AN INEQUALITY FOR THE NUMBER OF ELEMENTS IN A SUM OF TWO SETS OF LATTICE POINTS

Betty Kvarda

For a fixed positive integer n, let Q be the set of all n dimensional lattice points $\left(x_{1}, \cdots, x_{n}\right)$ with each x_{i} a nonnegative integer and at least one x_{i} positive. A finite nonempty subset R of Q is called a fundamental set if for every $\left(r_{1}, \cdots, r_{n}\right)$ in R, all vectors (x_{1}, \cdots, x_{n}) of Q with $x_{i} \leqq r_{i}$, $i=1, \cdots, n$, are also in R. If A is any subset of Q and R is any fundamental set, let $A(R)$ denote the number of vectors in $A \cap R$. Finally, if A is any proper subset of Q, let the density of A be the quantity

$$
\alpha=\operatorname{glb} \frac{A(R)}{Q(R)+1},
$$

taken over all fundamental sets R for which $A(R)<Q(R)$. Then the theorem proved in this paper can be stated as follows.

Theorem. Let A and B be subsets of Q, let C be the set of all vectors of the form a, b, or $a+b$ where $a \in A$ and $b \in B$, let α be the density of A, and let R be any fundamental set such that (1) there exists at least one vector in R which is not in C, and (2) for each b in $B \cap R$ (if any) there exists \boldsymbol{g} in R but not in C such that $g-b$ is in Q. Then

$$
C(R) \geqq \alpha[Q(R)+1]+B(R) .
$$

It will be seen that for $n=1$ this theorem implies a result of H. B. Mann [2].

Let A and B be sets of positive integers, and for any positive integer x denote by $A(x)$ the number of integers in A which are not greater than x. Let the modified density (or Erdös density) of A be the quantity

$$
\alpha=\operatorname{glb}_{x \geq b} \frac{A(x)}{x+1}
$$

where k is the smallest positive integer not in A. If $C=A+B$ is the set of all integers of the form a, b, or $a+b$, where a is in A and b is in B, and if x is a positive integer not in C, then Mann has shown [2] that

$$
C(x) \geq \alpha x+B(x) .
$$

[^0](Actually, Mann's work is sufficient to establish $C(x) \geqq \alpha(x+1)+B(x)$.) We will show that this theorem, with somewhat weaker hypotheses, can be extended to certain sets of n-dimensional lattice points.

Let Q be the set of all lattice points $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ for which each component is a nonnegative integer and at least one component is positive. Define the sum of subsets of Q in the same manner as was done for sets of positive integers, addition of lattice points being done componentwise, and for any subsets A and B of Q let $A-B$ denote the set of all elements of A which are not in B. If A and S are subsets of Q and S is finite let $A(S)$ be the number of elements in $A \cap S$. Let ω_{i} be that element of Q for which the i th component is 1 and the others are 0 .

Definition 1. A finite nonempty subset R of Q will be called a fundamental set if whenever $r=\left(r_{1}, \cdots, r_{n}\right)$ is in R then all vectors $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ of Q such that $x_{i} \leqq r_{i}, i=1, \cdots, n$, are also in R.

Definition 2. Let A be any proper subset of Q. Then the density of A is the quantity

$$
\alpha=\operatorname{glb} \frac{A(R)}{Q(R)+1}
$$

taken over all fundamental sets R for which $A(R)<Q(R)$.
2. Extension of Mann's result. The theorem to be proved can now be stated as follows.

Theorem. Let A and B be subsets of Q, let $C=A+B$, and let α be the density of A. Let R be any fundamental set such that for each \boldsymbol{b} in $B \cap R$ there exists \boldsymbol{g} in $R-C$ such that $\boldsymbol{g}-\boldsymbol{b}$ is in Q, and $Q(R-C) \geqq 1$. Then

$$
C(R) \geqq \alpha[Q(R)+1]+B(R) .
$$

Proof. Let the elements of Q be ordered so that $\left(x_{1}, \cdots, x_{n}\right)>$ $\left(y_{1}, \cdots, y_{n}\right)$ if $x_{1}>y_{1}$, or if $x_{1}=y_{1}, \cdots, x_{k}=y_{k}, x_{k+1}>y_{k+1}$. Consider a nonempty set $S=R^{\prime}-R^{\prime \prime}$, where R^{\prime} and $R^{\prime \prime}$ are fundamental sets, and let $\delta_{1}=\left(\delta_{11}, \cdots, \delta_{1 n}\right), \cdots, \delta_{u}=\left(\delta_{u_{1}}, \cdots, \delta_{u n}\right)$ be all the vectors of S such that for each $i=1, \cdots, n$ and for each $j=1, \cdots, u$ we have either (1) $\delta_{j}-\omega_{i}$ is in $R^{\prime \prime}$, or (2) $\delta_{j}-\omega_{i}=0=(0, \cdots, 0)$, or (3) $\delta_{j i}=0$. There must be at least one such vector in S, for S is a nonempty finite set, and hence has a least element (in our ordering). This least element will satisfy the given conditions. Also, it is easily seen that if $\left(s_{1}, \cdots, s_{n}\right)$ is any vector in S then for at least one of the δ_{j} we have $\delta_{j_{i}} \leqq s_{i}, i=1, \cdots, n$.

From this it follows that if for each $j=1, \cdots, u$ we let

$$
S_{j}=\left\{\boldsymbol{s}=\left(s_{1}, \cdots, s_{n}\right) \mid \boldsymbol{s} \in S, s_{i} \geqq \delta_{j i}, i=1, \cdots, n\right\},
$$

then $S=S_{1} \cup \cdots \cup S_{u}$. Also, let $S_{j}^{\prime}=\left\{\boldsymbol{s}-\boldsymbol{\delta}_{j} \mid \boldsymbol{s} \in S_{j}, \boldsymbol{s} \neq \boldsymbol{\delta}_{j}\right\}$ and let $S^{\prime}=S_{1}^{\prime} \cup \cdots \cup S_{u}^{\prime}$. Each S_{j}^{\prime}, and therefore also S^{\prime}, is either a fundamental set or is empty.

Lemma 1. $Q\left(S^{\prime}\right)+1 \leqq Q(S)$.
Proof of Lemma 1. The lemma is obvious if $n=1$, since then $u=1$ also. Hence assume $n \geqq 2$. Let λ_{1} be a mapping defined so that

$$
\begin{aligned}
S_{j} \lambda_{1} & =\left\{s-\delta_{j_{1}} \omega_{1} \mid s \in S_{j}\right\}, j=1, \cdots, u \\
S \lambda_{1} & =S_{1} \lambda_{1} \cup \cdots \cup S_{u} \lambda_{1}
\end{aligned}
$$

Partition S into sets $T_{c_{2} \cdots c_{n}}$ such that

$$
T_{c_{2} \cdots c_{n}}=\left\{\boldsymbol{s}=\left(x_{1}, c_{2}, \cdots, c_{n}\right) \mid \boldsymbol{s} \in S\right\},
$$

and let

$$
\begin{aligned}
T_{c_{2} \cdots c_{n}} \lambda_{1} & =\left\{\boldsymbol{s}=\left(x_{1}, c_{2}, \cdots, c_{n}\right) \mid \boldsymbol{s} \in S \lambda_{\perp}\right\}, \\
k_{c_{2} \cdots c_{n}} & =\max _{1 \leqq j \leq u}\left(\max \left\{x_{1}-\delta_{j_{1}} \mid\left(x_{1}, c_{2}, \cdots, c_{n}\right) \in S_{j}\right\}\right) .
\end{aligned}
$$

Then $Q\left(T_{c_{2} \cdots c_{n}} \lambda_{1}\right)=k_{c_{2} \cdots c_{n}}+1$ or $Q\left(T_{c_{2} \cdots c_{n}} \lambda_{1}\right)+1=k_{c_{2} \cdots c_{n}}+1$, according as $0 \notin T_{c_{2} \ldots c_{n}} \lambda_{1}$ or $0 \in T_{c_{2} \ldots c_{n}} \lambda_{1}$, and $k_{c_{2} \ldots c_{n}}+1 \leqq Q\left(T_{c_{2} \ldots c_{n}}\right)$.

Hence $Q\left(S \lambda_{1}\right) \leqq Q(S)$, and $Q\left(S \lambda_{1}\right)+1 \leqq Q(S)$ if $0 \in S \lambda_{1}$.
Now define mappings $\lambda_{2}, \cdots, \lambda_{n}$ such that

$$
S_{j} \lambda_{1} \cdots \lambda_{i-1} \lambda_{i}=\left\{s-\delta_{j / i} \omega_{i} \mid s \in S_{j} \lambda_{1} \cdots \lambda_{i-1}\right\}
$$

$i=2, \cdots, n$, and obtain as above

$$
Q\left(S \lambda_{1} \cdots \lambda_{i}\right)+\theta_{i} \leqq Q\left(S \lambda_{1} \cdots \lambda_{i-1}\right)+\theta_{i-1} \leqq Q(S)
$$

where $\theta_{1}=0$ or 1 according as $0 \notin S \lambda_{1} \cdots \lambda_{i}$ or $0 \in S \lambda_{1} \cdots \lambda_{i}$. This establishes the lemma.

Definition 3. A set S will be said to be of type I if (1) S is a fundamental set,
(2) $Q(S-C) \geqq 1$, and
(3) for all \boldsymbol{b} in $B \cap S$ (if any) and all \boldsymbol{g} in $S-C$ we have $\boldsymbol{g}-\boldsymbol{b}$ contained in Q.

Definition 4. A set S will be said to be of type $I I$ if
(1) there exist fundamental sets $R^{\prime}, R^{\prime \prime}$ such that $S=R^{\prime}-R^{\prime \prime}$,
(2) $B(S) \geqq 1$ and $Q(S-C) \geqq 1$, and
(3) for all \boldsymbol{b} in $B \cap S$ and \boldsymbol{g} in $S-C$ we have $\boldsymbol{g}-\boldsymbol{b}$ contained in Q.

Lemma 2. If S is any set of type II then

$$
C(S) \geqq \alpha Q(S)+B(S)
$$

Proof of Lemma 2. Define the sets S_{j}^{\prime} and S^{\prime} as above. Let $\boldsymbol{b}=\left(b_{1}, \cdots, b_{n}\right)$ be the largest vector such that
(1) \boldsymbol{b} is in $B \cap S$, and
(2) $b_{1}+\cdots+b_{n}=\max \left\{x_{1}+\cdots+x_{n} \mid\left(x_{i}, \cdots, x_{n}\right) \in B \cap S\right\}$. Likewise, let $\boldsymbol{g}=\left(g_{1}, \cdots, g_{n}\right)$ be the largest vector such that
(1) \boldsymbol{g} is in $S-C$, and
(2) $g_{1}+\cdots+g_{n}=\max \left\{y_{1}+\cdots+y_{n} \mid\left(y_{1}, \cdots, y_{n}\right) \in S-C\right\}$.

Let $B(S)=\rho \geqq 1, \quad Q(S-C)=\sigma \geqq 1, \quad Q\left(S^{\prime}-A\right)=\tau$. The set $\{\boldsymbol{g}-\boldsymbol{x} \mid \boldsymbol{x} \in B \cap S\}$ contains ρ elements of Q (Definition 4, part 3), none of which is in A. We show that these are in S^{\prime} : If $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ is in $B \cap S$ then \boldsymbol{x} is in S_{j} for some j such that $1 \leqq j \leqq u$. Hence $\delta_{j_{i}} \leqq x_{i} \leqq g_{i}$ for all $i=1, \cdots, n$, and \boldsymbol{g} is in $S_{j} . \quad \mathbf{0} \neq \boldsymbol{g}-\boldsymbol{x}=$ $\left(\boldsymbol{g}-\boldsymbol{\delta}_{j}\right)-\left(\boldsymbol{x}-\boldsymbol{\delta}_{j}\right)$. But $\boldsymbol{g}-\boldsymbol{\delta}_{j}$ is in S_{j}^{\prime} and S_{j}^{\prime} is a fundamental set. Hence $\boldsymbol{g}-\boldsymbol{x}$ is in S_{j}^{\prime}, therefore in S^{\prime}.

Likewise, the (possibly empty) set $\{\boldsymbol{y}-\boldsymbol{b} \mid \boldsymbol{y} \in S-C, \boldsymbol{y} \neq \boldsymbol{g}\}$ contains $\sigma-1$ elements, all of which are in $S^{\prime}-A$. We must show that the two sets are disjoint. Hence suppose that for some $\boldsymbol{y} \neq \boldsymbol{g}$ and, therefore, $\boldsymbol{x} \neq \boldsymbol{b}$, we have

$$
g-x=y-b
$$

Equating the i th components and transposing gives the n equations

$$
\begin{align*}
& g_{1}+b_{1}=y_{1}+x_{1} \\
& g_{2}+b_{2}=y_{2}+x_{2} \tag{V}\\
& \vdots \\
& g_{n}+b_{n}=y_{n}+x_{n}
\end{align*}
$$

and

$$
g_{1}+\cdots+g_{n}+b_{1}+\cdots+b_{n}=y_{1}+\cdots+y_{n}+x_{1}+\cdots+x_{n}
$$

Because of the way in which \boldsymbol{g} and \boldsymbol{b} were chosen, this implies

$$
g_{1}+\cdots+g_{n}=y_{1}+\cdots+y_{n} \text { and } b_{1}+\cdots+b_{n}=x_{1}+\cdots+x_{n}
$$

Therefore $\boldsymbol{g}>\boldsymbol{y}$ and $\boldsymbol{b}>\boldsymbol{x}$, and at least one of the n equations of (N) must fail to hold. We now have

$$
\begin{aligned}
\tau & \geqq \sigma-1+\rho, \\
Q(S)-\sigma & \geqq Q(S)-\tau-1+\rho, \\
Q(S)-\sigma & \geqq Q\left(S^{\prime}\right)-\tau+Q(S)-Q\left(S^{\prime}\right)-1+\rho .
\end{aligned}
$$

We recall that $Q(S)-Q\left(S^{\prime}\right)-1 \geqq 0$, and that S^{\prime} is a fundamental set. Hence

$$
\begin{aligned}
C(S) & \geqq A\left(S^{\prime}\right)+Q(S)-Q\left(S^{\prime}\right)-1+B(S) \\
& \geqq \alpha\left[Q\left(S^{\prime}\right)+1\right]+\alpha\left[Q(S)-Q\left(S^{\prime}\right)-1\right]+B(S) \\
& =\alpha Q(S)+B(S)
\end{aligned}
$$

Lemma 3. If S is any set of type I then

$$
C(S) \geqq \alpha[Q(S)+1]+B(S)
$$

Proof of Lemma 3. (i) Suppose $B(S)=0$. Then

$$
C(S)=A(S) \geqq \alpha[Q(S)+1]+B(S)
$$

(ii) Suppose $B(S) \geqq 1$. Define \boldsymbol{b} and \boldsymbol{g} as in the proof of Lemma 2. Let $B(S)=\rho, Q(S-C)=\sigma, Q(S-A)=\tau$. Again the two sets $\{\boldsymbol{g}-\boldsymbol{x} \mid \boldsymbol{x} \in B \cap S\}$ and $\{\boldsymbol{y}-\boldsymbol{b} \mid \boldsymbol{y} \in S-C, \boldsymbol{y} \neq \boldsymbol{g}\}$ give $\sigma-1+\rho$ elements not in A, which now will be in S. Also \boldsymbol{g} is in $S-C$, hence is in $S-A$, but is in neither of the two sets above. This implies that

$$
\begin{aligned}
\tau & \geqq \sigma+\rho, \\
Q(S)-\sigma & \geqq Q(S)-\tau+\rho, \\
C(S) & \geqq A(S)+B(S) \geqq \alpha[Q(S)+1]+B(S) .
\end{aligned}
$$

We can now return to the proof of the theorem. Let R be any fundamental set satisfying the hypotheses of the theorem. We will use induction on the number of elements in $R-C$.
(i) Let $Q(R-C)=1$. Then R is a set of type I, and we may apply Lemma 3.
(ii) Assume the the theorem holds for any fundamental set R^{\prime} satisfying the hypotheses of the theorem and such that $Q\left(R^{\prime}-C\right)<k$, $k \geqq 2$, and let $Q(R-C)=k$. If $B(R)=0$ then R is of type I, so assume $B(R) \geqq 1$.

Let $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \cdots, \boldsymbol{g}_{k}$ be the k vectors in $R-C, T_{j}=\left\{\boldsymbol{x} \mid \boldsymbol{x}=\boldsymbol{g}_{j}\right.$ or $\left.\boldsymbol{g}_{j}-\boldsymbol{x} \in Q\right\}, j=1, \cdots, k$. If $\boldsymbol{b} \in T_{j}$ for all $j=1, \cdots, k$ and all \boldsymbol{b} in $B \cap R$ then again R is of type I, so assume (by re-numbering, if necessary) that $B\left(R-T_{1}\right)>0$. Let J be the maximum j such that $B\left(R-\left(T_{1} \cup \cdots \cup T_{j}\right)\right)>0$. Then $\boldsymbol{b} \in B$ and $\boldsymbol{b} \in R-\left(T_{1} \cup \cdots \cup T_{J}\right)$ implies $\boldsymbol{b} \in T_{J+1}$. We observe that $J<k$, since $\boldsymbol{b} \in R-\left(T_{i} \cup \cdots \cup T_{k}\right)$ would imply that there does not exist \boldsymbol{g} in $R-C$ such that $\boldsymbol{g}-\boldsymbol{b}$ is in Q, contrary to hypothesis. Also, $\boldsymbol{g}_{J+1} \notin T_{1} \cup \cdots \cup T_{J}$.

Let $W_{0}=T_{1} \cup \cdots \cup T_{J}$. If $R-W_{0}$ is not of type $I I$, there exists $\boldsymbol{b} \in B \cap T_{J+1}$ and a subscript i_{1} such that $i_{1}>J+1, \boldsymbol{b} \notin T_{i_{1}}$. Let $W_{1}=W_{0} \cup T_{i_{1}}$. If $R-W_{1}$ is not of type $I I$, we may repeat the above
to form $W_{2}=W_{1} \cup T_{i_{2}}$, and so on. Eventually we must obtain a set W_{m} such that $R-W_{m}$ is of type $I I, m \geqq 0$.

But W_{m} is a fundamental set satisfying the hypotheses of the theorem, and $Q\left(W_{m}-C\right)<k$ since $\boldsymbol{g}_{J+1} \notin W_{m}$. Hence

$$
C\left(W_{m}\right) \geqq \alpha\left[Q\left(W_{m}\right)+1\right]+B\left(W_{m}\right) .
$$

Also,

$$
C\left(R-W_{m}\right) \geqq \alpha Q\left(R-W_{m}\right)+B\left(R-W_{m}\right) .
$$

Adding, we obtain

$$
C(R) \geqq \alpha[Q(R)+1]+B(R)
$$

References

1. B. Kvarda, On densities of sets of lattice points, Pacific J. Math. 13 (1963), 611-615.
2. H. B. Mann, On the number of integers in the sum of two sets of positive integers, Pacific J. Math. 1 (1951), 249-253.

San Diego State College

[^0]: Received February 17, 1964. The material in this paper is based upon a portion of the author's Ph. D. thesis, written under the direction of Dr. Robert D. Stalley at Oregon State University.

