let D{

be the union of the open intervals deleted from C at the ith stage in
its construction. Let K, = {(x, y):xe Di7 (3* - l)/3* ̂ 2 / ^ 1 } . Let
K= ( / x / ) \ U i ^i . Then if is a subsemilattice and is topologically a
disk. Set z = (0, 1). Then M(z) is a Cantor set.

LEMMA 3. Let S be any compact connected metric TSL with
identity. Let A = {x : M(x) is a connected subset of S}. Then xe A
if and only if x lies on an arc chain containing 1.

Proof Suppose xe A. Then M(x) is a compact connected TSL, and
by Theorem A, there exists an arc chain T from 1 to x. Conversely, let
T be an arc chain from 1 to x. Clearly T^M(x). Let yeM(x).
Then yT is connected, and contains x and y, and is a subset of M(x).
Hence every element of M(x) is connected to x by a connected subset
of M(x), and therefore M(x) is connected.

Recall that, if {An}neω is a collection of closed subsets of a space
S, then lim sup {An} — {x e S; if x e U, U open in S, n e ω, then there
exists m > n such that Am Π U Φ D}.

THEOREM 7. Let S and A be as in Lemma 3. Then A is a
compact connected subsemilattice of S containing 0 and 1.

Proof Clearly 0, l e i . Let x,ye A, and let J, J be arc chains
from 1 to x,y, respectively. Then I\jxJ is an arc chain from 1 to
xy; by Lemma 3, xy e A. Hence A is a subsemilattice. Furthermore,
since / g i , every element of A lies in a connected subset of A which
also includes the element 1; hence A is connected. It remains to show
that A is closed. Let {xn} be a sequence in A, and let {xj converge
to x. For each n, let Tn be an arc chain from 1 to xn. Let T = lim
sup{TJ. The set T is known to be connected [12]. To see that
T S M(x), choose αeT, let {αj cluster to α, α%e Γn. Then {xn} = {anxn}
clusters to ax, hence ax — x. Therefore a e M(x), and x is connected to
1 inside of M(x). It now follows easily that every element of M(x)
lies in a connected set containing x within M(x), hence xe A and the
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proof is complete.
In all examples on the 2-cell known to the author, A is also lo-

cally connected; it is conjectured that if S is locally connected, then
A is also. Indeed, it may be that A is a homomorphic retract of S.

If S is not assumed to have a 1, none of the conclusions of the above
theorem need hold. In particular, certain subsemilattices of the TSL
J x J mentioned earlier in this section fail in these respects.
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