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EXISTENCE OF BEST RATIONAL TCHEBYCHEFF
APPROXIMATIONS

BARRY BOEHM

Some conditions are given which guarantee the existence
of best Tchebycheff approximations to a given function / by
generalized rational functions of the form

Kx) ~~ bMx) + + bjιm{%)

The principal theorem states that such a best Tchebycheff ap-
proximation exists whenever /, gί9 , gn9 hu , hm are bounded
continuous functions, defined on an arbitrary topological space
X, and the set {hl9 , hm} has the dense nonzezo property on
X: if bl9" ,bn are real numbers not all zero, then the
function bjii + + bmhm is different from zero on a set dense
in X. An equivalent statement is that the set {hu •• ,Am}
is linearly independent on every open subset of X.

Further theorems assure the existence of best weighted
Tchebycheff approximations and best constrained Tchebycheff
approximations by generalized rational functions and by ap-
proximating functions of other similar forms.

Terminology* Let X be an arbitrary topological space, and let

C[X] be the linear space of functions / continuous on the space X}

normed with the Tchebycheff norm

In this paper, we investigate the conditions necessary to guarantee

the existence of a best approximation to functions / e C[X) by rational

combinations of functions glf , gn, hl9 , hm e C[X]. Such functions

have the form

y & A + ••• +bmhm*

where 7 = (au , anf bu , bm) is a vector in the closed set Γn+m of

all real (n + m)-tuples satisfying
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δi I + + I δ J = 1 .

One such condition is that ry be well defined at points x0 such that

t>A(x0) + + bjιm{xo) = 0

thus, we shall restrict our attention to sets of functions {h19 , hm]
for which we can guarantee a unique definition of ry(x0).

A set of functions {hl9 , hm} is said to have the dense nonzero-
property on X if, for any 7£Γn+m, the function

6Λ + • • + bmhm

is different from zero on a set Yy dense in X. (An equivalent state-
ment is that the set {hu ••,/&«} is linearly independent on'all open
subsets of X.) If this is the case, the function ry is well defined on
the set Yy; to define ry uniquely at points x0 e X — Yy, we set

ry(xQ) = lim sup ry(x) .

We could define ry(x0) by a liminf operation just as well; all that is
necessary is to define the function ry uniquely, and in such a way that
if the limit

lim ry(x)

exists, it is equal to ry{x0). Thus, if {hlf * ,hm} has the dense non-
zero property on X, the generalized rational function ry is uniquely
defined on X for all jeΓn+m.

For each set {gu * ,gn, hlf , hm} such that {hj} has the dense
nonzero property on X, let R denote the set of generalized rational
functions

Then for each fe C[X] there exists a real number dist (i?, /) represent-
ing the distance from / to the set iϋ:

If there exists a function ry* e R such that

| | / - r y , || = dist (22,/),

then ry* is called a best rational approximation to /, and dist (R, f)f

is the error of the best rational approximation.
After a brief survey in 2 and 3 of previous existence results

and nonexistence phenomena, we demonstrate in § 4 that under the
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conditions prescribed above, there exists for every feC[X] a best
rational approximation ry*. Some extensions and specializations of this
existence theorem, including its relation to the nonexistence phenomena
of § 3, will be given in § 5. In § 6, we present some existence theorems
for two other approximating families similar in nature to the family
of rational approximations.

2* Previous results* The special case 7)1=1, hx(x) = 1 corresponds
to approximation by generalized polynomials a1gι + + angn; it has
been the subject of much fruitful study due to the feature of linearity
in the coefficients a{. An existence theorem was obtained in this case
for Tchebycheff approximation of continuous functions / by algebraic
polynomials

gi%) = x1-1

by Borel in 1905 [2]; his proof was extended by Achieser [1] to ar-
bitrary elements ^ in a normed linear space S.

Results are more sparse for the general rational problem (w > 1)
in which the coefficients do not enter linearly. Walsh obtained in 1931
[6] an existence theorem for ratios of polynomials of the same degree
defined on a perfect set X in the complex plane.

THEOREM (Walsh). For any fe C[X], X a perfect set in the
complex plane, there exists a best Tchebycheff approximation ry% to f
among all rational functions of the form

r (x) = a°
7 bb0 + bxx + + bnx*

for τeΛ,+ 2.

Walsh also proved in [6] a similar existence theorem for Lp norms.
Achieser gives in [1] an incomplete proof of theorem above for ratios
of polynomials of arbitrary degrees on an interval [α, b] of the real
line. Cheney and Loeb [3] have recently obtained a similar theorem
for rational trigonometric approximation.

Furthermore, the Achieser and Cheney-Loeb theorems show that
with no loss of generality the denominator of the best approximation
may be assumed to be strictly positive on the interval of definition.

3* Nonexistence phenomena* Some of the possible pitfalls in
the existence problem are illustrated by the following two examples of
nonexistence phenomena. In the first example, we consider the problem
of approximating f(x) — x in the Tchebycheff sense by a rational function



22 BARRY BOEHM

of the form

i + &2#

on the interval [0, 1], with the additional condition that the denomina-
tor be strictly positive on [0,1]. Here, however, by setting aλ = b2 = 1
and letting ^ [ 0, we see that dist (R, /) = 0, although no allowable
rye R achieves this minimum distance.

The second example shows that difficulties may arise when the
dense nonzero property is violated. Consider the problem of approxi-
mating f(x) = (x —l)(x — 2)/2 in the Tchebycheff sense by a rational
function of the form

ry{x) = -
i b2x

with the three points 0, 1, 2 comprising X. Since /(0) = 1, /(I) =
/(2) = 0, we see that the deviation of the approximation ε/(x + ε) from
/ on X is no greater than ε/(l + ε), which can be made arbitrarily
small by making ε small. Thus dist (R, f) ~ 0, although again no
choice of rye R achieves this minimum.

4* An existence theorem* We shall find it convenient to state
part of the theorem as a separate lemma.

LEMMA 1. If f,h19 * ,hm are bounded functions on X, an
arbitrary topologieal space, such that the set {hό} has the dense non-
zero property on X, and if the set of functions {gl9 , gm} is linearly
independent on X, then any sequence {yk} of vectors in Γn+m such
that

lim || ru - /|I = inf || ry - f\\ - dist (R, f) ,

has a cluster point γ0 € Γn+m.

Proof (i). Define the functions A = Σ <&»&, B = Σ bάhh with
Σ\bjI = 1; define Ak and Bk similarly. The boundedness of the hά

implies for any B that

\\B\\ ̂  JV=max| |Λ y | |

the linear independence of the set {gj implies the existence of a posi-
tive number δ such that

Σl<*i| = 1 implies || Λ| | ^ δ.
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It is clear that for sufficiently large K, k ̂  K implies

II Δ II
Π _ i _ 1 ^ > 11 Λ l l ^ > ' l ^ - k . I

Hence, for k ̂  K

| | A J | ^ i

and by the definition of the number δ, for k 2: K,

±\ah\£M=J?Γ [dist (R, /) + 1].

Thus, for k Ξ> K, {yk} is restricted to the compact set

By the Bolzano-Weierstrass theorem, then, the sequence {yk} has a
cluster point yoeΓn+m.

THEOREM 1. If f g1 , gny hlf , hm are hounded functions in
C[X], X an arbitrary topological space, and if the set {h3) has the
dense nonzero property on X, then there exists a best rational Tcheby-
cheff approximation rγ* to f on X.

Proof, (i) Select a maximal linearily independent subset {glf , gp}
among the functions gi9 and let d — dist(ί2,/). Then, any sequence
{yk} of vectors 7k e Γv+m such that

has by Lemma 1 a cluster point τ0 = (α10, , αp0, 610, , δm0) e Γp+m.
We shall show that

Clearly, since τ0 G Γp+m, we need only show

ll^o - f\\τ S d .

Since the set of functions {h3) has the dense nonzero property on
X, the set YΊQ of points x at which the denominator B0(x) is different
from zero, is dense in X. At points x e FVo, we have for each k

I ryQ(x) - f(x) I ̂  I ryQ(x) - rΎ]c(x) \ + \ rΎk(x) - f(x)
=S I ryo(x) - ryjc(x) I + d + 1/k .

As the functions hό are bounded on X,
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Bk fc_>oo> Bo

uniformly on X. Since B0(x) Φ 0 for x e YyQ, this implies

Ak(x) , A0(x)

Bk(x) k— BQ(x)

for x e Γ v Hence, for x e YyQ,

lim I ryo(x) - ryjc(x) | = 0 ,

and thus

I ryo(x) - f(x) I <£ <Z .

It remains only to obtain this inequality for points x0 e X — y v

(ii). By the definition of the rational functions ry, we have for

x0 6 X — Yy0 that

y_y«^Ό/ 11111 O \X\j I y\w)

Thus, there exists a sequence {xv} of points in FVo such that

I *Vo(*o) - rγo(xv) I ̂  1/v

l/(*,)-/(a!v)| ^1/υ

(since also /e C[X]). Hence,

Since the left hand side of this inequality is independent of v, it
follows for xQe X — YyQ that

I ryQ(x0) - f(xQ) I ̂  d .

Therefore || ryQ - f\\τ ^ d, implying, since ΎoeΓp+m, that || ryQ - f\\τ=d,
showing that indeed there exists a best approximation ττ = ryQ to /.

5. Extensions and specializations* Theorem 1 can be extended
to the problem of weighted Tchebycheff approximation, in which the
distance between / and ry is measured by the functional

for some prescribed weighting function seC[X]. This problem is
equivalent to that of approximating the function sf by rational com-
binations of the functions sgx and hό; existence of a best approxima-
tion is thus guaranteed whenever the products sf and s^ are bounded
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functions and the functions hj satisfy the hypotheses of Theorem 1.
Also, the proof of Theorem 1 is valid if the coefficients 7 are res-

tricted to a closed set Cn+m c Γn+m containing at least one feasible vector
7° such that

A slight but straightforward modification of step (ii) of Lemma 1 is
needed if no vectors of the form (0, , 0, b19 , bm) are in Cn+m.

Thus, the following theorem holds.

THEOREM 2. If f, s, g19 , gn9 hl9 , hm e C[X] are such that the
functions sf, sg19 , sgn are bounded on X, an arbitrary topological
space, and the set {hj} has the dense nonzero property on X, then
for any closed set Cn+m c Γn+m of coefficient vectors including a feasi-
ble vector 7°, there exists a best weighted rational Tchebycheff ap-
proximation ry* to f such that

\τ = inf || s(ry - f)\\τ .

If the closed set of coefficients Cn+m of form

Cn+m(e) = {7 e Γn+m: | Σ & Λ ( » ) \^e>0, xeX}

is nonempty, we can obtain existence theorems with much weaker hy-
potheses on the functions involved, since in this case the set YyQ

comprises all of X, and step (ii) of Theorem 1, the only step requiring
the continuity of /, s, glf and hjf is not required in the proof. Hence,
the following theorem holds in an arbitrary normed linear space.

THEOREM 3. If the functions /, s, g19 , gn, h19 , hm are such
that sf, sgu , sgnf h19 *",hm are bounded on X9 an arbitrary set of
points x9 and if the set Cn+m(e) c Γn+m is nonempty, then there exists
a best weighted rational approximation r7Hί to f such that

l | β ( r y * - / ) | | = inf | | s ( r y - / ) | | .
yeon+m{s)

Let us now consider the nonexistence examples of § 3 in the light
of the above existence theorems. The first example can be handled
by Theorem 1 by allowing the denominator b± + b2x to have its zero
at a point xoe [0,1], and defining a^l/^ + b2x0) by a limsup operation,
which reduces in this case to a limit opreration. Thus, the function
x2/x is an acceptable rational function in Theorem 1, and is indeed the
best approximation ry*.

The second example cannot be handled by Theorem 1 since the
dense nonzero property is violated. A weaker result can be given for
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both examples by Theorem 3, however, by considering only those ra-
tional functions such that bλ + b2x Ξ> ε; i.e., ye C3(ε). With this modi-
fication, a best approximation rY* exists in the first example and is at
least as good as x2/(ε + x); hence the error

can be made as small as desired by taking ε small enough. In the
second example, r7* again exists and is at least as good as ε/(ε + x);
thus again

) ^ ε/(ε + 1) .

In practical problems, placing such a " floor " under the denominator
function and slightly above zero is often a reasonable thing to do, as
the inequality constraint B{x) ^ ε is no harder to deal with than
B(x) > 0.

In most continuous rational Tchebycheff approximation problems,
the existence of a best approximation is guaranteed by Theorems 1
and 2, as sets of functions with the dense nonzero property are fairly
common. They include all linearly independent sets of functions analy-
tic on a perfect set X, and all sets of piecewise analytic functions on
X which are linearly independent on each component of analyticity.

An independent result similar to Theorem 1 has been obtained re-
cently by Newman and Shapiro [4]. Their existence theorem is stated
for functions defined on a compact Hausdorff space X, and thus does
not cover such problems as the approximation of functions continuous
and bounded on the positive real axis by functions of the form

ry(x)=

for λ;, μs ^ 0, a problem handled by Theorem 1. Rice in [5] has also
obtained independently a somewhat similar existence theorem for the
interval [0,1], under the assumption that the denominator possess only
a finite set of zeros.

6* Existence theorems for other approximating families* The
fact that best approximations exist among rational functions with
coefficients in a closed set allows us, with the aid of the following
lemma, to state some theorems assuring the existence of best approxi-
mations in other approximating families.

LEMMA 2. The set of all vectors (cu, , clm, c21, , cnm) such
that ciS = afij for real numbers aif bjf is closed.

The proof of this lemma is straightforward, and is omitted here.
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The following theorem follows directly from Lemma 2 and Theorem
3, with m = 1, n — pq, and gv = u{vh since the set of numerator
coefficients cv = afij is closed.

THEOREM 4. // the functions /, s9ul9 , uv, vl9 , vq are such
that the products sf, suLvl9 — ,supvq are bounded on X, an arbitrary
set of points x, then there exists a best approximation

P * = ( α χ + • + atup){b\vx + + b*vq)

to the function f, such that

= inf || β[(Σ <Mθ(Σ M i ) - / 1 1 1 -
δ

In a similar fashion, a theorem can be established on the existence
of best approximations by finite products of generalized polynomials of
the form

P = ( Σ αα&iXΣ αi20ί2) ( Σ a>in9in) •

In particular, if the component polynomials are of the form ax + 6,
we have the following corollary.

COROLLARY 4a. Any function f bounded on a compact domain X
on the real line has, among all polynomials Pn of degree n having
only real roots, a best approximation P * .

The next theorem follows from Lemma 2 and Theorem 2; a similar
theorem can be based on Lemma 2 and Theorem 3.

THEOREM 5. // the functions

f, s,ulf , up, vu , vq, hl9 - , hm e C[X]

are such that the products of sf9sujιu 9sv,vhm9sv19 9svq are
bounded on X, an arbitrary topological space, and the set {hά} has
the dense nonzero property on X, then there exists a best weighted
Tchebycheff approximation

P*= aXUi +... + a>p + j f f i + + 5 ^
bth> ffi5

to the function f, such that

il s(P* - /) ||Γ = inf || 8 (Σ W< + ^tklk - f) \\r
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