TRANSITIVE GROUPS OF COLLINEATIONS ON CERTAIN DESIGNS

RICHARD E. BLOCK

Let $M=(a_{ij})$ be an $m\times n$ matrix with entries in $\{1,-1\}$. Suppose that there is a positive integer d such that the inner product of every pair of distinct rows of M is n-2d; this is equivalent to assuming that any two distinct rows have Hamming distance d, i.e. differ in exactly d places. The rows of M form the code words of a binary code; such a code is called a (binary) constant- $distance\ code$, of length n and distance d. Special cases of matrices which may be taken to be M are the Hadamard matrices, which are defined by the condition that m=n=2d, and the incidence matrices (written with ± 1) of balanced incomplete block designs, which are characterized by the property that all column sums are equal and all row sums are equal.

Suppose that π is a permutation of $\{1,\cdots,n\}$ such that replacement, for $i=1\cdots,n$, of the $\pi(i)$ th column of M by the ith column of M sends each row of M into a row of M. Then π induces a permutation of the rows of M. Call such a pair of permutations of the columns and of the rows a collineation of M, or of the code. We shall examine constant-distance codes with a group G of collineations which is transitive on the columns. We shall show that G has at most two orbits on the rows (just one orbit if and only if M comes from a balanced incomplete block design), and that if G is nilpotent then at most one of these orbits contains more than a constant row.

Moreover, it will be shown that this last conclusion need not hold if G is not assumed nilpotent; this will be done by giving an infinite class of Hadamard matrices with doubly transitive collineation groups.

One way of obtaining a constant-distance code with a transitive group on the columns is the following. Given a (cyclic) (v, k, λ) difference set, write a v-tuple of l's and -l's with 1 in the k places which corresponds to elements of the difference set, and repeat this v-tuple s times to obtain a vs-tuple. The set of all cyclic permutations of this vs-tuple forms constant-distance code with v code words and distance $d = 2(k - \lambda)s$. Call such a code an iterated difference set code. The code is closed under the cyclic shift (the permutation $\pi = (1, 2, \dots, vs)$ on the columns).

Our results imply that, conversely, any constant-distance code which is closed under the cyclic shift consists of repeated cyclic shifts of

Received December 20, 1963.

some single word, plus possibly a single constant word. The main part of the code is thus an iterated difference set code; the extra word can occur if and only if the parameters (v, k, λ) are of Hadamard type.

2. The number of orbits on the rows.

Theorem 1. Suppose that G is a group of collineations of a constant-distance code. If G is transitive on the columns then G has at most two orbits on the rows.

Proof. Suppose that G has t orbits T_1, \cdots, T_t on the rows. Then there are integers r_i such that each row in T_i has exactly r_i l's, $i=1,\cdots,t$. It follows that if α_i and α_j are rows and $\alpha_i \in T_i$, $\alpha_j \in T_j$, and if $c(\alpha_i,\alpha_j)$ is the number of places in which both α_i and α_j have 1, then $r_i+r_j=d+2c(\alpha_i,\alpha_j)$, or $c(\alpha_i,\alpha_j)=(r_i+r_j-d)/2$. Let v_i denote the number of words in T_i . Since G is transitive on the columns, for each column there are the same number k_i of words in T_i with 1 in that place; we have $k_i=v_ir_i/n$, where n is the length of the words. Thus the words in T_i form the incidence matrix of a balanced incomplete block design with $\lambda=r_i-(d/2)$. Now suppose that $t\geq 2$, that T_i and T_j are distinct orbits and that $\alpha\in T_j$. Counting in two ways the total number of times in which words in T_i have a 1 in the same place as a 1 in α , we have $v_i(r_i+r_j-d)/2=r_jk_i$. Thus, since $k_i=v_ir_i/n$,

$$n\frac{(r_i+r_j-d)}{2}=r_ir_j.$$

Suppose that, $r_i \neq n$. Then for some prime p, with p^e and p^f the highest powers of p dividing n and r_i , respectively, one has e > f. Since $v_i r_i = nk_i$ and

(2)
$$r_i(k_i-1)=\Big(r_i-\frac{d}{2}\Big)(v_i-1) \ ,$$

 $p \nmid (v_i - 1)$ and $p^f \mid r_i - (d/2)$. If $r_i = r_j$ then the left side of (1) is divisible by p^{e+f} , the right side only by p^{2f} , a contradiction. Hence $r_i \neq r_j$ if $i \neq j$. Also $r_i \neq n/2$, since otherwise, by (1), $r_i = n/2 = d$ and $k_i = v_i/2$, contradicting (2). Thus r_j is uniquely determined in terms of r_i by (1). It follows that $t \leq 2$, and the theorem is proved.

If there is only one orbit, then, as shown in the above proof, M is the incidence matrix of a balanced incomplete block design. The next result is the converse.

Theorem 2. Suppose that G is a group of collineations of a balanced incomplete block design. If G is transitive on the blocks then G is also transitive on the points.

Proof. The incidence matrix of the design is a constant-distance code with $d=2(r-\lambda)$. If G had two orbits on the points, then $r_1=r_2=r$. But by the proof of Theorem 1, $r_1\neq r_2$, a contradiction. This proves Theorem 2.

COROLLARY 1. Let G be a group of collineations of a constant-distance code. Suppose that G fixes c columns and is transitive on the remaining columns. Let q be the number of different c-tuples in the rows of the submatrix formed by the c fixed columns. Then G has at most 2 q orbits on the rows; if moreover the code corresponds to a balanced incomplete block design, then G has exactly q orbits on the rows (points).

Proof. The set of rows with a given c-tuple in the fixed columns must be closed under G; deleting the fixed columns from these rows, one obtains a constant distance code with a transitive group of collineations. The result now follows immediately from Theorems 1 and 2.

These results are a partial generalization to nonsymmetric designs of a theorem proved by Dembowski [2], Hughes [3], and Parker [4], which says that for a symmetric design, the number of orbits on the points is the same as the number of orbits on the lines. However there are balanced incomplete block designs with a group of collineations which is transitive, even cyclic, on the points, but not transitive on the lines.

3. Codes with a nilpotent transitive group. In this section we assume that M is an $m \times n$ matrix whose rows form a constant-distance code with distance d, and that G is a group of collineations which is transitive on the columns. Let H denote the subgroup of G fixing the first column. We shall continue using the notation T_i , v_i , r_i and k_i introduced in the above proofs.

THEOREM 3. Suppose that T_1 and T_2 are distinct orbits of G (on the rows). For i=1,2, take α_i in T_i and let S_i be the subgroup of G fixing α_i . Suppose that p is any prime such that the highest power p^j of p dividing n does not divide d. Then, either for i=1 or 2, S_i contains the normalizer of a Sylow p-subgroup of G, $p \mid v_i-1$, and $p^j \mid r_i$.

Proof. If the orbit T_i is trivial (consists of a constant word) then $S_i = G$ and the conclusion is obvious. Thus suppose that both orbits

are nontrivial. Take a prime p such that p^j , the highest power of p dividing n, does not divide d. Let p^e and p^f be the highest powers of p dividing r_1 and r_2 , respectively; by choice of notation we may suppose that $e \leq f$. By (1), $p^i \mid r_1 r_2$.

Suppose first that $p \nmid v_1 - 1$ and $p \nmid v_2 - 1$. Then by (2), $p^e \mid [r_1 - (d/2)]$ and $p^f \mid [r_2 - (d/2)]$, so that $p^f \mid (d/2)$ and $p^e \mid r_1 + r_2 - d$. If p > 2 then p^{j+e} divides the left side of (1) while p^{e+f} is the highest power of p dividing the right side; hence $f \geq j$, so that $p^j \mid d$, a contradiction. If p = 2 then $p^{e-1} \mid [(r_1 + r_2 - d)/2]$ and p^{j+e-1} divides the left side of (1), so that $f \geq i - 1$, $p^{j-1} \mid (d/2)$ and $p^j \mid d$, again a contradiction.

Hence $p \mid v_i - 1$ for some i, with i = 1 or 2. $p \mid ([G:S_i]-1), p \nmid [G:S_i]$ and S_i contains a Sylow p-subgroup of G. Suppose that K is any subgroup of G, and consider the orbits of Kwhen K is regarded as a permutation group on the columns. For each of these orbits there is an x in G such that the number of elements in the orbit is $[K:K\cap xHx^{-1}]$. If p^l is the highest power of p dividing |H| then p^{j+l} is the highest power of p dividing |G|. Hence if K contains a Sylow p-subgroup of G then $p^{j} | [K:K \cap xHx^{-1}]$ for any Taking $K = S_i$ we see that $p^j | r_i$, since the set of places where α_i has 1 is a union of orbits of S_i (on the columns). If $g \in G$ and $g \notin S_i$ then $g\alpha_i \neq \alpha_i$, and gS_ig^{-1} is the subgroup of G fixing $g\alpha_i$. If moreover gS_ig^{-1} contains a Sylow p-subgroup of S_i , then p^j divides the number of elements in each orbit (on the columns) of $S_i \cap gS_ig^{-1}$. But the set of places where α_i and $g\alpha_i$ disagree is a union of orbits of $S_i \cap gS_ig^{-1}$, so that $p^j \mid d$, a contradiction. Therefore no Sylow psubgroup of S_i is contained in a conjugate of S_i . Suppose that P is a Sylow p-subgroup of S_i (and so also of G), and that $x \in N_{\mathcal{G}}(P)$, the normalizer of P. If $x \notin S_i$ then $xS_1x^{-1} \neq S_i$ but $P = xPx^{-1} \subseteq xS_ix^{-1}$, a a contradiction. Hence $N_{\mathcal{G}}(P) \subseteq S_i$, and the theorem is proved.

COROLLARY 2. If G is a nilpotent group of collineations of M which is transitive on the columns, then either G is transitive on the rows or one of the two orbits of G on the rows consists of one trivial row.

Proof. Unless M has only the two trivial rows, there is a prime p such that the highest power of p dividing n does not divide d. Since a Sylow p-subgroup of a nilpotent group is normal, if G is not transitive on the rows then by Theorem 3, G fixes a row. This proves the result.

Now suppose the constant distance code is closed under the cyclic shift $\pi = (1, 2, \dots, n)$. If α is a code word with r ones, then α must be periodic of (minimal) period v, a divisor of n; write v = n/s.

A single period of α gives a (v, k, λ) difference set with k = r/s and $\lambda = [r - (d/2)]/s$. Thus the set of cyclic shifts $\pi^t \alpha$ or α forms an stimes iterated (v, k, λ) -difference set code; solving $k(k-1) = \lambda(v-1)$ for s, one has s = n + [2r(r-n)/d]. By Corollary a, either this set is the entire code or there is one more word, with all 1's or all -1's. If the extra word has all -1's then r = d, $\lambda = d/2s$, and from $k(k-1) = \lambda(v-1)$ one obtains n/s = 2d/s. Hence, with d/2s = u, one would have v = 4u - 1, k = 2u and k = u. If on the other hand the extra word has all 1's, then we have the complement of a code of the above type, and k = u - 1.

The above characterization of constant-distance code closed under the cyclic shift was conjectured by the writer and proved independently at the same time by the writer [1] and R.C. Titsworth [5]. Titsworth's proof uses arguments on polynominals dividing $x^n - 1$.

3. Hadamard matrices and codes with two orbits. In this section we give a class of Hadamard matrices with doubly transitive collineation groups, and use these matrices to obtain a class of constant-distance codes with a transitive group on the columns for which the conclusion of Corollary 2 does not hold.

Let A be the Hadamard matrix of order 4 with 1 on the diagonal, -1 elsewhere, and let B=B(s) be the tensor product of s copies of A.

THEOREM 4. For any s, the group G of collineations of B(s) is doubly transitive on the columns (and also on the rows).

Proof. Denote the rows and columns of B by s-tuples, so that

$$b_{i_1}\cdots,i_s;j_{i_1},\cdots,j_{s}=a_{i_1,\,j_1}a_{i_2,\,j_2}\cdots a_{i_s,j_s}$$
 .

The result is obvious when s=1. Suppose s=2. We shall show that the subgroup H of G fixing the column (1,1) is transitive on the remaining columns. If τ_1 and τ_2 are any permutations on four letters then the permutation of columns sending (i_1, i_2) to $(\tau_1(i_1), \tau_2(i_2))$ is a collineation of B, sending row (i_1, i_2) to row $(\tau_1(i_1), \tau_2(i_2))$; denote this collineation by (τ_1, τ_2) . It can be verified that the product of four transpositions of columns $\sigma = ((1, 4) (2, 3))((4, 1) (3, 2))((1, 3) (2, 4))((3, 1) (4, 2))$ is a collineation of B; also, $\sigma \in H$. Taking σ and its products with various (τ_1, τ_2) , we see that all columns other than (1, 1) form a single orbit of H. Moreover some (τ_1, τ_2) moves column (1, 1), so that G is transitive, and hence doubly transitive. Now suppose that s > 2. If τ is a collineation of B(2) and if a set of two column coordinates of B(s) is given, then a collineation of B(s) is obtained by applying τ to the given

column coordinates while keeping the remaining ones fixed. Using this type of collineation, we see that the subgroup of G fixing column $(1, \dots, 1)$ is transitive on the remaining columns. Hence G is always doubly transitive on the columns, and, by symmetry, also on the rows. This completes the proof.

COROLLARY 3. For every power 4^s of 4(s > 1), there is a constant-distance code with 4^s words of length $4^s - 1$, such that the group of collineations is transitive on the columns but has two nontrivial orbits on the rows.

Proof. The matrix B(s) is Hadamard, and hence its rows form a constant-distance code. Complement the rows with a+1 in column $(1,\cdots,1)$ and then delete this column. What remains is still a constant-distance code; call it C. The subgroup of G fixing $(1,\cdots,1)$ clearly gives a group of collineations of C which is transitive on the columns. Moreover the set of uncomplemented rows is closed under the group, so the group has two nontrivial orbits. This completes the proof.

Let G and H continue to have the same meanings as in Theorem 4. It follows from Corollary 2 and the proof of Corollary 3 that H is not nilpotent. However it can actually be shown that the subgroup K of H fixing column (1,2) is isomorphic to S_6 , being generated by σ and certain (τ_1, τ_2) 's. Hence when s=2, G has order $16\cdot 15\cdot 720$. Also it follows that if s>1 then G contains a subgroup isomorphic to S_6 which fixes $2\cdot 4^{s-2}$ columns.

REFERENCES

- 1. R.E. Block, Difference sets, block designs, and constant distance codes, Space Programs Summary No. 37-22, Vol. IV, Jet Propulsion Laboratory, California Institute of Technology, August 31, (1963), 137-138.
- 2. P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen, Math. Zeit. **69** (1958), 59-89.
- 3. D.R. Hughes, Collineations and generalized incidence matrixes, Trans. Amer. Math. Soc. 86 (1957), 284-286.
- 4. E.T. Parker, On collineations of symmetric designs, Proc. Amer. Math. Soc. 8 (1957), 350-351.
- 5. R.C. Titsworth, *Binary cyclic constant-distance codes*, Space Programs Summary No. 37-22, Vol. IV, Jet Propulsion Laboratory, California Institute of Technology, August 31, (1963), 147, 152-153.

CALIFORNIA INSTITUTE OF TECHNOLOGY