CERTAIN ALGEBRAS OF DEGREE ONE

Frank Kosier

In this note the following is proved: Suppose R is a finitedimensional algebra over an algebraically closed field F of characteristic 0 whose associator satisfies $4(y, x, x)=4(x, y, x)$ $+[[y, x], x]$ and $(x, x, x)=0$. If R is simple and non-nil then R is iso-morphic to F.

We call it Theorem B, and prove it below.
In [3] nonassociative algebras satisfying identities of degree three were studied and it was shown that relative to quasi-equivalence any algebra satisfying such an identity (subject to some rather weak additional hypotheses) must in fact satisfy at least some one of seven particular identities; each of degree three. In this note we concern ourselves with one of these seven residual cases; namely the identity

$$
\begin{equation*}
4(y, x, x)=4(x, y, x)+[[y, x], x] \tag{1}
\end{equation*}
$$

where the associator (x, y, z) is defined by $(x, y, z)=(x y) z-x(y z)$ and the commutator $[x, y]$ by $[x, y]=x y-y x$ for elements x, y, z of the algebra.

Throughout the remainder of this note R will be a ring of characteristic not two or three which satisfies (1) in addition to the following identity:

$$
\begin{equation*}
(x, x, x)=0 \tag{2}
\end{equation*}
$$

The following result was established in [3]:
Theorem A. Suppose R has an idempotent $e \neq 0,1$. Then R is not simple.

This reduces the study of simple rings to the consideration of rings whose only nonzero idempotent is the identity element.

Ideals and Simple rings. A well-known consequence of (2) is

$$
\begin{equation*}
(x, x, y)+(x, y, x)+(y, x, x)=0 \tag{3}
\end{equation*}
$$

We define $x \circ y=x y+y x$ and proceed to simplify (1). We rewrite (1) as

$$
\begin{equation*}
4 y x^{2}=4 x \circ y x-3(x y) x-x(x y)-(y x) x+x(y x) \tag{4}
\end{equation*}
$$

and (3) as

[^0]\[

$$
\begin{equation*}
2 y x^{2}=x^{2} \circ y+(x y) x+(y x) x-x(y x)-x(x y) \tag{5}
\end{equation*}
$$

\]

Adding (4) and (5) we obtain

$$
\begin{equation*}
6 y x^{2}=x^{2} \circ y+4 x \circ y x-2 x \circ x y \tag{6}
\end{equation*}
$$

Finally we add and subtract $2 x \circ y x$ to the right-hand member of (6) giving us

$$
\begin{equation*}
6 y x^{2}=6 x \circ y x-2 x \circ(x \circ y)+x^{2} \circ y . \tag{7}
\end{equation*}
$$

Replacing x by $x_{1}+x_{2}$ in (7) and then using (7) to simplify the result we find

$$
\begin{align*}
6 y\left(x_{1} \circ x_{2}\right)= & 6 x_{1} \circ y x_{2}+6 x_{2} \circ y x_{1}-2 x_{1} \circ\left(x_{2} \circ y\right) \tag{8}\\
& -2 x_{2} \circ\left(x_{1} \circ y\right)+\left(x_{1} \circ x_{2}\right) \circ y .
\end{align*}
$$

We define the ring R^{+}to be the same additive group as R but the multiplication in R^{+}is given by $(x, y)=1 / 2 x \circ y$. We set $(x, y, z)^{+}=$ $(x \circ y) \circ z-x \circ(y \circ z)$ and note that R^{+}is associative if and only if $(x, y, z)^{+}=0$ for all $x, y, z \in R$.

Lemma 1. Let L be the additive group generated by all $(x, y, z)^{+}$ where $x, y, z \in R$. Then L is a left ideal of R.

Proof. First of all we consider $y\left[\left(x_{1} \circ x_{2}\right) \circ x_{3}\right]$. Then (8) (with x_{1} replaced by $x_{1} \circ x_{2}$ and x_{2} by x_{3}) becomes

$$
\begin{align*}
6 y\left[\left(x_{1} \circ x_{2}\right) \circ x_{3}\right]= & 6\left(x_{1} \circ x_{2}\right) \circ y x_{3}+6 x_{3} \circ y\left(x_{1} \circ x_{2}\right)-2\left(x_{1} \circ x_{2}\right) \circ\left(x_{3} \circ y\right) \\
& -2 x_{3} \circ\left[\left(x_{1} \circ x_{2}\right) \circ y\right]+\left[\left(x_{1} \circ x_{2}\right) \circ x_{3}\right] \circ y . \tag{9}
\end{align*}
$$

We use (8) to rewrite the second term of the right-hand member of (9) as:

$$
\begin{aligned}
6 x_{3} \circ y\left(x_{1} \circ x_{2}\right)= & 6 x_{3} \circ\left(x_{1} \circ y x_{2}\right)+6 x_{3} \circ\left(x_{2} \circ y x_{1}\right)-2 x_{3} \circ\left[x_{1} \circ\left(x_{2} \circ y\right)\right] \\
& -2 x_{3} \circ\left[x_{2} \circ\left(x_{1} \circ y\right)\right]+x_{3} \circ\left[\left(x_{1} \circ x_{2}\right) \circ y\right] .
\end{aligned}
$$

A substitution of this into (9) results in

$$
\begin{align*}
6 y\left[\left(x_{1} \circ x_{2}\right) \circ x_{3}\right]= & 6\left(x_{2} \circ x_{2}\right) \circ y x_{3}+6 x_{3} \circ\left(x_{1} \circ y x_{2}\right)+6 x_{3} \circ\left(x_{2} \circ y x_{1}\right) \\
& -2 x_{3} \circ\left[x_{1} \circ\left(x_{2} y\right)\right]-2 x_{3} \circ\left[x_{2} \circ\left(x_{1} \circ y\right)\right] \tag{10}\\
& -2\left(x_{1} \circ x_{2}\right) \circ\left(x_{3} \circ y\right)+\left(x_{3}, x_{1} \circ x_{2}, y\right)^{+} .
\end{align*}
$$

If we interchange x_{1} and x_{2} in (10) we obtain

$$
\begin{align*}
6 y\left[\left(x_{3} \circ x_{2}\right) \circ x_{1}\right]= & 6\left(x_{3} \circ x_{2}\right) \circ y x_{1}+6 x_{1} \circ\left(x_{3} \circ y x_{2}\right)+6 x_{1} \circ\left(x_{2} \circ y x_{3}\right) \\
& -2 x_{1} \circ\left[x_{3} \circ\left(x_{2} \circ y\right)\right]-2 x_{1} \circ\left[x_{2} \circ\left(x_{3} \circ y\right)\right] \tag{11}\\
& -2\left(x_{3} \circ x_{2}\right) \circ\left(x_{1} \circ y\right)+\left(x_{1}, x_{3} \circ x_{2}, y\right)^{+} .
\end{align*}
$$

Then subtracting (11) from (10) yields

$$
\begin{aligned}
6 y\left(x_{1}, x_{2}, x_{3}\right)^{+}= & 6\left(x_{1}, x_{2}, y x_{3}\right)^{+}+6\left(x_{1}, y x_{2}, x_{3}\right)^{+}+6\left(y x_{1}, x_{2}, x_{3}\right)^{+} \\
& -2\left(x_{1}, x_{2} \circ y, x_{3}\right)^{+}+2\left(x_{3}, x_{2}, x_{1} \circ y\right)^{+} \\
& -2\left(x_{1}, x_{2} \circ x_{3}, y\right)^{+}+\left(x_{3}, x_{1} \circ x_{2}, y\right)+\left(x_{1}, x_{3} \circ x_{2}, y\right)^{+} .
\end{aligned}
$$

Thus $y L \subseteq L$ and L is a left ideal of R.
Theorem 1. $L+L R$ is an ideal (two-sided) of R.
Proof. As is immediate from Lemma 1 it suffices to show that $R(L R)+(L R) R \subseteq L+L R$. Suppose $x_{1}, x_{2} \in R, y \in L$. Then $\left(x_{1}, x_{2}, y\right)^{+} \in L$ so that $\left(x_{1} \circ x_{2}\right) \circ y-x_{1} \circ\left(x_{2} \circ y\right) \in L$. But $\left(x_{1} \circ x_{2}\right) \circ y$ and $x_{1} \circ x_{2} y$ belong to $L+L R$. Hence, $x_{1} \circ y x_{2} \in L+L R$. Next we interchange x_{2} and y in (8), obtaining

$$
\begin{align*}
6 x_{2}\left(x_{1} \circ y\right)= & 6 x_{1} \circ x_{2} y+6 y \circ x_{2} x_{1}-2 x_{1} \circ\left(x_{2} \circ y\right) \tag{12}\\
& -2 y \circ\left(x_{1} \circ x_{2}\right)+\left(x_{1} \circ y\right) \circ x_{2} .
\end{align*}
$$

But Lemma 1 along with the preceding remarks implies that each term of the right-hand member belongs to $L+L R$. Hence, $x_{2}\left(x_{1} \circ y\right) \in L+L R$ but $x_{2}\left(x_{1} y\right) \in R(R L) \subseteq L$ so that $x_{2}\left(y x_{1}\right) \in L+L R$. Thus, we must also have $\left(y x_{1}\right) x_{2} \in L+L R$, since $x_{2} \circ y x_{1} \in L+L R$. Therefore $R(L R)+$ $(L R) R \subseteq L+L R$ and $L+L R$ is an ideal of R.

Theorem 2. L is an ideal of $L+L R$.
Proof. Since L is a left ideal of R we need only show that $L(L R) \subseteq L$. Suppose $x_{1}, x_{2} \in L, y \in R$. Then (8) implies

$$
\begin{equation*}
2 x_{1}\left(x_{2} y\right)+2 x_{2}\left(x_{1} y\right)-\left(x_{1} \circ x_{2}\right) y \in L . \tag{13}
\end{equation*}
$$

Considering that $\left(x_{1}, x_{2}, y\right)^{+}$and $\left(x_{1}, y, x_{2}\right)^{+}$belong to L we find

$$
\begin{equation*}
\left(x_{1} \circ x_{2}\right) y-x_{1}\left(x_{2} y\right) \in L . \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}\left(x_{1} y\right)-x_{1}\left(x_{2} y\right) \in L . \tag{15}
\end{equation*}
$$

Adding (13) and (14) we obtain $x_{1}\left(x_{2} y\right)+2 x_{2}\left(x_{1} y\right) \in L$. This along with (15) implies that $x_{2}\left(x_{1} y\right) \in L$ or $L(L R) \subseteq L$, as was to be shown.

Corollary. If R is simple then either R^{+}is associative or $L=R$.
Proof. If R is simple then either $L+L R=0$ or $L+L R=R$. In the first instance $L=0$ so that R is associative while in the second
L is an ideal of R. Hence, either $L=0$ or $L=R$.
Now suppose R is a simple finite-dimensional algebra over an angebraically closed field F of characteristic 0 . Then R is powerassociative [3, Lemma 2] so that if R is nonnil, R must possess a nonzero idempotent e. By Theorem A of the Introduction we must, in fact, have $e=1$, the identity of R. A result of Albert's [1] states that $R=F 1+N$ where all the elements of N are nilpotent and N is an ideal of R^{+}. From this it is immediate that $(x, y, z)^{+} \in N$ for all $x, y, z \in R$ so that $L \subseteq N \neq R$. Hence, $L=0$ and R^{+}is associative. But then R satisfies

$$
2(y, x, x)=2(x, x, y)+[[y, x], x] \quad \text { See }[3])
$$

Subtracting this relation from (1) we have

$$
2(y, x, x)=4(x, y, x)-2(x, x, y)
$$

which along with (3) implies that $(x, y, x)=0$. Hence, R is flexible and the results of Theorem B follow from [2].

Bibliography

1. A. A. Albert, A theory of power-associative, commutative algebras, Trans. Amer. Math Soc. 69 (1950), 503-527.
2. E. Kleinfeld and L. Kokoris, Flexible algebras of degree one, Proc. Amer. Math Soc. 13 (1962), 891-893.
3. F. Kosier and J. M. Osborn, Non-associative algebras satisfying identities of degree three. Trans. Amer. Math Soc. 110 (1964), 484-492.

University of Wisconsin and
Syracuse University

[^0]: Received April 6, 1964.

