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MINIMAL GERSCHGORIN SETS

RICHARD S. VARGA

If A = (α;,i) is a fixed n X n complex matrix, then it is
well known that the Gerschgorin disks Gi in the complex
plane, defined by

(1 ) { Σ
I 3 = 1

are such that each eigenvalue of A lies in at least one disk,
and, consequently, the union of these disks,

(2) G=\JGi9
i=i

which we call the Gerschgorin set, contains all the eigenvalues
of A. It is however clear from (1) that the radii of these
Gerschgorin disks depend only on the moduli of the off-diagonal
entries of A. Thus, if

(3) ΩA = {B = (bi,j): biti = aiti9 lStig.il, and

\Ki\ = \aitj\9lgitjgn} ,

then it is clear that the Gerschgorin set G contains all the
eigenvalues of each n X n matrix B in ΩA. It is natural to
ask how far-reaching this elementary theory is in bounding
the eigenvalues of ΩA.

To extend the above results slightly, let Λ; > 0 be any
vector with positive components, and let X(x)=dmg(xlfxz, ,xn).
Applying the above results to X^ζjήAXζx) shows that if

( V ) Gi(x) = \z : \z - aiti I ̂  — Σ I ^ , ; I Xi = Λ<(x)l,
I Xi jφi )

1 ^ i ^ n ,

then the associated Gerschgorin set

( 2 0 G(x)= (jGi(x)
* = 1

again contains all the eigenvalues of each BeΩΛ for every
x > 0. Thus, the closed bounded set

(4) G(fli)ΞΠG(x),
JC>O

which we call the minimal Gerschgorin set, also contains all
the eigenvalues of each BeΩΛ.

One of the major results in this paper is that each boundary
point of G(ΩA) is an eigenvalue of some matrix B in ΩA.
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Thus, the minimal Gerschgorin set G(ΩA) can be thought of as being
optimal.1 In the irreducible case, it is shown moreover that each
boundary point of G(ΩA) is geometrically the intersection of n Ger-
schgorin circles, which is closely related to a result of Olga Taussky
[7]. It is also shown (Corollary 1) in the irreducible case that the
minimal Gerschgorin set G(ΩA) contains n disks with positive radii.
Finally, an analogue of a result of Gerschgorin [5] is obtained for
disconnected minimal Gerschgorin sets.

It is worth pointing out that there are several other methods
[6, 8] for determining n nonnegative numbers p{ which, like the radii
A{{x) in (1'), have the property that each eigenvalue λ of any Be ΩA

satisfies | λ — aiti | ^ p{ for at least one i, and analogous minimal
Gerschgorin sets could be defined relative to these different methods.
However, a very interesting result of Ky Fan [3] tells us that if A
is irreducible, then there exists a positive vector y > 0 such that

Hence, in the interest of developing the smallest minimal Gerschgorin
sets for either the irreducible case (§ 2) or the reducible case (§ 3), it
is sufficient to consider only the minimal Gerschgorin set G(ΩA) defined
by the diagonal similarity transformations of (Γ), (2'), and (4).

The author wishes to express his appreciation to Drs. A. S. House-
holder, Olga Taussky, and Bernard Levinger for several stimulating dis-
cussions on this topic.

2 The irreducible2 case* In this section, we assume that the
n x n matrix A — (aifj) is irreducible.2 For any (finite) complex
constant σ, consider the real n x n matrix P(σ) — (pίtj) defined by

Since the off-diagonal entries of P(σ) are nonnegative, and P{σ) is
irreducible because A is, then P{o) is essentially positive [2; 9, p.
257]. Thus, P(σ) possesses a real eigenvalue v(σ) which is uniquely
characterized by the property that if λ is any other eigenvalue of
P(σ), then

(7) Re λ < v{σ) .

1 This was conjectured by Dr. A. S. Householder during the Summer Engineering
Conference (1963) in Numerical Analysis at the University of Michigan.

2 An n x n matrix A is irreducible if there exists no n x n permutation matrix

P such that P A P Γ = Q L where C and E are square nonvoid submatrices. Equiva-

lently, the directed graph of A is strongly connected. See, for example, [9, p. 20].
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Moreover, the eigenvector y corresponding to v(σ) can be chosen to
have positive components, and v{σ) satisfies the following inclusion
relationships [9, p. 261]

(8) min { ( Σ p^x^lx,} ^ v(σ) ̂  max { ( Σ P^

for any x > 0, and

( 9 ) sup I min { ( Σ Pi.&d) /&<} 1 = v(p) = inf [max { ( Σ Pi.^i)/^} 1

From the definition of the matrix P{o) in (6), it follows for any x > 0
that

/ n

(10) Σ Pij aifί

which will be useful in conjunction with (8) and (9). Finally, we
remark that v(σ) is a continuous function of σ.

The reason for introducing the function v(σ) is brought out by
the following result.

THEOREM 1. Let A = (α^ ) he an irreducible nxn matrix. Thenf

σ 6 G(ΩA) if and only if v{σ) ̂  0.

Proof. If σ e G(ΩΛ), then, from (4), σ e G(x) for every x > 0, so
that for some j , Λά{x) - \σ - au \ ̂  0. Coupled with (8), (9), and (10),
we see that v{σ) Ξ> 0. Conversely, if v(σ) ̂  0, then for every x > ft
there is a j such that

Aj{x) - I σ - aίtj \ ̂  v(σ) ̂  0 .

Thus, σ e G(x) for every x > 0, and evidently σ e G(ΩΛ), which completes
the proof.

Several remarks are now in order. First, since G(ΩA) is a closed
bounded set, its complement G'(ΩA) is open, and Gf(ΩA) is simply the
set of all complex numbers σ such that v{σ) < 0. Denoting the boundary
of G(ΩA) by ΘG(Ωj), then ΘG(ΩA) is defined as usual by

(11) 0G(ΩA) = {σ:σeG^)nGψ7)} ,

where G'(ΩA) is the closure of the complement of G{ΩA). From Theorem
1, we see that dG(ΩA) can also be described as the set of all complex
numbers σ such that v{σ) — 0, and such that there exists a sequence of
complex numbers {Zj}^ with limy-^ z3- = σ and v(Zj) < 0. It would of
course be simpler if one could describe 0G(ΩA) solely by v(σ) — 0, but
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this is not in general true.2

The above discussion allows one to deduce a rather interesting
geometrical property of the boundary dG(ΩΛ) of the minimal Gerschgorin
set. If σ G dG(ΩΛ), then v{σ) = 0. Hence, there exists a vector y > 0
such that P(σ)y = v(σ)y = 0, so that from (10),

(12) I σ - aiyi \ = A{(y) f or all 1 ^ i ^ n .

In other words, σ is the intersection of the n Gerschgorin circles
I z - aiti I = Ai(y).

With A — (aifj) an irreducible n x n matrix, we now show as a
corollary to Theorem 1 that the minimal Gerschgorin set G(ΩA) contains
at least n disks with centers ai}i and positive radii pim

COROLLARY 1. Let A = (aitj) be an irreducible n x n matrix.
Then, there exists a vector p > 0 such that all complex numbers z
satisfying

(13) I z - aiti I S pi

for some i are contained in the minimal Gerschgorin set G(ΩA).

Proof. From Theorem 1 and the discussion following it, any
complex number σ with v(σ) > 0 is necessarily an interior point of
G(ΩA). Thus, it is sufficient to show that v(aiti) > 0 for each 1 ^ i ^ n.
For any σ, there is a y > 0 such that P{o)y — v(σ)y. Next, from the
definition of the matrix P(σ) in (6), it is clear that the diagonal entry
Pi,i of the particular matrix P{aiΛ) is zero, and all other entries in
that row of P(ai}i) are nonnegative. The irreducibility of A, implying
the irreducibility of P{aiti), shows us that the ith component of
P(a>i,i)y — v{ai,i)y is positive, and as y > 0, we conclude that v(aifi) > 0.
Consequently, each aiti is an interior point of G(ΩΛ)f and there neces-
sarily exists a vector p > 0 such that | z — aifi \ ̂  pi for some i implies
that z G G(ΩΛ), completing the proof. To be more explicit, one can
directly verify that choosing

(14) βi = v{aiti) , l ^ i ^ n ,

gives such radii, and it is easy to construct examples where the radii
of (14) are best (i.e., largest) possible.

When A is an irreducible n x n matrix, a result of Olga Taussky
[7] states that if λ is an eigenvalue of A, and λ is a boundary point
of G(x) for some x > 0, then all the Gerschgorin circles pass through λ:

(15) I λ - aiti I - At(x) , l ^ i ^ n .

2 The author is indebted to Dr. J. H. Wilkinson for having constructed a simple
counterexample.
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As a converse to this, we have

THEOREM 2. Let A = (aifj) be an arbitrary n x n matrix. If,
for some x > 0, σ is a complex number with

(16) I σ - ak,k | = Ak(x) , 1 ^ k ^ w ,

ί/mi σ is an eigenvalue of some BeΩA, and hence σeG(ΩA).

Proof. Writing (σ — ak,k) — \ σ — ak,k | exp (iφk), let the matrix
B = (bk>j) be defined by

(17) b k t k = a k t k , l ^ k ^ n ; b k t j = | a k d \ e x p (iφk), k ^ j , l ^ k , j ^ n .

Thus Be ΩA, and (16) can be written equivalently as

(18) Σ δ*,y»i = »* , 1 ̂  * ^ ^

As x > 0 then σ is an eigenvalue of B, and thus σ e G(ΩA), which
completes the proof.

The importance of this theorem lies in its application in the
following

COROLLARY 2. If A — (aitj) is an irreducible n x n matrix and
v(σ) = 0, then σ is an eigenvalue of some matrix Be ΩΛ. Thus,
every boundary point σ e dG(ΩΛ) of the minimal Gerschgorin set is
an eigenvalue of some matrix Be ΩΛ.

Proof. If A is irreducible, and σ is a complex number such that
v(σ) — 0, then there exists a vector y > 0 such that P{σ)y — v{σ)y — 0.
From (10), it follows that

A(y) = \σ — aίfί I for all 1 ̂  i ^ n .

Thus, applying Theorem 2, σ is an eigenvalue of some matrix B e ΩA.
From the discussion following Theorem 1, we know that v(σ) = 0 is a
necessary condition that σedG(ΩA). Thus, we conclude that each
boundary point of minimal Gerschgorin set is an eigenvalue of some
matrix B e ΩA, which completes the proof.

In terms of finding inclusion regions for eigenvalues of matrices
B in ΩA, Corollary 2 tells us that the minimal Gerschgorin set G(ΩA)
is optimal.

In analogy to the discussion following Theorem 1, the boundary
dG(x) of the Gerschgorin set G(x) of (2') can be described as the set
of all complex numbers σ for which there exists an integer j , 1 ̂  j ^ n,
such that I σ — aJtί \ = A5{x), and there exists a sequence of complex



724 RICHARD S. VARGA

numbers {Zj}f=1 with l im.^ z3- — σ for which | z3 — aiyi | > A{{x) for all
1 <̂  ί <̂  n. With this, we now give sufficient conditions for a complex
number σ to be a boundary point of the minimal Gerschgorin set.

THEOREM 3. Let A = (ai}3) be an irreducible n x n matrix. If
σ € ΘG(x), x>0, and \ σ — aiti \ = A^x) for alll^i^n, then σ e dG(ΩΛ).

Proof. Since x > 0, it follows from | σ — aiti \ = Λ^x), 1 ^ i ^ n,
that v(σ) = 0. Next, as σ e 0G(jt), there exists a sequence of complex
numbers {z3}~=1 with lim^oo z3- = σ for which | ̂  — α i f i | > A{(x) for all
1 ^ i ^ n. Hence,

0 > max

But as x > 0, we deduce from (8) and (10) that

0 > max

for each j > 1. Thus, σedG(ΩΛ), which completes the proof.

COROLLARY 3. Let A — (ai>3) be a nonnegative irreducible n x n
matrix. Then, its spectral radius p(A) is a boundary point of the
minimal Gerschgorin set G(ΩΛ).

Proof. By the Perron-Frobenius theory of nonnegative matrices
(see [8] or [9]), there exists a vector JC > 0 such that Ax = p(A)x,
and ρ(A) > aiΛ for all 1 ^ i ^ n. It follows that -(ρ(A) - aiti) +
Ai(x) = 0 for 1 g i g n, and we conclude from (6) and (10) that
P(p(A))x = 0, whence v(p(A)) = 0. Next, it is obvious that for any
δ > 0 ,

I p(A) + δ - aiΛ I = ρ(A) + δ - aiti > A{(x) for all 1 ^ i ^ w .

Thus, we see that |θ(A) e dG(x). Applying Theorem 3, we conclude
that p(A) e dG(ΩΛ), which completes the proof.

3* The reducible case* If the nxn matrix A — (aitj), first con-
sidered in § 1, is reducible, we cannot geometrically characterize each
boundary point of G(ΩA) as the intersection of n Gerschgorin circles.
Nevertheless, we can prove

THEOREM 4. Let A = (aίtj) be an arbitrary n x n matrix. Then,

every boundary point of G(ΩΛ) is an eigenvalue of some matrix BeΩΛ.

Proof. From Corollary 2, we can assume that A is reducible.
There exists an n x n permutation matrix P such that PAPT is in its
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normal reduced form [4, 9]:

0 R2>2

(19) PAP2 ' =

0 0

where each square submatrix JBifi, 1 ^ j ^ w, is either irreducible or
a 1 x 1 null matrix. Since row sums are invariant under such permuta-
tion transformations, we see from (19) that the Gerschgorin radii
Λi(x) for any submatrix Rjtj9 l^j^N, are not increased by diminishing
the components x3 associated with submatrices Rktk9 k > j . Thus, the
minimal Gerschgorin set G(ΩA) is just the union of the minimal
Gerschgorin sets G(ΩRj ) determined from the matrices R3tj:

(20) ψA) ( j J

If Rj,j is a 1 x 1 null matrix, then G(ΩR ) consists of the sole point
2 = 0, and clearly zero is then an eigenvalue oί Ae ΩΛ. If Rjtj is
irreducible, then dG(ΩRhj) is characterized by the result of Corollary 2.
From this, it follows that every point of G(ΩA) is an eigenvalue of
some B e ΩA, which completes the proof.

4* Disconnected minimal Gerschgorin sets* Gerschgorin [5]
showed that if n^Kn) disks of the Gerschgorin set G(x), obtained
from the n x n matrix A, are disjoint from the remaining n — nx

disks of G(x), then these nγ disks contain exactly nx eigenvalues of A.
The proof of this result (see [8, p. 287]), basically a continuity argument,
extends easily to the case where the minimal Gerschgorin set G(ΩA) is
disconnected. First, let G3(ΩA) denote the disjoint closed connected
components of G(ΩA)\

(21) G(ΩΛ) = U GIΨA) , l ^ m ^ n .

Further, let the order r3- of each G3{ΩA) be defined as the number of
diagonal entries aiΛ of A(or any BeΩA) in G3(ΩA). By replacing the
off-diagonal entries ai>3 by aaiyj for all i Φ j , where 0 ^ α ^ 1, and
letting a increase to unity, it is readily seen that 1 ^ r3• ^ n. With
this notation, we give the following result, whose proof is omitted.

THEOREM 5. For the set ofnxn matrices ΩA, let the G3(ΩΛ),
1 ^ j <Ξ; m, be the disjoint closed connected components of the minimal
Gerschgorin set G(ΩA). Then, each G3{ΩA) (of order r3) contains
exactly r3 eigenvalues of the matrix B for any BeΩA.
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5* The extended set ΩΛ. If S(ΩΛ) is the set of all eigenvalues
of all B G ΩA, then the results of Corollary 2 and Theorem 4 show us
that

(22) dG(ΩA) s S(ΩA) c G(βJ .

In the next section, we shall give examples wheredG(ΩA) — S(ΩA)(zG(ΩA),
so that S(ΩA) need not be the entire set G(ΩA).

Let us expand the set ΩA as follows. Letting ΩA denote the set
of all n x n matrices B = (bifj) such that

(23) b i Λ = a i t i , l ^ ί ^ n ; \ b i t j | ^ | a i t J \ , i Φ j , l £ i , j £ n ,

then it is obvious that ΩAQ ΩA. If S(ΩA) analogously denotes the
eigenvalues of all B e i54, then we prove

THEOREM 6. Let A he an arbitrary nxn matrix. Then, S(ΩA) =
G(ΩA), i.e., every zeG(ΩA) is an eigenvalue of some matrix BeΩA.

Proof. The expression (20) in the proof of Theorem 4 shows us
that we may assume, without loss of generality, that A is irreducible.
If z e G(ΩA), then v(z) ^ 0 by Theorem 1, and there exists a vector
x > 0 such that

(23') Ji(x) - \z - aiti I = v(z) , 1 ^ i ^ n .

Let the nxn matrix B = (bitj) be defined by

(24) biti = aifi, l ^ i ^ n ; bitj = μ . a ^ , i ^ j , l ^ i , j ^ n ,

where

(25) μ, - {Λ(x) ~ ^(«)}M(x) , l ^ i S n .

Then, 0 ^ μ{ ^ 1,1 ^ i g w, and as | bitj \ ^ | aifj \ for all i φ j , then

Utilizing the expressions of (23'), (24), and (25), it follows that

(26) I z - b i t i I = ( Σ I b i 9 i I

From Theorem 2, 2 is evidently an eigenvalue of some matrix C e 42*,
which is surely contained in ΩA, completing the proof.

6. An example* To illustrate the results of §2, consider the
nxn irreducible matrix An given by
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(27)

where

(27')

By direct computation, we find that A{(x)
and An{x) = \ an>11 xjxn. Thus,

1 .

(28) Π J , ( x ) = I α l f 2α 2, 8 αn > 11 = 1

for all x > 0. If σ e 0G(ΩΛ), then v(σ) = 0, and there exists a vector
y > 0 such that

(29) I a - aiti I = Λ(ίί) , l t ί i ^ n .

Hence, taking the product over all i and using (28), we conclude that

(30) Π \σ - aiti I - 1 .

Conversely, it is readily shown that any σ for which (30) is valid is
necessarily a boundary point of G(ΩA). Thus, we conclude that all
boundary points of G(ΩΛ) lie on an algebraic curve of degree at most
2n. To carry our example further, let us assume that the diagonal
entries of An of (27) are given by

(31) = exp
2πi(k -

n

Then f or σ — r exp (iθ), (30) reduces simply to

(32) rn = 2 cos nθ ,

which is a higher order lemniscate. The minimal Gerschgorin set for
the particular matrix A4 of (27), (27'), and (31), is shown below. For
comparison, the boundary of the "usual" Gerschgorin set for A4,

corresponding to the particular case | α1>21 = | α2)31 = | α3,4

and the choice x{ = 1 in (2'), is indicated by clotted lines.
α4ϊ l | = 1
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1
\
\

I
[

f ^

\\

\\
1 "̂
\
•J 4 -

i

\
\

I
I

To illustrate the results of §4, we again consider the matrix A4

determined by (27) and (31), but now the off-diagonal terms of (27)
are of modulus 0 < a < 1. Referring to the figure above, it is apparent
that the minimal Gerschgorin set G(ΩA) for A4 is disconnected, with
four disjoint connected components, each of order unity. Although
G(ΩA) is disconnected, it can be shown, for a sufficiently close to unity
and all n ^ 4, that every Gerschgorin set G(x), x > 0, is always
connected. The point of this remark is that the minimal Gerschgorin
set G(ΩA) can sometimes isolate eigenvalues of BeΩΛ which cannot
be isolated by the Gerschgorin sets G(x).

Let us again consider the matrix An of (27), subject to (27'). Since

(33) det (An - λ/) = Π (ai9i - λ) - ( -1)X, A ,3

it follows that if λ is any eigenvalue of any B e ΩA , then

(34) Π I a i t i - λ I - 1 .
i

But from (30), we know that (34) precisely describes the boundary
dG(ΩAJ of the minimal Gerschgorin set for An. Thus, no interior
point of the minimal Gerschgorin set can be an eigenvalue of any
B e ΩAn in this case. Using the notation of § 5, we have therefore
shown for the matrices An of (27) that

(35) ΘG(ΩA) = S(ΩA) .

Finally, it is interesting to point out t h a t for the special case
n = 2 of (27), which is the general 2 x 2 case, (30) and (34) reduce
to the well known oval of Cassini considered by Brauer [1] and others.
Thus, in the 2 x 2 case, the minimal Gerschgorin set G(ΩΛ) is precisely
the oval of Cassini.
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