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TRANSITIVE GROUPS OF COLLINEATIONS
ON CERTAIN DESIGNS

RicaaArD E. BLoCK

Let M = (a;;) be an mXxXn matrix with entries in {1, —1}.
Suppose that there is a positive integer d such that the inner
product of every pair of distinct rows of M is n — 2d; this is
equivalent to assuming that any two distinct rows have Ham-
ming distance d, i.e. differ in exactly d places. The rows of
M form the code words of a binary code; such a code is called
a (binary) constant-distance code, of length n and distance d.
Special cases of matrices which may be taken to be I are
the Hadamard matrices, which are defined by the condition that
m = n = 2d, and the incidence matrices (written with + 1) of
balanced incomplete block designs, which are characterized by
the property that all column sums are equal and all row sums
are equal.

Suppose that » is a permutation of {1, ---,n} such that
replacement, for 1 =1.--, n, of the n(4)th column of M by the
ith column of M sends each row of M into a row of /. Then
7w induces a permutation of the rows of M. Call such a pair
of permutations of the columns and of the rows a collineation
of M, or of the code. We shall examine constant-distance
codes with a group G of collineations which is transitive on
the columns. We shall show that G has at most two orbits on
the rows (just one orbit if and only if M comes from a ba-
lanced incomplete block design), and that if G is nilpotent then
at most one of these orbits contains more than a constant
row,

Moreover, it will be shown that this last conclusion need not
hold if G is not assumed nilpotent; this will be done by giving an infinite
class of Hadamard matrices with doubly transitive collineation groups.

One way of obtaining a constant-distance code with a transitive
group on the columns is the following. Given a (cyclic) (v, k, \) dif-
ference set, write a v-tuple of I’s and -1’s with 1 in the % places which
corresponds to elements of the difference set, and repeat this v-tuple
s times to obtain a ws-tuple. The set of all cyclic permutations of
this ws-tuple forms constant-distance code with » code words and
distance d = 2(k — A\)s. Call such a code an tterated difference set
code. The code is closed under the cyclic shift (the permutation 7w =
(1,2, ---,vs) on the columns).

Our results imply that, conversely, any constant-distance code which
is closed under the cyclic shift consists of repeated cyclic shifts of
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some single word, plus possibly a single constant word. The main part
of the code is thus an iterated difference set code; the extra word
can occur if and only if the parameters (v, k,\) are of Hadamard
type.

2. The number of orbits on the rows.

THEOREM 1. Suppose that G is a group of collineations of a
constant-distance code. If G 1s tramsitive on the colummns then G has
at most two orbits on the rows.

Proof. Suppose that G has ¢ orbits T, .-+, T, on the rows. Then
there are integers 7; such that each row in T, has exactly 7, l’s,
¢=1, ---,t. It follows that if «; and «; are rows and «; € T, ;€ T},
and if ¢(«;, ;) is the number of places in which both «; and «; have
1, then r;, + r; = d + 2¢(«;, @;), or c(a;, a;) = (r; + r; — d)/2. Let v;
denote the number of words in 7,. Since G is transitive on the
columns, for each column there are the same number %k, of words in
T, with 1 in that place; we have k, = v;,r,/n, where n is the length
of the words. Thus the words in 7T; form the incidence matrix of a
balanced incomplete block design with A = #, —(d/2). Now suppose
that ¢ = 2, that T; and T, are distinct orbits and that e T;. Count-
ing in two ways the total number of times in which words in T}
have a 1 in the same place as a 1 in «, we have v,(r; + r;, — d)/2 =
r;k;. Thus, since k;, = v;7,/n,

1) n()’h i—"'i—;@ =rr;.

2 1
Suppose that, »; = n. Then for some prime p, with »° and p’ the
highest powers of p dividing n and r;, respectively, one has ¢ > f.
Since v;r; = nk; and
d

@) rile =1 = (r— 5 )@= D),

pY(w,—1) and p’ |7, — (d/2). If r,= r; then the left side of (1) is
divisible by p°'’, the right side only by »*, a contradiction. Hence
r; #=r; if ©#j5. Also r, # n/2, since otherwise, by (1), », =n/2=4d
and k; = v,/2, contradicting (2). Thus 7; is uniquely determined in
terms of r; by (1). It follows that ¢ < 2, and the theorem is proved.

If there is only one orbit, then, as shown in the above proof, M
is the incidence matrix of a balanced incomplete block design. The
next result is the converse.
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THEOREM 2. Suppose that G 1s a group of collineations of «
balanced incomplete block design. If G is transitive on the blocks then
G 1s also transitive on the points.

Proof. The incidence matrix of the design is a constant-distance
code with d = 2(» — ). If G had two orbits on the points, then », =
r, =7. But by the proof of Theorem 1, 7, #* 7,, a contradiction. This
proves Theorem 2.

COROLLARY 1. Let G be a group of collineations of a constant-
distance code. Suppose that G fixes ¢ columns and is transitive on the
remaining columns. Let q be the number of different c-tuples in the
rows of the submatrix formed by the ¢ fixed columns. Then G has at
most 2 q orbits on the rows; if moreover the code corresponds to a
balanced tncomplete block design, then G has exactly q orbits on the
rows (potnts).

Proof. The set of rows with a given c-tuple in the fixed columns
must be closed under G; deleting the fixed columns from these rows,
one obtains a constant distance code with a transitive group of colline-
ations. The result now follows immediately from Theorems 1 and 2.

These results are a partial generalization to nonsymmetric designs
of a theorem proved by Dembowski [2], Hughes [3], and Parker [4],
which says that for a symmetric design, the number of orbits on the
points is the same as the number of orbits on the lines. However
there are balanced incomplete block designs with a group of colline-
ations which is transitive, even cyclic, on the points, but not transitive
on the lines.

3. Codes with a nilpotent transitive group. In this section we
assume that M is an m X n matrix whose rows form a constant-distance
code with distance d, and that G is a group of collineations which is
transitive on the columns. Let H denote the subgroup of G fixing
the first column. We shall continue using the notation T, v,, 7, and
k; introduced in the above proofs.

THEOREM 3. Suppose that T, and T, are distinct orbits of G (on
the rows). For ¢ =1,2, take a; in T, and let S; be the subgroup of
G fizing «;. Suppose that p is any prime such that the highest
power p’ of p dividing n does not divide d. Then, either for 1 =1
or 2, S; contains the normalizer of a Sylow p-subgroup of G, p|v,—1,
and pilr;.

Proof. If the orbit T, is trivial (consists of a constant word) then
S; = G and the conclusion is obvious. Thus suppose that both orbits
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are nontrivial. Take a prime p such that p’, the highest power of p
dividing %, does not divide d. Let p® and p” be the highest powers
of p dividing 7, and 7, respectively; by choice of notation we may
suppose that e < f. By (1), p*|r7,.

Suppose first that p tv, — 1 and p v, — 1. Then by (2), p*|[r, —
(d/2)] and p”|[r, — (d/2)], so that p”|(d/2) and p* |7, + 7, — d. If p>2
then p’*¢ divides the left side of (1) while p°*’ is the highest power
of p dividing the right side; hence f = j, so that p?|d, a contradic-
tion. If p = 2 then p*7'|[(7, + 7. — d)/2] and p’™*' divides the left
side of (1), so that f=14 — 1, p’*|(d/2) and p’|d, again a contradic-
tion.

Hence p|v; —1 for some ¢, with ¢2=1 or 2. Then since
pl(IG:8;]—1), p/[G:S;] and S; contains a Sylow p-subgroup of G.
Suppose that K is any subgroup of G, and consider the orbits of K
when K is regarded as a permutation group on the columns. For each
of these orbits there is an x in G such that the number of elements
in the orbit is [K: KN xHx™']. If p' is the highest power of p divid-
ing | H| then p’** is the highest power of p dividing |G|. Hence if
K contains a Sylow p-subgroup of G then p’|[K: KN xHx™'] for any
2. Taking K= S, we see that p’|r,, since the set of places where
«; has 1 is a union of orbits of S, (on the columns). If geG and
ge S, then ga, # a;, and ¢gS,g~" is the subgroup of G fixing ga,. If
moreover ¢S,g~" contains a Sylow p-subgroup of S;, then p’ divides
the number of elements in each orbit (on the columns) of S, N ¢gS;g7".
But the set of places where «; and ga; disagree is a union of orbits
of S;N¢gS;97", so that p’|d, a contradiction. Therefore no Sylow p-
subgroup of S, is contained in a conjugate of S,. Suppose that P is
a Sylow p-subgroup of S; (and so also of &), and that x € Ng(P), the
normalizer of P. If x¢ S, then xS, 2+ S; but P= ¢Px* S 2S;x7', a
a contradiction. Hence Ng(P)< S;, and the theorem is proved.

COROLLARY 2. If G is a nilpotent group of collineations of M
which s transitive on the columns, then either G is transitive on the
rows or one of the two orbits of G on the rows consists of one trivial
row.

Proof. Unless M has only the two trivial rows, there is a prime
p such that the highest power of p dividing n does not divide d. Since
a Sylow p-subgroup of a nilpotent group is normal, if G is not transi-
tive on the rows then by Theorem 3, G fixes a row. This proves the
result.

Now suppose the constant distance code is closed under the cyclic
shift 7=(1,2,---,n). If a is a code word with 7 ones, then «
must be periodic of (minimal) period v, a divisor of n; write v = n/s.
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A single period of « gives a (v, k, \) difference set with k = /s and
A= [r — (d/2)]/s. Thus the set of cyclic shifts z'@ or a forms an s-
times iterated (v, k, \)-difference set code; solving k(k — 1) = Mv —1)
for s, one has s = n + [2r(r — n)/d]. By Corollary a, either this set
is the entire code or there is one more word, with all 1’s or all —1’s.
If the extra word has all — 1’s then » =d, A= d/2s, and from
k(k — 1) = Mv — 1) one obtains n/s = 2d/s. Hence, with d/2s = u, one
would have v = 4u — 1, k = 2u and » = %. If on the other hand the
extra word has all 1’s, then we have the complement of a code of the
above type, and v =4u — 1, k=2u —1 and » = u — 1.

The above characterization of constant-distance code closed under
the cyclic shift was conjectured by the writer and proved independently
at the same time by the writer [1] and R.C. Titsworth [5]. Titsworth’s
proof uses arguments on polynominals dividing a2 — 1.

3. Hadamard matrices and codes with two orbits. In this
section we give a class of Hadamard matrices with doubly transitive
collineation groups, and use these matrices to obtain a class of constant-
distance codes with a transitive group on the columns for which the
conclusion of Corollary 2 does not hold.

Let A be the Hadamard matrix of order 4 with 1 on the diagonal,
— 1 elsewhere, and let B = B(s) be the tensor product of s copies of

A.

THEOREM 4. For any s, the group G of collineations of B(s) is
doubly transitive on the columns (and also on the rows).

Proof. Denote the rows and columns of B by s-tuples, so that
bil ) Il;s;jly "'7-7.3 = ailvjla/igrig cet Qg e

The result is obvious when s =1. Suppose s = 2. We shall show that the
subgroup H of G fixing the column (1, 1) is transitive on the remaining
columns. If 7, and 7, are any permutations on four letters then the
permutation of columns sending (%, %,) to (7.(%,), 7.(4,)) is a collineation
of B, sending row (¢, 1,) to row (7,(%,), 74(%,)); denote this collineation by
(t,75). It can be verified that the product of four transpositions of col-
umns 0 = ((1, 4) (2, 3))((4, 1) (3, 2))((1, 3) (2, 4))((3, 1) (4, 2)) is a collineation
of B; also, oe H. Taking ¢ and its products with various (z,, 7,), we
see that all columns other than (1, 1) form a single orbit of H. More-
over some (7, T,) moves column (1,1), so that G is transitive, and
hence doubly transitive. Now suppose that s > 2. If 7 is a collinea-
tion of B(2) and if a set of two column coordinates of B(s) is given,
then a collineation of B(s) is obtained by applying = to the given
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column coordinates while keeping the remaining ones fixed. Using this
type of collineation, we see that the subgroup of G fixing column
1, ---,1) is transitive on the remaining columns. Hence G is always
doubly transitive on the columns, and, by symmetry, also on the rows.
This completes the proof.

COROLLARY 3. For every power 4° of 4(s > 1), there is a constant-
distance code with 4° words of length 4° —1, such that the group of
collineations s tramsitive on the columms but has two mnontrivial
orbits on the rows.

Proof. The matrix B(s) is Hadamard, and hence its rows form a
constant-distance code. Complement the rows with ¢ + 1 in column
1, ---,1) and then delete this column. What remains is still a con-
stant-distance code; call it C. The subgroup of G fixing (1, ---, 1)
clearly gives a group of collineations of C which is transitive on the
columns. Moreover the set of uncomplemented rows is closed under
the group, so the group has two nontrivial orbits. This completes the
proof.

Let G and H continue to have the same meanings as in Theorem 4.
It follows from Corollary 2 and the proof of Corollary 3 that H is not
nilpotent. However it can actually be shown that the subgroup K of
H fixing column (1, 2) is isomorphic to S;, being generated by ¢ and
certain (7,, 7,)’s. Hence when s = 2, G has order 16-15-720. Also it
follows that if s > 1 then G contains a subgroup isomorphic to S;
which fixes 2-4°% columns.
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