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CONVOLUTION TRANSFORMS WHOSE INVERSION
FUNCTIONS HAVE COMPLEX ROOTS

JOHN DAUNS AND DAVID V. WIDDER

The convolution transform is defined by the equation

(1.1) f{x) = f" G(x - t)φ(t)dt = (G*φ)(x) .

If the kernel G(t) has a bilateral Laplace transform which is
the reciprocal of an entire function E(s), then E(s) is called
the inversion function of the transform. This terminology is
appropriate in view of the fact that the transform (1.1) is
inverted, in some sense, by the operator E(D), where D stands
for differentiation with respect to x:

(1.2) E(D)f(x) = φ{x) .

It is the purpose of the present paper to prove (1.2) when the
roots of E(s) are allowed to be genuinely remote from the
real axis.

Formula (1.2) was first proved by Widder [7] in 1947 for a large

class of entire functions E(s) and by Hirschman and Widder [3] in 1949
for the whole Laguerre-Pόlya class. The latter functions have real
roots only, indeed are the uniform limits of polynomials with real roots
only, see p. 42 of [5].

In 1951 Hirschman and Widder [4] extended this inversion theory,
allowing the roots of E(s) to be complex. However, the roots were
asymptotically real in the sense that their arguments clustered to 0 or
to 7Γ. At the same time A. 0. Garder [2] allowed the approach to
the real axis to be slower. We require only that they should occur in
pairs symmetric in the origin and in a sector inside the sector
tan (arg s) \ < 1. More precisely:

E(s) = fi (l - 4"

l a r g α j ^ ^ -V > ° < V < "T4 4

We wish also to call attention to some new asymptotic relations.
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If

GJJt) = Π ( l - —) G(t) ,

we show that

umiformly for — °o < t < co. Here k(t, v) is the fundamental solution
of the heat equation,

k{t, v) — (4πv)~112 exp ( — tf/ίv) ,

with -co < t < co, with Rev > 0, with the square root one-at-one,
and where vn is given by

oo

v — y aτ2

n+1

In order to establish (1.3) we are obliged to make an additional assumption
on the distribution of the roots of E(s), see Condition B in § 4.

As a consequence of (1.3) we prove that

(1.4) Γ I G2n(t) I dt - (cos2 φn - sin2 φn)~112 (n — co) ,
J-oo

where φn = (1/2) arg v~λ. This result tends to indicate that present
methods cannot be employed for the inversion of (1.1) if the roots of
E(s) lie outside the 45° sector used above.

Finally we compute explicitly the functions G2n(t) corresponding to
E(s) = cos as where | arg a \ < τr/2. Here all roots lie on a line through
the origin. In this case the integral (1.4) tends to infinity with n when
I arg a \ ̂  π/4. This result indicates clearly that our arguments must
fail if the roots of E{s) are not restricted to lie inside the 45° sector.

2 A first inversion theorem* Let us introduce the following
conventions.

Condition A. The sequence al9 α2, of complex constants satisfies
Condition A if

Σ I <*k I"2 < <*> and I arg ak | rg -^ " V
i 4

for some η in 0 < η < 7r/4. It is assumed that the ak are arranged in
an order of nondecreasing real parts with Re ax > 0, i.e.

0 < Re aλ g Re ak ^ Re ak+1 (k = 1, 2, •) .

DEFINITION. The class of entire functions A consists of all entire
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functions E(s) of the form

E(s) = Π (l - 4-)

where the roots ak satisfy condition A.
For example, cos (2 + i)s belongs to the class A.
We now state the main theorem of the present section, a result

that will be improved in § 3 by more complicated methods.

THEOREM 2.1. If for — oo < έ < oo

1. G(t) = -L- Γ *JL ds (E(s) e A) .

zπτ J-ίoo E(s)

2. φ(t) is hounded on compact sets and

φ(t) = O(e^t]) (\t I -> oo, 0 < σ < Re a,) .

3. f{x) = Γ G(a? - t)φ{t)dt ,
J-oo

lim Π ( l - ^ ) / ( x ) = φ(x)

at any point t — x of continuity of φ(t).

We shall establish this result by the series of Lemmas 2.2, 2.3,

and 2.4.

Consider a fixed function E(s) in the class A. Then let E2n(s) be

defined by

(2.1) EU$) = Π ( l - -ξ-) (n = 0f 1, 2, •) .
n+l \ a\ J

Define Sn by

(2.2) Sn = ± \ak\~> (rc = 0 , l , 2 , •••)•

L e t G 2 n (ί) a n d G{t) be defined b y

(2.3) Gtn(t) = - ί . Γ -£— ds , G(t) = G0(t)

( - o o < ί < o o ; w = 0 , 1 , 2 , • • • ) •

If P 2 n φ) is defined as
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(2.4) P2n(D) = Π l - τ (n = 0,1, 2, . . . ) ,

then the next lemma will show that the integral (2.3) converges, that

PUD)G(t) = G2n(t) ,

and furthermore it will give lower bounds of the function E2n(s) in
terms of both s and n. It will become clear later that exactly these
lower bounds are the ones needed to obtain the required information
about the kernels G2n(t).

LEMMA 2.2. Let the roots ak — rke
iβk, η, E2n{s), and Sn be as in

Condition A and equations (2.1) and (2.2).

A. Let reίΘ with r > 0 be any point in the angular sector defined by

|tan^!^tan(|-|).

Then

I E,n(reiβ) | ^ 1 + r2Sn sin η

and also

i E2n(reiβ) I ̂  1 + r4 sin2 η Σ rϊ2rj* .

B. Define K to be the constant

Leέ % be arbitrary, n = 0,1, 2, , but fixed. Let reiβ with r > 0 be
any point in the triangular region defined by the inequalities

I tan θ\ ̂  tan (— - -2.) , \r costf | £ KS;1'2 .

Proof. A typical term of the infinite product E2n(reiθ) satisfies

[1 - rVί V^^^J] [1 - r"r^e-mΘ-βk)] = 1 - 2rV^2 cos 2(5 - /9Λ) + r4r^ .

Since in case A, the argument # satisfies either π/2 •— η/2 g θ ̂  τr/2 + gy/2
or — τr/2 — 97/2 ̂  θ ̂  —π/2 + 77/2, and since the argument βk of any
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root satisfies — π/4 + η ^ —βk^ ττ/4 — η, it follows that in case A
we have — cos2(# — βk) ^ sin η. Consequently, by multiplying out the
infinite product, we obtain

I E2n(reίΘ) I ̂  Π 1 + rV^2 sin η > 1 + r"Sn sin η .

Similarly, we also obtain the second inequality in A.
For the proof of B, take k > n and restrict reiθ — σ + ίy to the

angular sector | y | g | σ | cot η/2. By using the latter inequality, we
see that a typical term of the infinite product E2n(σ + iy) has the
lower bound

1 - (σ + iyf ^1_a' + yt g > i - . g l ( i + eot!

rl rl \ 2

This latter lower bound is positive. The inequalities r\Sn > 1 and
σ I ̂  KS'1'2 imply that

rl

By use of the latter and by multiplying out the infinite product we
obtain

I Ein(σ + iy)\>l ± ^S^
where the indices A (l), ••, k(p) range over the integers.

Use of the inequality

2-1 ' A(l) ' k ( p )
fc()<

leads to

Thus conclusion B has been established.
The next lemma gives some facts about the kernels G2n{t). Once

the lower bound given by part A of last lemma is available, the next
lemma can be proved exactly as in the case of real roots akf see [6;
p. 265] and [5; p. 108]; we omit the proof.

LEMMA 2.3. Let E2n(s), G2n(t)y and P2n{D) be defined by (2.1),
(2.3) and (2.4). In particular, the roots ak defining E2n(s) satisfy
condition A, and consequently

0 < Re ak ^ Re ak+1 (k — n + 1, n + 2, •) .
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Let n = 0,1, 2, be arbitrary.

A. For any σ in \ σ | < Re an+1,

G2n{t) = P2n(D)G(t) =
2π% 2 n ( )

B. Lei an as a zero of E2n(s) be of multiplicity μ + 1. Then
there is a polynomial p(t) of degree μ such that for any k in —Rean+1<
k < Re an+1 and any integer v = 0,1, 2, the following holds

C. For αίί s = σ + i r wi£fo | σ | < J?e αn + 1 and — oo < r < oo

— i — - Γ e-stG2n(t) dt , Γ G2n(ί) dt = l.

In t h e next lemma a sufficiently good upper bound of t h e kernel
G2n(t) in terms of both t and n is proved in order to have an inversion
formula as an immediate consequence.

L E M M A 2.4. Let G2n(t) and Sn be as defined by equations (2.3)
and (2.2). Then there exist constants M and K independent of both
n and t such that

I Gin(t) I ̂  MS"1 '2 exp (-KS~^ \t\) ( - - < t < oof n = 0,1, 2, . . . ) .

Proof. Use of the fact that G2n(t) is an even function of t and
use of Lemma 2.3 shows that

provided σ satisfies 0 < σ < r κ + 1 cos /3W+1 (where rn+1e
ίβn+1 is that root

of E2n(s) with smallest positive real part). Let K be as in Lemma 2.2
the constant K — (1/2) sin (rj/2). Assume for the rest of the proof that
σ is restricted to 0 < a ^ KS~ιl\ Then since cos βn+1 > 1/l/ΊΓ, it
follows that

0 < σ ^ (1/2) sin (η/2)rn+1 < rn+1 cos βn+1 .

By setting A — tan (π/2 — η/2) and using the lower bounds of
Lemma 2.2 we obtain

1 + j/aSn sin ^

Replace the lower limit σA in the last integral by 0, set σ — KS~1'2
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and let M be the constant M = SAK/2π + (l/2)(sin η)~v\ Since G2n(t) is
an even function, the last inequality shows that for all n and ί, the
function G2n{t) satisfies the conclusion of the theorem

REMARK. In the previous lemma the constants M and K are
functions of η only. As η tends to 0, M tends to °o and K tends to
0, thus making the upper bound of the theorem meaningless as rj tends
to 0. These are phenomena which are typical of the theory and which
we will encounter again.

Now we are in a position to prove Theorem 2.1.

Proof. By letting MQ be the constant guaranteed by hypothesis
2 of Theorem 2.1, i.e. for any fixed x and all t,

and by using Lemma 2.3 we find that for any δ > 0

ί P2n(D)(G * φ)(x) - φ{x) I ̂  SUp I φ(χ - t) - φ(x) \ ί°° | G2n(t) | dt
\t\<s J - 0 0

+ MΛ I G3,(ί)! e σ l ί l dt .
Jδ<|ί|<co

Replacement of | G2n(t) \ by its upper bound given by Lemma 2.4,

and use of the continuity of φ(t) at t = x immediately give the theorem.

3* A second inversion theorem* We now remove the bound-
edness condition on φ(t), assumed in Theorem 2.1, assuming here instead
only local integrability. The inversion formula will be valid not only
at points of continuity of <p(t) but at all points of the Lebesgue set
for that function.

THEOREM 3.1. // G(t) and f(x) are defined as in Theorem 2.1
with φ(t) e L1 in every finite interval and if

[φ(u)du = O(e'W) (111 -> oo, 0 < σ < Re a,) ,
Jo

then

for all x in the Lebesgue set for <p(t).
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We first prove a result about the derivative of G2n(t).

LEMMA 3.2. Let the roots ak = rke
ίβk, η, G2n(t), and Sn be defined

by Condition A and equations (2.3) and (2.2). Then there exist
constants Mu Kl9 M2, and K2 independent of both n and t such that
for all n = 0,1, 2, the following holds:

A. // n satisfies Sn ^ 4r~+i, then

I GL(t) I ̂  Mβ'1 exp {-Kβ-^ \t\) (- <χ> < t < oo) .

B. If n satisfies Sn < 4r»+i, ίftew

I GL(£) I ̂  Λfari+1 exp (-K2rn+1 \t\) ( - oo < t < oo) .

Proof. First conclusion A will be proved. Let i£ be the constant

Restrict ί7 to 0 < σ ^ iΓS~1/2. The latter guarantees that 0 < σ <
rw + 1cos/3w + I and hence GJΛ(t) is given by

GJ (ί) = - - L r ^ ^ " ^ + ^ dy .
2n{ } 2π) E{σ + iy) ΰ2π)-~ E2n{σ + iy)

With A = tan (τr/2 — 57/2), the above becomes

I G5.(ί) I ̂  V

l f
%y)\

+
2 π Jσ-4<i2/i<oo I E2n{σ

The assumption that Sn ^ 4r~+x guarantees that Sn — r&2 Ξ> 1/2 SΛ for
all k > n. Hence the second lower bound given by part A of Lemma
2.2 becomes

r\

Use of the last inequality and the estimate of part B of Lemma 2.2 in
equation (1) gives

( 2 )
7Γ J<rA /I
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Replace the limit σA by 0 in the last integral; define the constants cx

and c2 as

1 fill O I fill

Jo 1 + W4 ' Jo 1 + tt4

let ifj and Mx be the constants

K, = K, M1 = —A{1 + A)K2 + ^ 2 (sin:A(l + A)K + ( s i n η Y K +
2ττ 7Γ π sin

and set a = KS~Φ. Then equation (2) gives

for all £ and all w satisfying Sn ^ 4r~+lβ

For the proof of part B, G2n(t) has to be expressed in the form

(3) G2n(t) = (g*G2n+2)(t)

where g(t) is the function

g(t) = ±-an+1e-a^ ( - 00 < t < 00) .

Differentiation of (3) under the integral sign and an integration by
parts gives

(4) G'tn(t) = - £±ί Γ -?*- β—+i'-!Glβ+,(t - it) dtt •

2 J-~ I wI

By use of the estimate

I G2Bt2(ί) I ̂  MS-j',2 exp (-ifS^2111)

of Lemma 2.4, equation (4) becomes

(5) |Gί.(t)|

^ ^ e x p ( - ^ = r κ + 1 1 u \)S;$exp ( - K S ~ ^ \u-t\)du.

By integrating equation (5) by parts we obtain

(6) I Gί.(ί) I ̂  MK-Ίi+1 exp ( - ^ = rκ + 111

exp (- vτr^ \-\
If w satisfies Sn < 4r^+! as in conclusion B, then

S.+1 - r ί i t = S, - 2rίiχ < 2r-ix and S^l > r%+jVΎ
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Substitution of the latter together with the inequality 111 — | u | ^
I u — 11 in equation (6) gives

7) I G'Jfi) I ̂  MK-Vl+1 exp (- ^rn+11 ί

I M r* CΣΏ(
 X Kr ^

2l/2^Γ "+ 1 PV τ/3 "+

Let Af3 and K2 be the constants

M, = MK-1 + MVΎK-\VT - KVΎ)-1, K2 = v 3

Then equation (7) shows that

I G'in(t) I ̂  ikf2r^+1 exp ( - K2rn+1 \ t \)

holds for all t and all n satisfying Sn < 4r~+x. Hence conclusion J?
has been ectablished.

Now we prove Theorem 3.1.

Proof. If ψ(t) is given by

Ψ(t) — \ [φ(x — u) — φ(x)] du (— oo < t < oo) ,
Jo

then by the hypotheses of Theorem 3.1 there is a constant MQ for which

If ί = x is in the Lebesgue set of φ{t) then for any ε > 0 there is a
δ > 0 such that | ψ(t) | g ε| ί | for any t in 111 ^ δ. An integration by
parts, easily justified by Lemma 2.3, yields

I P2n(D)(G * φ){x) - Ψ{χ) I <£ ε Γ I ίGίn(ί) | dt + Mo( | GJw(t) |
J-OO Jδ<|ί|<00

Replacing | G5»(ί) | by either one of the two upper bounds given by the
last Lemma 3.2, we easily obtain the conclusion of the theorem.

4* Asymptotic estimates* For the estimates of the present section
we need to place further restrictions on the roots of the inversion
function.

Condition B. The sequence of complex constants al9 a2, satisfies
Condition A and in addition

lim I an p Σ I α, |-2 - - .
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For example the sequence an — n satisfies Condition B. The sequence
an — 2n satisfies Condition A but not Condition B. In the latter case
the above limit becomes

lim 24%/3(—LΛ = 0 .

DEFINITION. The entire function E(s) belongs to the class of
functions B if

E(s) = Π (l - 4"

where the roots of E(s) satisfy Condition B.
We can now state the principal result of this section. To do so

we adopt the notation of § 1 for the function k(t, v). Set

(4.1) Sn = ±
n

and

(4.2) vn = £ α;Ίc

n + l

THEOREM 4.1. If

then

(4.3) G2n(t) = k(t, vn) + O(| an+1 |- 2S^ 2) (n - - )

uniformly on -co < t < oo.

Observe that the remainder term in (4.3) tends to zero with vn

under the assumption E(s) e B.

LEMMA 4.2. Let E2n{s), vn and Sn be defined by (2.1), (4.2) and
(4.1) with the roots ak = rke

ίβk satisfying Condition B. Then there
exist two strictly positive constants c and δ such that for any u in
— δ^u^d we have

= exp (-rl+1vnu
2) + 0[rUβnu* exp (-crl+1Snu*)] .

E2n(irn+1u)

The 0-term denotes a function of both n and u such that for some
constant M and all u and n the absolute value of this function does
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not exceed M times the quantity inside the 0-symbol.

Proof. Let Jn(u) be the function

J«(u) = -1=—^ Γ - e χP (-rt+iW*) (n = 0,1, 2, .) .
E2n(ιrn+1u)

Let δ be arbitrary in 0 < δ < 1/2 and assume that u is restricted to
\u\ ^ δ throughout the proof. If c2p(n) is defined as

CM = (~ir(l/p)rlp

+1 Σ ^ 2 p (w - 0, 1, 2, . •; p = 1, 2, . . .) ,

then

( 1 ) Jn(u) = exp (-r2

+Λu2){exp [ Σ cfaK*] - l} (| N | ^ δ) .

It is interesting to observe that linv^ | c2P(n) | = oo f or all p, if rk = &α

with α: in 1/2 < α < 3/2. Next it is shown that c2p(n) satisfies the
inequality

I c2p(n) I ̂  —rl+1Sn (n = 0, 1, 2, . •; p = 1, 2, .) .

If N(t) and 5(t) are the functions

N(t) = Σ 1 , «(ί) = Γ λ - W ί λ ) (0 ^ t
rjc<t Jt

then I c2p(n) \ is given by

X t-**+*dθ(t).
P

An integration by parts gives the required inequality

(2) I c2p(n) I = - ί r i + A - (p - 1K'+1 Γ tr»+H>(t)dt ύ -rl+1Sn .
P J*n+1 P

Use of the inequality Re vn ^ SΛ sin 2η and (2) in equation (1) gives

( 3 ) I JJμ) I ̂  exp ( - ^ + 1 S n ^ sin 2η) {exp [(1 - ^ V . ^ 4 ] - 1} .

Choose any δλ in 0 < δλ < 1 and consider the two cases:

Case 1. (1 - S2)-V2

+1S^4 ^ ^ ,

(4) Case 2. (1 - δ2)-V2

+1S^4 > ίx.

In Case 1, an application of two geometric sum estimates to (3) give
the conclusion of the lemma, i.e.
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( 5 ) I Jn(u) I ̂  (1 - dy\l - δ^WUβ^ exp (~u*rl+1Sn sin 2η) .

For the proof in Case 2, the inequality (3) gives

( 6 ) I JM I ̂  exp (-u"rl+1Sn sin 2>?)

+ exp {rlHSnu
2[(l - δ2)- V - sin 2)?]} .

Now choose <5 as δ — (l/2)(sin 2^)1/2. Then using the inequality

(1 - <52)~V - sin 2η ^ -(2/3) sin 2η

and by multiplying (6) by (4), we obtain the conclusion of the lemma
for Case 2:

( 7 ) I Jn(u) I ̂  2(1 - S r ^ Γ V l ^ S U 4 exp [-wVw+1Sn(2/3) sin 2η] .

Thus (5) and (7) together prove the lemma.
Next Theorem 4.1 is proved.

Proof. The change of variable y = τn+1u in the integral

and Lemma 4.2 imply that

(1) G2n(t) = 2Vti ί* cos (rn]1tu) {exp ( - r 2

n + Λ O
π Jo

+ Oirl^u*exp(-cr2

+1S^2)]}du + Γ

The hypothesis that lim^oo rA

1ίl1Sn = oo guarantees that for all w
sufficiently large we have Sn — τΰ2 > (1/2)SΛ. Hence for all large n
the second lower bound of part A of Lemma 2.2 satisfies

I Eφy) I Ξ> 1 + \ t sin2 jyΣ _ L ( s n - A . ) ^ 1 + (^-y2^ sin

The latter inequality shows that

C2) Γ - .̂ x dy - OteS-2) (n
J ί r n f l \E2n{iy)

Note that

For any v with i2e v > 0, the function k(t, v) has the representation

( 3 ) k(t, v) = — Γe"ΰ M 2 cos twdw ( - oo < t < oo) .
π Jo
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Use of (2) and (3) in equation (1) together with some elementary power
series estimates of the exponential function give the conclusion of the
theorem.

We saw in Theorem 2.1 that the essential step in the proof of the
inversion formula was to show that

Γ I G2n(t) I dt = 0(1) (n—oo) .
J-oo

The next theorem gives a more precise asymptotic formula for the
IΛnorms of the kernels G2n(t).

If 7] and vn are as in Condition A and in equation (4.2), let φn be
defined by

(4.4) vn = \vn\ e-2ίφ*

with I φn I tί τr/4 — η. The latter implies that in the next corollary we
have

(cos2 φn — sin2 φn)~V2 ^ (sin 2η)~112 .

COROLLARY 4.3. Let G2n{t), φn, and η be as in Theorem 4.1,
equation (4.4) and Condition A respectively. Then

Γ I G2n(t) I dt ~ (cos2 φn - sin2 φny^ (n - oo) .
J — CO

Proof. Our first estimate of G2n(ί) from Lemma 2.4,

I G,.(ί) I < MS-1" exp (-i^S-1'2111) f

shows that

\"JGJt)\dt ~ j J GJί) I dt (» - oo) ..

An elementary integration shows that

Γ I k{t, I vn \e-u««) \dt = (cos2 ^ κ - sin2 φn)~^ ,
J-oo

and that

lim ( I k(t, vn) I dt = 0 .
w->«> Jl<|ίl<oβ

Finally, our second estimate of G2n(t) from Theorem (4.1),

GJ t) = kit, vn) + O(| ακ + 1 |-2S-"2) ,

together with the assumption B that | an+1 \~2S~312 goes to zero with l/n>.
gives the conclusion of the theorem,
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Γ I G,,(ί) I dt ~ (cos2

 Ψn - sin2

 ΨnY^ (w — °°) .
J-oo

REMARKS 1. If the roots ak defining the kernels G2n(t) are
of the form ak = rke

iβ for some | β | < τr/4, then φn — β for all w, and
the asymptotic formula of the previous corollary becomes infinite as
β —> ττ/4. The latter fact suggests that our present methods cannot be
used to generalize the inversion theorem 3.5 in order to allow the roots
to lie in any angular sector about the real axis exceeding or even equal
to forty five degrees.

2. It is an open question whether all the results of this section
are valid if the hypothesis that lim^^ r2

n+1S
3J2 — co is replaced by the

weaker assumption that lim%_oo τ2

n+1Sn — ^o.

3. It is also an open question whether under some assumption
similar to Condition B the integral

\tG'2n(t)\dt
SO

is asymptotic to a constant times (cos2 φn — sin2 φn)~312.

5. An explicit example* In this section the sequence of kernels
G2n(t) is explicitly evaluated corresponding to E(s) — cos (πe~ίβs) where
β is some number in \β\ < ττ/4.

If E2n(s) is the function

then as in equation (2.3), the kernel G2n(t) is given by

( - c o < i < o o ; n = 0 , 1 , 2 , • • . ) .
J-i°° E2n(s)

Let a and w be a = eίβ and w = eat. For k > n, the residue of the
integrand est/E2n(s) at s — (k — l/2)α is

y ( ) = c w ( i ) ,

7Γ 3=i \ (j — 1/2)2 / (A; — w — 1 ) !

where c is defined as

a exy (at/2)2innl2

π(2n)l2

The kernel G2n(ί) is easily seen to be the sum of the residues in the



442 JOHN DAUNS AND DAVID V. WIDDER

right half plane Res > 0, i.e.

G2n(t) = cw*(J-Y^- ( - , < t < - ; n = 0, 1, 2, .) .
\ aw / 1 + w

By use of the Leibnitz rule for differentiation of products, we obtain

(5.1) Gin(t) = Δ n a\ sech 2L. ( - o < t < - ; „ = 0, 1, 2, .. •) .
π(2n)l L 2 J

REMARKS 1. Although the above computation is also valid for any
β with τr/4 < I β I < τr/2 it can be shown that

and

for such a

lim Γ \G2n(t)\dt =
J

lim

2. Perhaps the inversion Theorem 2.1 remains valid if the roots
ak are allowed to lie in an angular sector of exactly forty-five degrees
provided the function φ(t) is continuous and of bounded variation at
the point t — x at which its value is to be recovered. The latter has
been shown to be true in [1] for the special kernel G(t) given by (5.1)
with β = π/4.
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