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A MORE GENERAL PROPERTY THAN DOMINATION
FOR SETS OF PROBABILITY MEASURES

T. S. PITCHER

In posing a statistical problem one specifies a set X, a σ-
field S of subsets of X, and a collection M of probability
measures on (X, S). It is often convenient to impose some
condition on M in order to avoid measure theoretic difficulties
and the condition most often used is domination, i.e., the
existence of a probability measure with respect to which each
of the measures in M is absolutely continuous. In this paper
we introduce a more general condition, which we call compact-
ness, implying the existence of a best sufficient subfield and
of certain estimates. It is also possible to characterize, under
this condition, those functions on M admitting unbiased esti-
mates of certain types.

The increased generality thus afforded should be useful in dealing
with certain problems in stochastic estimation where M is not known
a priori to be dominated. In any case it is hoped that the present
exposition, which leans heavily on some of the more elementary parts
of functional analysis, will appeal to those who are oriented toward
that subject.

1* The compactness condition* We will assume throughout
this paper that the field S is closed with respect to M, that is that
S contains every set whose outer measure is 0 for each μ in M. Such
sets will be referred to hereafter as ikf-null sets.

For each μ in M, S-measurable / and real number p with 1 5g
p < co we will write | |/ | | P , μ for the (finite or infinite) number

IIP

and ||/||oo,μ for the //-essential supremum of | / | . For all

p ^ 1 we define
if = S U P \\f\\p,μ

and write EP(X,S,M) for the set of / with \\f\\PtM < °o. In what
follows, whenever no confusion can result, we will write Ep for
EP(X,S,M) and \\f\\P for | | / I ! , , * . We will also use the same symbol
for a measurable function as for its equivalence class in EP{X, S, M).

LEMMA 1.1. Ep with \\f\\p as norm is a Banach space.

Proof. Only the completeness of Ep needs to be proved. If (fn)
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is a Cauchy sequence in Ep, we can choose a subsequence (fnj) satisfying

Σ r = i l l Λ i + 1 - / J l l p < o ° . Since

ΣI
3=1

the sequence (fnj) converges almost everywhere with respect to each
μ in M. Writing / for the limit of the fnj

fs we have

oo

\\f-fnj\\p =3

which goes to 0 as j goes to oo.
The spaces Ep are new as far as we know but they are related

to spaces considered by other authors. In particular if Λf is a domi-
nated set of Borel measures on a locally compact Hausdorff space then
Ex is a Kothe space (see reference [1]). The subset g^ of the dual
space, introducted below, is closely related to the Kothe dual. On the
other hand if 1 < p < oo and Ep is reflexive it is an MT space (see
reference [3]).

Each μ in M and h in Lq(μ) give rise to an element l(h, μ) in

EP(X, S, M)* through the formula l(h, μ)(f) = [fhdμ. Clearly
\\l(h,μ)\\^\\h\\q>μ. We will write &P(X,S,M) for the set of all
finite linear combinations of such elements. &P(X, S, M) is a total
subset of EP(X, S, MY, i.e., if l(f) - 0 for some/ in EP(X9 S, M) and
every I in &P(X, S, M) then / = 0. Hence ξ?p(X, S, M) induces a
Hausdorίf topology on EP(X, S, M), namely the weakest topology in
which the elements of &P(X, S, M) are continuous. We will write
BP(X, S, M) for the unit ball in EP(X9 S, M) and will generally shorten
BP(X, S, M) and &P(X, S, M) to Bv and g ; respectively.

DEFINITION. (X, S, M) is compact if and only if BP(X, S, M) is
compact in the %?P(X, S, M) topology for some p, 1 < p < oo. It will
be seen later (Theorem 1.1) that if Bp(Xf S, M) is g;(X, S, M) compact
for some 1 < p < oo it is compact for all such p.

We note before going on that M can always be replaced by the
set C(M) = [ZUWi I α* ^ 0, Σ?=i«< = 1, i"*e M] since \\f\\PfM =
I I / I U J T , and gr,(Z, S, M) = &P(X, S, C{M)).

Wp(μ), the weakly topologized unit ball in Lp(μ) is compact if
1 < p < oo and hence so is the product space Π^e^ Wp(μ) with the
usual Tychonoff topology. The diagonal mapping ip which sends each
/ in Bp into the element of the product space whose value at Wp{μ)
is / maps Bp in a one-to-one way into the product space and the
topology thus induced on Bp is easily seen to be identical to the g^



A MORE GENERAL PROPERTY THAN DOMINATION 599

topology. Thus (X, S, M) is compact if and only if ip(Bp) is closed.
Elements of the product space will be written (fμ). We will write
/ = g[μ] if / is equal to g almost everywhere with respect to μ.

LEMMA 1.2. The following are equivalent:
1. (fμ) is the closure of iP(Bp);
2. for every finite set μ19 , μn from M there is an f in Bp

satisfying f= fH[μi\ for i = 1, , n;
3. for every countable set (μ^ from M there is an f in Bp

satisfying f = / μ .[^] for all i.

Proof. Clearly the third condition implies the second which in
turn implies the first. We will complete the proof by showing that
the first condition implies the third. Let v — Σ?=i 2~wμ«, let An be
the set where dμjdv and dμjdv are positive, and let g be the charac-
teristic function of a measurable subset of An on which dμjdμn is
bounded. Since (fμ) is in the closure of iP(Bp) there exists, for every

positive ε, an h in Bp for which l(/ μ i — h)gdμx < ε and

IS' - h)g μn - h)gdμi <

form which it follows that < 2ε. Since ε is arbitrary,

on An. Thus, if we define

\(fμi-fι,n)gdμ1

S J
(fμi ~ fμ,Jgdμ1 = 0 and hence / μ i = Λ J μ J

gn to be the characteristic function of the set where (dμjdv) > 0 and
(dμjdv) — 0 for j < n and set / = Σ~=i 9nfμn we have / = fμ,n[μn] for
all n.

THEOREM 1.1. Bp(Xf S, M) is compact in the g^(X, S, M) topology
for some p, 1 < p < <^ if and only if B«>(X9 S, M) is compact in the

Γ, S, M) topology. The &P(X, S, M) topology coincides with the
Γ, S, M) topology on B^X, S, M) for all p with 1 S V < °°.

Proof. We will write f{n) for the function whose value at x is
f(x) if I f(x) I ̂  n and 0 otherwise. The last assertion follows from
the fact that any function l(f, μ) from ^p is the uniform limit on B*>
of the ^-continuous functions l(f{n), μ). If iP(Bp) is compact, so is
its closed subset ip(BJ). Hence B^ is gVeompact and consequently
gfΓcompact if Bp is ^-compact. Conversely, if B*> is g^-compact and
(fμ) is in the closure of iP(Bp), then ((l/n)^) is in the g^-closure of
ipCBoo) so there exists a bn in .5^ with nbn = f,ίn)[μ] for all μ and it
is easily seen that nbn converges almost everywhere with respect to
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each μ to a function / which is therefore S-measurable and satisfies
or all μ.

Another characterization of compactness is contained in Theorem
3.4.

THEOREM 1.2. If (X, S, M) is compact, so is (X, S, M') for any
Mr c M. If (X, £, M) is compact, so is (X, S, M) where M is the
set of probability measures v which are dominated by some countable
subset of M. (X, S, M) is compact if M is dominated.

Proof. The identity map from B^X, S, M) to B^X, S, Mf) is
continuous so its image is a compact subset of B^X, S, Mf). Since
any equivalence class in BJ(X, S, Mf) contains an element / with
I/I ^ 1 everywhere the image of B4X, S, M)_ is all of B^(X9 S, AT)
so the first assertion is proved. Any v in M has an expansion dv =
ΣtT^fidμi where the μi are in M and the /< are nonnegative functions

with Σi°=i \fidμi = 1. If h is bounded, the function l(h, v) on B^ is
the uniform limit of the g^-continuous functions Σ?=i K^ (fu n)h, μj.
Hence no new continuous functions are added and the topology is the
same—in particular compactness is preserved. The last assertion follows
from the fact that (X, S, (μ)) is compact and that M is a subset of
some (μ) if it is dominated.

Two unsolved problems should be mentioned at this point. First,
if (X, iS, M^ are compact, is (X, S, M1U M2) compact, or, what is
probably equivalent, is (ikf, S, \JT=i Mt) compact? Second, if (X,S,M)
and (Y, T, N) are compact and X x F, S x Γ, and M x N are the
product space, the field generated by the S and T cylinder sets and
the set of product measures, is ( 1 x 7 , S x T, M x N) compact?
The second problem corresponds to the case of independent trials.

We close this section with a list of examples.

EXAMPLE 1. Let (a) be a parameter set and let (Xa, Maj SΛ) be
compact with disjoint Xa. Let X=\JΛXΛ, S — [A \ A Γϊ X* e S*] and
extend MΛ to S be defining μ(A) = μ(A Π X») for μ in Ma. Then
(X, S, U« Ma) is compact for if (fμ) is in the closure of ip{Bp) there
is, for each a, an fΛ with fΛ — fμ[μ] for μeMω and the / obtained
by setting / equal to f* on Xω is S-measurable and ip(f) = (fμ). Note
that U* -M« cannot be dominated if the parameter set is not countable
so that the compactness condition is really more general than domi-
nation.

EXAMPLE 2. Let X be the closed interval [0,1], S the Borel sets
and M all the measures which are either concentrated at a point or
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else are absolutely continuous with respect to Lebesgue measure,
Every subset of [0,1] gives rise to an element in the closure of ip(Bp)
on setting / μ = 1 if μ is concentated at a point xm A and 0 otherwise.
It is easily seen that (/μ) = ip(b) implies that b is the characteristic
function of A which is impossible if A is not in S so (X, S, M) is not
compact. If only the point measures were involved we could replace
S by the set T of all subsets of X in which case (X, T9 M) would be
compact, but Lebesgue measure, of course, cannot be extended to T.

EXAMPLE 3. Let ω be a probability measure on (X, S) and for
some C Ξ> 1 set M —\μ\ μ is absolutely continuous with respect to ω

a n d ( d μ / d ω ) ^ C ] . T h e n J | / |p dω ^ s u p μ 6 j l f [\f\p d μ ^ c ί | / | p dω s o
EP(X, S, M) is equivalent to Lp(ω). Thus EP(X, S, M) is reflexive if

1 < v < °° Reflexive Ep$ are discussed in §4.

EXAMPLE 4. Let v be a probability measure on (X, S) and let
M — [μ\ μ is absolutely continuous with respect to v\. It is easily
seen that Ep is isometrically equivalent to LJp) for all p, 1 ^ p ^ oo.

2 Sufficient subfields of S. We will need the following ex-
tension of S.

DEFINITION. S = [ A \ for every μ in M, 4̂. is equal almost every-
where to an element of S],

It is clear that S aS and that every μ in M can be extended to
S. A function b is S-measurable if and only if, for each • μ, it is
almost everywhere equal to an S-measurable function. S may properly
contain S, in fact, if M is the set of all point measures on X and S
is any field, then there are no ikΓ-null sets but S is the field of all
subsets of X.

THEOREM 2.1. If (X, S, M) is compact, then S = S.

Proof. As previously noted we can replace M by G(M)y the
convex set spanned by M. Let b be an S-measurable function of
absolute bound 1. For each μ there is a ί>μ in B* equal μ-almost
everywhere to b. (bμ) is in the closure of i^Bv) since for any μ19 , μn

if y — (1/w) Σ?=i £*»> ^hen 6V = δμj/i{] for each i. Hence there is an im-
measurable bλ with 6j = δμ = b[μ] and 6 and 6α clearly differ only on
an ikf-null set.

THEOREM 2.2. // (X, S, ikί) is compact and T is a subfield of S,
then (X, T, M) is compact.
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Proof. If (6μ) is in the closure of ip(Bp(X, T, M)), then for every
flu "m$ l*» there is a T measurable 6' with V = δμ<[μj. Since T c S =
S, b' can be replaced by an S measurable b" so (6μ) is in the closure
of ip(Bp(X, S, M)). Hence there is an S-measurable function b with
h — bμ[μ] for all μ and b is clearly T-measurable.

If T is a subfield of S, μ is a probability measure on S, and / is
in Lp(μ), then the conditional expectation1 of / on T with respect to
μ written E(f\T,μ) is the unique T-measurable element of Lp(μ)

S c
gE(f\T9μ)dμ — \gfdμ for every T-measurable element of

Lg(μ). If a^f^b then a ̂  E(f\ T, μ) ̂  b. If there exists a Im-
measurable function satisfying the above equation for all μ in M, we
will write it E(f\ T, M). If E(b\ T, M) exists for each bounded S-
measurable δ, the subfield T is said to be sufficient.

THEOREM 2.3. If T is a sufficient subfield for {X, S, M), then
Γ = f.

Proof. Let 6 be a bounded Γ-measurable function and br =
E(b \T,M). b — V is T-measurable and if c is any other bounded im-
measurable function, there is for each μ a T-measurable function cμ

with c — cμ[μ] so 1(6 — b')cdμ — \ (b — bf)c^dμ — 0. Hence b differs from

the T-measurable function bf only on an M-null set.

THEOREM 2.4. If f is a sufficient subfield for {X, S, M) then
(X, S, M) is compact if and only if (X, T, M) is compact and
[b\be B^X, S, M) and E(b \f,M) = 0] is compact in the g^(X, S, M)
topology.

Proof. Suppose first that (X, S, M) is compact. Then (X, f, M)
is compact by Theorem 2.2. B2(X, S, M) is (^1 compact and hence so
is its closed subset B^X, S, M). Thus it only remains to show that
K = [b I E(b I f, M) = 0] is ĝ  closed. But if c is in the closure of K,
μ is in M and / is a bounded T-measurable function then there is a
sequence (6Λ) from K with

Lfdμ = lim [bjdμ = lim (#(δH | f, = 0

and it follows that E(c\ f, ikf) = 0, i.e., that K is closed.
Suppose conversely that (X, T, M) is compact. If (δj is in the

closure of i^B^X, S, M)) then (^(δμ | f, ^)) is in the closure of
UBJίX, f, Λf)) since δμί = b[μ,] for i = 1, , n implies EφH | f, Λf) =

1 For definitions and properties of sufficient and pairwise sufficient subfields and
conditional expectations, see [2],
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£7(6 I t, M)[μi] for i = 1, , n. Hence these is a T-measurable c with
c = E(bμ I f, M)[μ\ for all μ in M. ((l/2)μ - c) is thus in the closure
of φ~\0) Π 5oo(X, S, M) so if this set is compact and hence closed there
is a 6 in B^X, S, M) with 6 = (l/2)(δμ - c)[μ] for all μ. Thus (δ)μ =
ia(c + 26) is in £TO(X, S, Jlf).

THEOREM 2.5. 1/ (X, S, M) is compact, then there exists a best
sufficient subfield of S, i.e., a sufficient subfield T such that T a Tx

for any other sufficient subfield Tλ.

Proof, Let To be the subfield generated by all the functions
[dμ/d(μ + v)] for μ and v in M. To is pairwise sufficient,2 i.e., for
any μ and v in M and b in B^X, S, M) there is a ^-measurable V
with V = S(6 I Γo, j")[μ] and 6r = £7(6 | Γo, y)[i;]. This property is easily
extended to finite subsets of M3 and it follows that (£7(6 | To, μ)) is the
closure of i^B^X, S, M)) so there is a 6" with 6" = £7(6 | To, μ)[μ] for
all ^. 6" is ίo-measurable and 6" = £7(6 | Γo, M) so T0 = T is a suf-
ficient subfield. By Theorem 2.1 S — S and thus by Theorem 2.3 any
sufficient subfield Tλ of S has Tx — tx. It is known4 that Tx contains
To if it is sufficient so 2\ = f, z> Γ0 = Γ.

3* Estimation* If ί̂ 7 is a real-valued function on M and / is an
estimate of F, that is, an S-measurable function, then one measure of the
error to be expected from / is ep(f) = supμeΛf \\f — F(μ) \\PΦ.

THEOREM 3.1. If (X, S, M) is compact, F is a bounded function
on M, and 1 < p S °°, then there is an f in EP(X, S, M) which
minimizes ep(f).

Proof. Replacing F by aF we can assume that sup^e^ I F(μ) \ ^
(1/3). If a = inf/6^p ep(f), then a ^ ep(0) = s u p ^ ¥ \F(μ) \ g (1/3). Let
(fn) be a sequence from £7P with ep(fn) converging to a. For large
e n o u g h n , \\fn \\PΦ ^\\fn- F(μ) \\PΦ + | F(μ) \ ^ ep(fn) + | F(μ) | ^ 1 s o
fn is in Bp. The sequence has a point of accumulation / in Bp and
for any μ in M and /& in Lq(μ),

\{f-F(μ))hdμ =lim [(/„, -

S lim sup | | Λ , - F(/i) | | P i l 4 1 | h \\qφ ^ ex \

so 11/— F(μ) ||p,μ g α and hence ep(f) ~ α,

2 Ibid.
3
 Ibid.
* Ibid.
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An estimate is said to be unbiased if \fdμ = F(μ) for all μ in M.

THEOREM 3.2. If (X, S, M) is compact, F is a bounded function
on M7 and 1 < p ^ oo, then if there is an unbiased estimate of F in
Ep, there is one which minimizes ep(f) among all the unbiased esti-
mates of F in EP(X, S, M).

Proof. CP = Γ / | / e Bp and \fdμ = F(μ) for all μ\ is an g>closed

and hence compact, subset of Bp. The proof is essentially the same
as the proof of Theorem 3.1 with Bp replaced by Cp.

We will say that an estimate / of F is p-admissible if / is in
Ep(Xf S, M) a n d t h e r e i s n o g i n EP(X, S, M) w i t h \\g - F(μ) \\PΦ ^
I I / - W I U for all μ in M and \\g - F{v) ] U < | | / - F{v) ||p,v for
some v in M. We will say t h a t / is a p-admissible unbiased estimate
of F if / is an unbiased estimate of F in EP(X, S, M) and there is no
unbiased estimate g of F in # P ( X , S, M) with || 0 - F{μ) \\PΦ S
\\f-F{μ)\\PΦ for all μeM and | | f f - F(v) \\P)V < | | / - F(v) ||,>v for
some P in Λf

THEOREM 3.3. Suppose (X, S, M) is compact, F is a bounded
function on M and 1 < p < ©o. TΛβw for every estimate f of F in
EP(X,S,M) there is a p-admissible estimate f0of Fwith \\fo—F(μ)\\Pφ^
\\f— F(μ)\\Ptμ. for all μ in M and for every unbiased estimate g of
F in EP{X, S, M) there is a p-admissible unbiased estimate g0 of F
with II 0O - F(μ) \\PΦ ^ || g - F(μ) \\PΦ for all μ in M.

Proof. We will write g < h if || g - F(μ) ||Pff4 ^ || Λ - F(μ) \\PΦ for
all μ in M, and Dg for the set [h\h < g]. Dg is ifp closed and if h
is in Da then

I h \\,,lί£\\h-F(μ)\\Pφ + \F(μ)\

Hence all the Dg for g < f are compact subsets of KBP. Thus if Dga

is a linearly ordered set of such sets, i.e., aλ < a2 implies Dg^c:Dga ,
their intersection is nonempty. Clearly Dg c Dgcύ for any g in the
intersection and any a. By Zorn's lemma then there is a minimal
such Dg and any element of Dg satisfies the conditions for /0. The
proof for the unbiased case is similar.

Theorem 3.3 does not hold without the assumption of compactness.
If in Example 2 we set F(μ) = 1 for μ which are concentrated on a
point x in some fixed nonmeasurable set A and F(μ) = 0 for all other
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// in M it is clear that any estimator of F can be improved upon.
The compactness of (X, S, M) does not imply that EP(X, S, M) is

reflexive (see Example 4) but the next theorem shows that E**(X, S, M)
is the direct sum of the image of EP(X, S, M) under the natural map
and the annihilator of &P(X, S, M) if (X, S, M) is compact and 1 < p < °°.

THEOREM 3.4. (X, S, M) is compact if and only if for each
1 < v < °° and L in E**(X9 S, M) with \\ L || ^ A there is an f in
EP{X, S, M) with \\f\\P,M ^ A and L(l(h, μ)) = [hfdμ for all μ in M

and h in Lq(μ).

Proof. Suppose the condition of the theorem is satisfied and (/μ)
is in the closure of ip(Bp). The functional L on g^ given by L(l(h, μ)) =

\ hfμdμ is well defined for if l(h, μ) — l(g, v) and / is an element of
Bp satisfying / = fμ[μ] and / = fjy] then L(l(h, μ)) - l(h, μ)(f) =
1(99 »)(/)-= L{l{g7v)). L is also bounded on &P(X,S,M) since, for
εome / in BP(X, S, M) with / = fμ[μ] \ L(l(h, μ)\ = \ l(h, μ)(f) \ S
11111 11 /11 ^ 11111. By the Hahn-Banach theorem L has an extension L
to E**(X,S,M) so there is an / in EP(X,S,M) with L(l(h, μ)) =
Yhfdμ— \hfμdμ for all μ in M and h in Lq(μ). Clearly f = fμ[μ]

for all μ in M, i.e., iP(Bp) is closed and hence (X,S,M) is compact.
Suppose conversely that (X, S, M) is compact and L is an element of
E**(X, S, M). It will be sufficient to do the case || L \\ g 1. For each
μ we can define a linear functional L^ on Lq(μ) by setting L^(h) =
L(l(h, μ)). Since | L^h) \ ^ | | l(h9 μ)\\ύ\\h \\qφ there is an /„ in L P ( / J )

with | |/μ | |p,μ ^ 1 and ^(fc) = Yhfβμ. The proof will be completed if

we can show that (fμ) is in the closure of ip(Bp) for then there will

be an / with / - f,[μ] and L(l(h, μ)) = Lμ(h) = [hfdμ = Z(Λ, /i)(/). For

any /*!, , μn let y = (1/n) Σ?=i i"< ^ ^^e argument above there is
r

an /v satisfying / v t o = I/(i(/̂ , v)) for all /z, in Lq(dv). If /^ is in

Lq{μj), then hj(dμj/dv) ^ wfej is in Lq{dv) so

and hence /v = /μj[/^i] for y = 1, , n.

THEOREM 3.5. If (X, S, M) is compact and 1 < p < c>o, ίfee^ a
bounded function F on M has an unbiased estimator in EP(X, S, M)
of norm not greater than A if and only if
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Σ Ci A sup
l/l

Σ

for every finite set of real numbers (c<) and elements (μ^ from M.

Proof. The linear functional Lo given by: IfO(Σ*=ic«Z(l> J")) =
Σΐ=i CiFiPi) has bound not greater than A on its domain, hence, by
the Hahn-Banach theorem, it has an extension L in E£* of norm not
greater than A. By the preceding theorem there is an / in Ep with

|| f\\p <Ξ A and \fdμ = I/(i(l, μ)) = L0(l(l, μ)) = F(μ). The converse is

trivial since if / is the assumed estimate,

±eλfdμt
i = l J

= A sup

A
ΐ = l

4. Reflexivity of EP(X, S, M). We have already given (Example
3 of § 1) an example in which EP(X, S, M) is reflexive for all 1 < p < oo.
It is clear that the set M used there could be chosen considerably
smaller while still retaining the property that EP(X, S, M) is equivalent
to Lp(ω) for each 1 < p < oo. The following example shows that this
is by no means the more general case of a reflexive Ep(Xf S, M).

EXAMPLE 5. Let μ be a nonatomic probability measure on (X, S)
and y a point in X such that the set (y) is in S. Choose p and s
with 1 < p < s < co. For each g in Ls{μ) let μa be the measure
defined by

f\g\-'dμ
+ c,f(y)

where

c f f = 1 —
^ l 8 - ^

An application of Holders inequality shows that cg ^ 0 so /ί, is a

positive measure and since \dμg — 1 it is a probability measure. We

will write μ0 for the probability measure concentrated at y and set
M=[μa\ge L9(μ)]m We have, using Holders inequality for the pair
(s/p, (s/s - p))f
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Γf -p/sΓf

1/1'̂
r r Ί 1

[\\g\sdμ\

cg\f{y)\>

so 11/11,,, =g C| |/H., μ + l v Setting g = mί(\f\,n) for / in EP{X, S, M)
we have

so / is in Ls(μ). Finally,

l.M^ \\\f\Pd{μf+

\f\°d(μ

so c\\f\\βφ+lt0^\\f\\PίM ^ C | | / | | . f μ + μ o and EP(X,S,M) is reflexive.
In this example M is unbounded, that is no tf-fϊnite measure o)

exists with (dv/dω) ^ 1 for all v in M. Choosing p — 1 also gives a
case where E^X, S, M) is reflexive.

LEMMA 4.1. 7/ 2£P(X, S, M) is reflexive then gf^X, S, M) is
%αrm dewse m Ĵ P(-3Γ, S, Af)* and all I in EP(X, S, My are countably
additive, i.e., if (fn) is a nonincreasing sequence of functions in
EP(X, S, M) converging to 0 except on an M-null set then l(fn) con-
verges to 0.

Proof. For any I outside the closure of the convex set g^ there
is an L in E** with L(l) = 1 and L(&p) = 0 by the Hahn-Banach
theorem. By reflexivity L is the image of some / in Ep, but L($?p) =
i?p(/) = 0 implies that / = 0 which is a contradiction. The countable
additivity of elements of Ep* now follows directly from the fact that
they can be approximated in norm by elements of g^.
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LEMMA 4.2. / / EP(X, S, M) is reflexive for some 1 < p < °°, f

is in EX(X, S, M) and fn is equal to f on the set where \ f(x) | ^ n

and vanishes elsewhere then supμejif 11/ — /» I dμ —> 0. If f is in

EP(X,S,M) then | | / - fn\\P,M-> 0.

Proof. We may suppose that / ^ 0. If the first assertion is false

for / then there is a Θ > 0 and a sequence (μn) from M with

( ( / - fn)dμn ^ 0. The equation iΛ(fc) = U ( / - Λ)1/9 d^w defines an ele-

ment ln in £7*. with \\ln\\q g J ( / - / J d ^ ^ 2 ll/lli^ S i n c e t h e u n i t

ball in E* is weakly compact the sequence ln has a point of accumu-

lation I. fllP is in Ep and

= lim ( ( / - / )rfjw ^ <? > 0
J—CO J ^

while

ί(/;/!>) = lim f / ί ' V - fmjY'qdμm) = 0

which contradicts the countable additivity of i. If / is in 2^ then,

since | / - Λ | ' ^ | | / r - | Λ N ,

sup \\f-f, |p dμ ^ sup ί| I/I' -\fΛ\>\dμ

which goes to 0.
It is easy to construct examples, nonreflexive of course, for which

the bounded functions are not dense in EP(X, S, M). If we take M

S Γn + l

f d μ n = 1 f(x)dx a n d

s e t f ( x ) = n y p ίoτ n ^ x ^ n + (1/n) a n d 0 e l s e w h e r e , \\f ~ b \\PiM = 1
for any bounded 6.

We can replace M by C(M), the set of finite convex combinations
of elements of M, as already noted. Let Kv be the weak closure in
E9(X,S,M)* of the set [1(1, μ) \ μe C(M)]. Kp is weakly compact if
EP(X, Sf M) is reflexive.

LEMMA 4.3. / / EP(X9 S, M) is reflexive every element I of Kp

can be represented in the form l(f) = I fdv for some probability

measures. Let M'p = [v \l(l, v) e Kp]. Then EP(X,S,M) = EP(X,S,M;),

in fact I I / I U - 11/11,,*; for all f in EP(Xf S, M).

Proof. Any I in Kp is positive and countably additive and has
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1(1) = 1 so can be represented as a probability integral, i.e., l(f) =

\fdv. For any / in EP(X, S, M) if fn is the function whose value is

f(x) or 0 depending on whether | f(x) | g n or not and (μ3) is a sequence
from C(M) with 1(1, μ3) converging to I we have

\\f\pdι>= lir

In the reflexive case this latter limit is | | / | |? l Λ ί which completes the
proof.

THEOREM 4.1. If EV(X, S, M) is reflexive Mp is dominated.

Proof. We define measures μn in Mp, sets An in S, and numbers
an inductively as follows: aλ = 1, Aλ — X, μx is arbitrary, an+1 is the
supremum of the numbers μ(A) for μ in Mp and A such that μγ(A) —
μ2(A) — = μn(A) = 0, and μn+1 and AΛ+1 are chosen to satisfy

μn+ι(AnΛl) ^ (an+m) and //1(AΛ+1) = = ^w(An+1) = 0 .

(an) is a decreasing sequence and if lim an — a and Bn — An — UΓ^^+I^-A;

then the Bn are disjoint, /in(J?J ^ α/2, and μn(Bm) = 0 if m > ^. Let
£ be a point of accumulation of 1(1, μn) in EP(X, S, M)* and let fn be
the characteristic function of the set \Jΐ=nBk. Then (fn) decreases
to 0 but

l(fn) = lim fflfn^w ^ lim \/m d/im ^ a/2

so that a ^ 2 lim^co Z(/n) = 0. Now if /^(A) = 0 for all i and /̂  is in
M'v then //(A) ^ 2 ^ for each ΐ so M'v is dominated by Σ~ = 1 2~ n μ n .

LEMMA 4.4. For each g in EP(X, Sf M) there is a μ in Mf

p with

ίl 9 Γ dμ = || fir ll;,^ i/ ^ ( X , S, M) is reflexive.

Proof. Let Z(l, /i) be a point of accumulation of a sequence ί(l, μw)

with \ I g Y dμn —> || ff | |J f l f. Setting ^(x) equal to g(x) or 0 depending on

whether | g(x) \ ̂  k or not we have

l|flfΓ<Zμ = l i m \\9k\pdμ = lim lim ll
J A; J ft i J
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THEOREM 4.2. If EP(X, S, M) is reflexive and 1 < p < oo then
for every I in EP(X, S9 Λf)* there is a g in EP(X9 S, M) and a μ in
Mp with

and

l = \\l\\l(\g\p-^ign(g),μ).

Proof. We will write g9"1 for \ g \p~τ sign (g) throughout this proof
and will assume that \\l\\ — 1. Since the unit ball in EP(X, S, M) is
compact it contains a g with l(g) = \\l\\ and clearly Hί/Hp,* = 1. By

the preceding lemma the convex set of μ's in Mr with \| g \p dμ = 1 is

nonempty. We wish to show that the set C = lig*"1, μ) 1| g \v dμ — 1

is weakly closed and hence compact and since C is convex it will be

sufficient to show that it is strongly closed. If 1(1, μn) converges to V

and μ is an accumulation point of the μn then for any bounded h

US*-1, μ)(h) = Km l(g*-\ μkj)(h) = l\h)

so lig^1, μ) — V. A straightforward argument similar to the proof of

Lemma 4.4 shows that \\g\pdμ = 1 and completes the proof that C is

closed.
If I is not in C then by reflexivity and the Hahn-Banach theorem

there is an hx in EP(X, S, M) with c(fc1) S ex < β — l{h^ for all c in
C. Replacing hx by fe = hx — α̂ f and setting j — β ~ a we have c(fc) ^
0 < 7 = £(/*,). For every ε ^ 0

efc) |p = (1 + ey)p ^ sup (| ̂  + εh \p dv

so there exists vε in Mr with

1 + pei ^ J(| fl |p + psg'-tydVs + o(ε)

or

PΊ S - ί (J | flf |p Λ . - l ) + Plίff11-1, y.)W + 0(1) .

It follows that \| g \p dvz—> 1 and then, by using bounded approxima-

tions to \g\p and applying Lemma 4.2, that \| g \p dμ = 1 and hence

^) = ^ whenever ί(l, /i) is a point of accumulation of the
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1(1, Vs). But, setting hn(x) equal to h(x) or 0 depending on whether
I h(x) I ̂  n or not, we have

= lim lim l{g*-\ vs){hn)
n 3 J

which is a contradiction.

THEOREM 4.3. If 1 < p < oo, E^X, S, M) is reflexive and L is
a linear subset dense in each Lp(μ) for μ in Mp then L is dense in
EP(X, S, M).

Proof. If L is not dense there is an element I in E* with l(L) = 0

but i ^ 0. But I — l(h, μ) for some μ in Mp and h in Lq(μ) and h

must be 0 since \hfdμ vanishes for / in a dense subset of Lp(μ).

The above theorem does not hold if we only require L to be dense
in Lp(μ) for μ in M. For example let X — [0, 2], S be the Borel sets

and M=[μa\0<a^l] where ί/dμα = [a+1f(x)dx. Then ^ ( X , S, AT)
is equivalent to LJdx) for all p and μ0 is in M'p for every 1 < p < oo.

f\feEp and 1 f(x)dx = 0 is dense in each Lp(μa) since
Jo J _

it contains, for each g in Lp(μa) the function #,

1 Γ α + 1

a Jα
x if 0 ^ x ^ a

iίa<x^aJ

Γl

0 i f α + l < # ^ 2 .

L is not dense in EP(X, S, M) for any p since Z(l, μ0) is in every
EP(X9 S, M)* and Z(l, ̂ 0)(L) = 0.
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