TRANSITIVE GROUPS OF COLLINEATIONS
 ON CERTAIN DESIGNS

Richard E. Block

Let $M=\left(a_{i j}\right)$ be an $m \times n$ matrix with entries in $\{1,-1\}$. Suppose that there is a positive integer d such that the inner product of every pair of distinct rows of M is $n-2 d$; this is equivalent to assuming that any two distinct rows have Hamming distance d, i.e. differ in exactly d places. The rows of M form the code words of a binary code; such a code is called a (binary) constant-distance code, of length n and distance d. Special cases of matrices which may be taken to be M are the Hadamard matrices, which are defined by the condition that $m=n=2 d$, and the incidence matrices (written with ± 1) of balanced incomplete block designs, which are characterized by the property that all column sums are equal and all row sums are equal.

Suppose that π is a permutation of $\{1, \cdots, n\}$ such that replacement, for $i=1 \cdots, n$, of the $\pi(i)$ th column of M by the i th column of M sends each row of M into a row of M. Then π induces a permutation of the rows of M. Call such a pair of permutations of the columns and of the rows a collineation of M, or of the code. We shall examine constant-distance codes with a group G of collineations which is transitive on the columns. We shall show that G has at most two orbits on the rows (just one orbit if and only if M comes from a balanced incomplete block design), and that if G is nilpotent then at most one of these orbits contains more than a constant row.

Moreover, it will be shown that this last conclusion need not hold if G is not assumed nilpotent; this will be done by giving an infinite class of Hadamard matrices with doubly transitive collineation groups.

One way of obtaining a constant-distance code with a transitive group on the columns is the following. Given a (cyclic) (v, k, λ) difference set, write a v-tuple of l's and -l's with 1 in the k places which corresponds to elements of the difference set, and repeat this v-tuple s times to obtain a $v s$-tuple. The set of all cyclic permutations of this $v s$-tuple forms constant-distance code with v code words and distance $d=2(k-\lambda)$ s. Call such a code an iterated difference set code. The code is closed under the cyclic shift (the permutation $\pi=$ $(1,2, \cdots, v s)$ on the columns).

Our results imply that, conversely, any constant-distance code which is closed under the cyclic shift consists of repeated cyclic shifts of

[^0]some single word, plus possibly a single constant word. The main part of the code is thus an iterated difference set code; the extra word can occur if and only if the parameters (v, k, λ) are of Hadamard type.

2. The number of orbits on the rows.

Theorem 1. Suppose that G is a group of collineations of a constant-distance code. If G is transitive on the columns then G has at most two orbits on the rows.

Proof. Suppose that G has t orbits T_{1}, \cdots, T_{t} on the rows. Then there are integers r_{i} such that each row in T_{i} has exactly r_{i} l's, $i=1, \cdots, t$. It follows that if α_{i} and α_{j} are rows and $\alpha_{i} \in T_{i}, \alpha_{j} \in T_{j}$, and if $c\left(\alpha_{i}, \alpha_{j}\right)$ is the number of places in which both α_{i} and α_{j} have 1 , then $r_{i}+r_{j}=d+2 c\left(\alpha_{i}, \alpha_{j}\right)$, or $c\left(\alpha_{i}, \alpha_{j}\right)=\left(r_{i}+r_{j}-d\right) / 2$. Let v_{i} denote the number of words in T_{i}. Since G is transitive on the columns, for each column there are the same number k_{i} of words in T_{i} with 1 in that place; we have $k_{i}=v_{i} r_{i} / n$, where n is the length of the words. Thus the words in T_{i} form the incidence matrix of a balanced incomplete block design with $\lambda=r_{i}-(d / 2)$. Now suppose that $t \geqq 2$, that T_{i} and T_{j} are distinct orbits and that $\alpha \in T_{j}$. Counting in two ways the total number of times in which words in T_{i} have a 1 in the same place as a 1 in α, we have $v_{i}\left(r_{i}+r_{j}-d\right) / 2=$ $r_{j} k_{i}$. Thus, since $k_{i}=v_{i} r_{i} / n$,

$$
\begin{equation*}
n \frac{\left(r_{i}+r_{j}-d\right)}{2}=r_{\imath} r_{j} \tag{1}
\end{equation*}
$$

Suppose that, $r_{i} \neq n$. Then for some prime p, with p^{e} and p^{f} the highest powers of p dividing n and r_{i}, respectively, one has $e>f$. Since $v_{i} r_{i}=n k_{i}$ and

$$
\begin{equation*}
r_{i}\left(k_{i}-1\right)=\left(r_{i}-\frac{d}{2}\right)\left(v_{i}-1\right) \tag{2}
\end{equation*}
$$

$p \nmid\left(v_{i}-1\right)$ and $p^{f} \mid r_{i}-(d / 2)$. If $r_{i}=r_{j}$ then the left side of (1) is divisible by p^{e+f}, the right side only by $p^{2 f}$, a contradiction. Hence $r_{i} \neq r_{j}$ if $i \neq j$. Also $r_{i} \neq n / 2$, since otherwise, by (1), $r_{i}=n / 2=d$ and $k_{i}=v_{i} / 2$, contradicting (2). Thus r_{j} is uniquely determined in terms of r_{i} by (1). It follows that $t \leqq 2$, and the theorem is proved. If there is only one orbit, then, as shown in the above proof, M is the incidence matrix of a balanced incomplete block design. The next result is the converse.

Theorem 2. Suppose that G is a group of collineations of a balanced incomplete block design. If G is transitive on the blocks then G is also transitive on the points.

Proof. The incidence matrix of the design is a constant-distance code with $d=2(r-\lambda)$. If G had two orbits on the points, then $r_{1}=$ $r_{2}=r$. But by the proof of Theorem $1, r_{1} \neq r_{2}$, a contradiction. This proves Theorem 2.

Corollary 1. Let G be a group of collineations of a constantdistance code. Suppose that G fixes columns and is transitive on the remaining columns. Let q be the number of different c-tuples in the rows of the submatrix formed by the c fixed columns. Then G has at most $2 q$ orbits on the rows; if moreover the code corresponds to a balanced incomplete block design, then G has exactly q orbits on the rows (points).

Proof. The set of rows with a given c-tuple in the fixed columns must be closed under G; deleting the fixed columns from these rows, one obtains a constant distance code with a transitive group of collineations. The result now follows immediately from Theorems 1 and 2.

These results are a partial generalization to nonsymmetric designs of a theorem proved by Dembowski [2], Hughes [3], and Parker [4], which says that for a symmetric design, the number of orbits on the points is the same as the number of orbits on the lines. However there are balanced incomplete block designs with a group of collineations which is transitive, even cyclic, on the points, but not transitive on the lines.
3. Codes with a nilpotent transitive group. In this section we assume that M is an $m \times n$ matrix whose rows form a constant-distance code with distance d, and that G is a group of collineations which is transitive on the columns. Let H denote the subgroup of G fixing the first column. We shall continue using the notation T_{i}, v_{i}, r_{i} and k_{i} introduced in the above proofs.

Theorem 3. Suppose that T_{1} and T_{2} are distinct orbits of G (on the rows). For $i=1,2$, take α_{i} in T_{i} and let S_{i} be the subgroup of G fixing α_{i}. Suppose that p is any prime such that the highest power p^{j} of p dividing n does not divide d. Then, either for $i=1$ or $2, S_{i}$ contains the normalizer of a Sylow p-subgroup of $G, p \mid v_{i}-1$, and $p^{j} \mid r_{i}$.

Proof. If the orbit T_{i} is trivial (consists of a constant word) then $S_{i}=G$ and the conclusion is obvious. Thus suppose that both orbits
are nontrivial. Take a prime p such that p^{j}, the highest power of p dividing n, does not divide d. Let p^{e} and p^{f} be the highest powers of p dividing r_{1} and r_{2}, respectively; by choice of notation we may suppose that $e \leqq f . \quad B y$ (1), $p^{i} \mid r_{1} r_{2}$.

Suppose first that $p \nmid v_{1}-1$ and $p \nmid v_{2}-1$. Then by (2), $p^{e} \mid\left[r_{1}-\right.$ $(d / 2)]$ and $p^{f} \mid\left[r_{2}-(d / 2)\right]$, so that $p^{f} \mid(d / 2)$ and $p^{e} \mid r_{1}+r_{2}-d$. If $p>2$ then p^{j+e} divides the left side of (1) while p^{e+f} is the highest power of p dividing the right side; hence $f \geqq j$, so that $p^{j} \mid d$, a contradiction. If $p=2$ then $p^{e-1} \mid\left[\left(r_{1}+r_{2}-d\right) / 2\right]$ and p^{j+e-1} divides the left side of (1), so that $f \geqq i-1, p^{j-1} \mid(d / 2)$ and $p^{j} \mid d$, again a contradiction.

Hence $p \mid v_{i}-1$ for some i, with $i=1$ or 2 . Then since $p \mid\left(\left[G: S_{i}\right]-1\right), \quad p \nmid\left[G: S_{i}\right]$ and S_{i} contains a Sylow p-subgroup of G. Suppose that K is any subgroup of G, and consider the orbits of K when K is regarded as a permutation group on the columns. For each of these orbits there is an x in G such that the number of elements in the orbit is [$K: K \cap x H x^{-1}$]. If p^{l} is the highest power of p dividing $|H|$ then p^{j+l} is the highest power of p dividing $|G|$. Hence if K contains a Sylow p-subgroup of G then $p^{j} \mid\left[K: K \cap x H x^{-1}\right]$ for any x. Taking $K=S_{i}$ we see that $p^{j} \mid r_{i}$, since the set of places where α_{i} has 1 is a union of orbits of S_{1} (on the columns). If $g \in G$ and $g \notin S_{i}$ then $g \alpha_{i} \neq \alpha_{i}$, and $g S_{i} g^{-1}$ is the subgroup of G fixing $g \alpha_{i}$. If moreover $g S_{i} g^{-1}$ contains a Sylow p-subgroup of S_{i}, then p^{j} divides the number of elements in each orbit (on the columns) of $S_{i} \cap g S_{i} g^{-1}$. But the set of places where α_{i} and $g \alpha_{i}$ disagree is a union of orbits of $S_{i} \cap g S_{i} g^{-1}$, so that $p^{j} \mid d$, a contradiction. Therefore no Sylow p subgroup of S_{i} is contained in a conjugate of S_{i}. Suppose that P is a Sylow p-subgroup of S_{i} (and so also of G), and that $x \in N_{G}(P)$, the normalizer of P. If $x \notin S_{i}$ then $x S_{1} x^{-1} \neq S_{i}$ but $P=x P x^{-1} \subseteq x S_{i} x^{-1}$, a a contradiction. Hence $N_{G}(P) \subseteq S_{i}$, and the theorem is proved.

Corollary 2. If G is a nilpotent group of collineations of M which is transitive on the columns, then either G is transitive on the rows or one of the two orbits of G on the rows consists of one trivial row.

Proof. Unless M has only the two trivial rows, there is a prime p such that the highest power of p dividing n does not divide d. Since a Sylow p-subgroup of a nilpotent group is normal, if G is not transitive on the rows then by Theorem 3, G fixes a row. This proves the result.

Now suppose the constant distance code is closed under the cyclic shift $\pi=(1,2, \cdots, n)$. If α is a code word with r ones, then α must be periodic of (minimal) period v, a divisor of n; write $v=n / s$.

A single period of α gives a (v, k, λ) difference set with $k=r / s$ and $\lambda=[r-(d / 2)] / s$. Thus the set of cyclic shifts $\pi^{i} \alpha$ or α forms an s times iterated (v, k, λ)-difference set code; solving $k(k-1)=\lambda(v-1)$ for s, one has $s=n+[2 r(r-n) / d]$. By Corollary a, either this set is the entire code or there is one more word, with all 1's or all -1 's. If the extra word has all - 1's then $r=d, \lambda=d / 2 s$, and from $k(k-1)=\lambda(v-1)$ one obtains $n / s=2 d / s$. Hence, with $d / 2 s=u$, one would have $v=4 u-1, k=2 u$ and $\lambda=u$. If on the other hand the extra word has all 1's, then we have the complement of a code of the above type, and $v=4 u-1, k=2 u-1$ and $\lambda=u-1$.

The above characterization of constant-distance code closed under the cyclic shift was conjectured by the writer and proved independently at the same time by the writer [1] and R.C. Titsworth [5]. Titsworth's proof uses arguments on polynominals dividing $x^{n}-1$.
3. Hadamard matrices and codes with two orbits. In this section we give a class of Hadamard matrices with doubly transitive collineation groups, and use these matrices to obtain a class of constantdistance codes with a transitive group on the columns for which the conclusion of Corollary 2 does not hold.

Let A be the Hadamard matrix of order 4 with 1 on the diagonal, - 1 elsewhere, and let $B=B(s)$ be the tensor product of s copies of A.

Theorem 4. For any s, the group G of collineations of $B(s)$ is doubly transitive on the columns (and also on the rows).

Proof. Denote the rows and columns of B by s-tuples, so that

$$
b_{i_{1}} \cdots, i_{s} ; j_{1}, \cdots, j_{s}=a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} \cdots a_{i_{s}, j_{s}} .
$$

The result is obvious when $s=1$. Suppose $s=2$. We shall show that the subgroup H of G fixing the column $(1,1)$ is transitive on the remaining columns. If τ_{1} and τ_{2} are any permutations on four letters then the permutation of columns sending $\left(i_{1}, i_{2}\right)$ to $\left(\tau_{1}\left(i_{1}\right), \tau_{2}\left(i_{2}\right)\right)$ is a collineation of B, sending row $\left(i_{1}, i_{2}\right)$ to row $\left(\tau_{1}\left(i_{1}\right), \tau_{2}\left(i_{2}\right)\right.$); denote this collineation by $\left(\tau_{1}, \tau_{2}\right)$. It can be verified that the product of four transpositions of columns $\sigma=((1,4)(2,3))((4,1)(3,2))((1,3)(2,4))((3,1)(4,2))$ is a collineation of B; also, $\sigma \in H$. Taking σ and its products with various $\left(\tau_{1}, \tau_{2}\right)$, we see that all columns other than $(1,1)$ form a single orbit of H. Moreover some (τ_{1}, τ_{2}) moves column (1,1), so that G is transitive, and hence doubly transitive. Now suppose that $s>2$. If τ is a collineation of $B(2)$ and if a set of two column coordinates of $B(s)$ is given, then a collineation of $B(s)$ is obtained by applying τ to the given
column coordinates while keeping the remaining ones fixed. Using this type of collineation, we see that the subgroup of G fixing column $(1, \cdots, 1)$ is transitive on the remaining columns. Hence G is always doubly transitive on the columns, and, by symmetry, also on the rows. This completes the proof.

Corollary 3. For every power 4^{s} of $4(s>1)$, there is a constantdistance code with 4^{s} words of length $4^{s}-1$, such that the group of collineations is transitive on the columns but has two nontrivial orbits on the rows.

Proof. The matrix $B(s)$ is Hadamard, and hence its rows form a constant-distance code. Complement the rows with $a+1$ in column $(1, \cdots, 1)$ and then delete this column. What remains is still a con-stant-distance code; call it C. The subgroup of G fixing $(1, \cdots, 1)$ clearly gives a group of collineations of C which is transitive on the columns. Moreover the set of uncomplemented rows is closed under the group, so the group has two nontrivial orbits. This completes the proof.

Let G and H continue to have the same meanings as in Theorem 4. It follows from Corollary 2 and the proof of Corollary 3 that H is not nilpotent. However it can actually be shown that the subgroup K of H fixing column $(1,2)$ is isomorphic to S_{6}, being generated by σ and certain $\left(\tau_{1}, \tau_{2}\right)$'s. Hence when $s=2, G$ has order $16 \cdot 15 \cdot 720$. Also it follows that if $s>1$ then G contains a subgroup isomorphic to S_{6} which fixes $2 \cdot 4^{s-2}$ columns.

References

1. R.E. Block, Difference sets, block designs, and constant distance codes, Space Programs Summary No. 37-22, Vol. IV, Jet Propulsion Laboratory, California Institute of Technology, August 31, (1963), 137-138.
2. P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen, Math. Zeit. 69 (1958), 59-89.
3. D.R. Hughes, Collineations and generalized incidence matrixes, Trans. Amer. Math. Soc. 86 (1957), 284-286.
4. E.T. Parker, On collineations of symmetric designs, Proc. Amer. Math. Soc. 8 (1957), 350-351.
5. R.C. Titsworth, Binary cyclic constant-distance codes, Space Programs Summary No. 37-22, Vol. IV, Jet Propulsion Laboratory, California Institute of Technology, August 31, (1963), 147, 152-153.

California Institute of Technology

[^0]: Received December 20, 1963.

