PACIFIC JOURNAL OF MATHEMATICS
Vol. 15, No. 3, 1965

NORMS AND NONCOMMUTATIVE
JORDAN ALGEBRAS

K. McCRIMMON

Roughly speaking, a norm on a nonassociative algebra is
a nondegenerate form Q satisfying Q(M,y) = m(x)Q(y) for all
2,y in the algebra where I/, is a linear transformation having
something to do with multiplication by x and where m is a ra-
tional function; taking M, = L, or M, = U, = 2L% — L.» we get
the forms @ satisfying Q(ry) = Q@)Q(¥) or Q(Uy) = Q®)*Q(y)
investigated by R. D. Schafer. This paper extends the known
results by proving that any normed algebra U is a separable
noncommutative Jordan algebra whose symmetrized algebra A+
is a separable Jordan algebra, and that the norm is a product
of irreducible factors of the generic norm, As a consequence
we get simple proofs of Schafer’s results on forms admitting
associative composition and can extend his results on forms
admitting Jordan composition to forms of arbitrary degree ¢
rather than just ¢ =2 or 3. We also obtain some results of
M. Koecher on algebras associated with «-domains., In the
process, simple proofs are obtained of N. Jacobson’s theory
of inverses and some of his results on generic norms. The
basic tool is the differential calculus for rational mappings of
one vector space into another, This affords a concise way of
linearizing identities, and through the chain rule and its corol-
laries furnishes methods not easily expressed ‘‘algebraicaily’’,

Algebras having some sort of “norm” have appeared in various in-
vestigations. R. D. Schafer proved in [12] that any algebra 2 with a
nondegenerate form @ admitting associative composition Q(xy)=Q(x)Q(y)
is a separable alternative algebra. In [11] he proved that if 2 is com-
mutative and has a form Q of degree 2 or 3 admitting Jordan composi-
tion Q(U,y) = Q(x)*Q(y), where U, = 2L% — L, then it is a separable
Jordan algebra. In the applications of Jordan algebras to several com-
plex variables [9] M. Koecher considered domains in a real vector space
on which a positive homogeneous real-analytic function w was defined
satisfying w(H,y) = det H,-w(y), where H, was essentially the Hessian
of log w at «. He associated with such an w-domain a real semisimple
Jordan algebra 2 in which H, = U;*. In all these cases the algebra
was a separable noncommutative Jordan algebra and the norm @ (or w)
was essentially a product of the irreducible factors of the generic norm
of 2.
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The present paper originated in an attempt to prove algebraically
that the algebra of an w-domain is a Jordan algebra. Professor Nathan
Jacobson suggested that the resulting proof (Lemma 1.3) could be ex-
tended to an arbitrary field and might yield at the same time a uni-
form derivation of Schafer’s results, and this led to a general investi-
gation of normed algebras. Speaking very roughly, a norm on a non-
associative algebra 2 is a form @ satisfying Q(M.,y) = m(x)@(y) where
M, is a linear transformation on 2 having something to do with multi-
plication by x, and where m is a rational function.

In this paper we will make a systematic study of normed algebras.
The basic tool is the standard differential calculus for rational mappings
of one vector space into another. This affords a concise way of line-
arizing identities, and through the chain rule and its corollaries furnishes
methods not easily expressed “algebraically”.

The paper is divided into three parts, the first of which is devoted
to proving that all normed algebras are separable noncommutative Jordan
algebras. After recalling the fundamental results of the differential
calculus we make precise the definition of a form @ admitting com-
position on an algebra. With such a @ we associate an associative
symmetric bilinear form called the trace of Q. We define @ to be
nondegenerate if its trace form is nondegenerate, and show that this
agrees with Schafer’s definition of nondegeneracy in the cases of in-
terest. A norm on an algebra is then a nondegenerate form admitting
composition. The results of Schafer and Koecher follow easily from the
main theorem that every normed algebra is a separable noncommutative
Jordan algebra. Our definition of nondegeneracy has the advantage
that bilinear forms are easier to work than ¢-linear forms, hence we
can extend Schafer’s results on forms admitting Jordan composition to
forms of arbitrary degree q rather than just ¢ = 2,3. It also allows
us to obtain his results when the base field has more than ¢ elements,
which is a weaker hypothesis than his condition that the characteristic
is 0 or is greater than gq.

The second part of the paper is devoted to characterizing the norm
of a normed algebra. We first extend N. Jacobson’s theory of inverses
in Jordan algebras to noncommutative Jordan algebras; the proof of
the main properties of these is simpler than his. We next prove a
lemma to the effect that under fairly general conditions if @ admits
some kind of composition then so do all its irreducible factors. Using
this and a technique of N. Jacobson’s we can easily derive the basic
properties of the generic norm. Applying these results to normed
algebras we show that the norm of any normed algebra is a product
of irreducible factors of the generic norm.

The last part of the paper is devoted to the work of Koecher [9]
and N. Jacobson [6] on isotopes and the group of norm-preserving
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transformations of a commutative Jordan algebra.

CHAPTER 1

1. Some conventions. In this paper we will always work over
a field @ of characteristic p = 2 (p may be zero); |@| will denote the
cardinality of @. In Chapter I we will always assume that @ is in-
finite (except in §5), and that X,%), 3 are finite-dimensional vector
spaces over @. “Algebra” will always mean nonassociative algebra with
identity.

We briefly recall the well-known facts about the differential calculus
for rational mappings over an infinite field [2, pp. 21-37]. Relative
to bases {x,, --+, 2,} and {y,, *+-, ¥y} for the vector spaces X and %) a
rational mapping F:X — %) has the form

F
© =258 —— Y = 2NY;

where 7, = Fy(§, ---,&,) are rational expressions in @&, ---,£,). The
value F'(x) is defined only for those « in the Zariski-open subset of X%
where the denominators of the components F', of F' don’t vanish. A
rational mapping F:X — @ is called a rational function. We will
always use «, ¥,z to denote the “independent variables” of rational
mappings on X, while u, v, w and a, b, ¢ will denote fixed vectors in X.

If F' is a rational mapping of X into ¥ then 0F denotes the dif-
ferential of I’ and 8F'|, the differential of F at a point xeX; the
latter is a linear map from ¥ into ¥, and we denote by 8,F |, its
value 0F |, (u) at a vector wcX. Relative to bases {x;} for X and {y,}
for ) the matrix of 8F'|, is the Jacobian (9,F;|,) where 9,F; |, is the
formal partial derivative of F(§, .-, &) with respect to the indeter-
minate &; evaluated at ®. x—90,F|, is a rational mapping 0,F of X
into ¥, and the map F —0,F is just partial derivation 9, in the
direction wu.

As an example, in this notation the chain rule, which is funda-
mental in the sequel, becomes

a{FOG} |:c = OF lG(z)OaG |a:
or

6u{FOG} lx = 61:F lG(z) for v= auG

z ®

The logarithmic derivative
0,log FF = F-%9,F

of a rational function is well defined even though there is no function
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log F', and the usual rules hold:
dlog{F-G} =0dlogF + dlogG
0,0,log F = 0,0, log F = F~*F-9,0,F — 3, F-0,F} .

If F is a homogeneous mapping of degree ¢, ie.. F(\x) = \F(z), then
the Euler differential equations imply.

0.F'|, = qF () .

Finally, if F' is a rational function such that 8,F =0 for all ue¥%
then Fe @}, ---, &) relative to any basis for X (p always denotes
the characteristic of @; if »p = 0 the condition is that Fe @).

2. Forms admitting composition. By a form on a vector space
X we mean a homogeneous polynomial function; throughout the rest of
this chapter Q@ will denote a form on X of degree ¢ > 0. If 2 isan
algebra on ¥ with identity ¢ we say a form Q admits composition on
2 if there are two rational mappings E:x— E,, F:x— F, of X into
Hom (X, X) satisfying

(a) E,=F,=1
(b) o,F|,=aL,,o,F|, = pBR, for 0+ a,B€® where L,, R,
(1.1) are left and right multiplications by u e 2
(e) QE.y)=e®Qy), QAF.y)=f(x)Q(y) for some rational func-
tions ¢, f on X wherever all mappings involved are defined.

Note that @ admits composition on any extension algebra 2, 2 an
extension field of @.

For example, if 2 admits associative composition Q(xy) = Q(x)Q(y)
we may take K, =L, F,=R,a=08=1,e=f=Q. If UAis commuta-
tive and admits Jordan composition Q(U,y) = Q«)*Q(y), where U, =
2L — L,;, we may take B, = F, = U, a = 8= 2,¢ = f = Q. Indeed,

0,U,|, = 20,L;|, — L@ |,)
= 2{LuLc + LcLu} - Lau+uc = 2Lu = 2Ru .

For typographical reasons we will often write E(x), L(x) in place of
FE,, L, etec.

A more complicated example is the following. Suppose 2 is quast-
assoctative, that is, there is an extension 2 of @ such that 2, is obtained
by defining ay = Ax-y + (1 — \y- for some ) e 2 where A = (X,, -) is
an associative algebra on X, (if U itself is associative we assume A = A,
A =1). Suppose @ is a form on X whose extension to X, satisfies
Q-y) = Q(x)Q(y) identically (such as the generic norm of 2, since
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A, and A have the same generic norm; see the Corollary to Theorem
2.5). Set p=N1—N),E,=L,+ U, ,,F,=R,+ U, ,,a=8=1,
e(x) = f() = Q(p(x — ¢)* + ) where U, = 3(L, + R,)’ — 3(L,2 + R,2).
It is known [1, p. 583] that o€ @,' so E, F, e, f are all rational map-
pings on X (not just %,). Clearly E, = F, = I. It is also easily checked
that U,y = ®-y-2 in terms of the multiplication in . Then

0{U, o} . () =u-y-(c—c¢c)+(¢c—c)yu=0,
so 0,K,|,=L,,0,F,|, = R, Finally,

QEY) = Qxy + oU,_y)
=Q0x-y + 1 —Ny-x + ML — M@ —0)y-(z —0))
= Q({Mz — o) + ¢ty {l — M) —¢) + o)
= QMx — ¢) + )R — M(x — ¢) + )Q(y)
(by assumption on Q)
= QM1 — M@ — o) + (¢ — ¢) + )Qy)
= e(x)Q(y) .

Similarly Q(F,y) = f(x)Q(y), so € admits composition on A,
The following weak form of the open mapping theorem is well
known.

LemMmA 1.1, If F:X— 9 is a rational mapping whose differential
0F 1s surjective at a point xeX then there is no nonzero rational
function G:9) — @ which vanishes on the range F(X) of F.

Proof. 1If there were such a G there would be one which was a
polynomial; since @ is infinite, the hypotheses would remain valid over
a perfect extension 2 of @. But there the nonexistence of such a
polynomial follows from [7, p. 268].

Suppose @ admits composition on an algebra 2 with identity c.
The mapping E: x — E,c has differential al at ¢ since

t In fact, if Ls, Ry, L, B, denote the multiplications in %, A then
Li=2Ls+ 1~ DRy, Ro=aB.+ (1 —NLy, Lo+ Ro=L.+E,.
Associativity of ¥ means [Lu, Bo) =0 for all u,v. Hence
[Lzy By) = 21 — D{[Le, L] + [z, By}
=21—=N[Ls + Ry, L + Ry} .

If we can find z, ye AW, with [Ls, Ry] 0 we can conclude that ¢ = (1 — )€ 9;
otherwise, [Lz, By] =0 identically and % is associative, so by assumption 1=1,
¢ =09,
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o0k |, (w) = 0,E |, = 0.E,|,)c = aL,c = au .

If Q) =0 then Q(E(x)) = Q(E,.c) = e(x)Q(c) =0 would imply @ =0
by Lemma 1.1, contradicting deg @ > 0. Thus if @ admits composi-
tion we necessarily have Q(c) +# 0; in particular, we can always nor-
malize @ so that Q(c) =1 if we wish.

We define a rational mapping x — 7, of X into the space of sym-
metric bilinear forms on ¥ by

Tm(u’v 1}) = _auav IOg Q |z .

The form 7, is defined whenever Q(x) = 0. We just saw Q(c) # 0, so
T = 7, is defined; 7 is the trace form of Q. If Q is the generic norm,
7 is the generic trace, and if Q(x) = det L, or det U, for U, = 2L2 — L,
then 7 = tr or 2tr where tr is the usual trace form ¢r(u, v) = trace L,,.

LemMA 1.2. If Q admits composition on A then for those x,y
where all functions tnvolved are defined we have

1.2) 050210 108 Q |5y = 0, log @ |,

(1.3) Tawy(Fau, E0) = t,(u, v)

(1.4) (LY, v) = Ouu log @ |y

(1.5) z(L,w, v) + (w, L) = 0,0,0,log Q |,

and dually with E, L replaced by F,R. Also, T is an associative
Jorm:

1.6) (uv, w) = (U, vw) .

Proof. For (1.2), first observe that F,:y — E,y is linear in ¥, so
0FE,|, = E, where 0 is applied to functions of y. Then using the chain
rule we have

Op(a10 108 Q |ze)y = 0108 Q |peayy (E20)
= 0log Q |5y 0K, |, (v)
= 0log {Qo K.} |, (v) = O.{log e(x)Q} |,
= 0,loge(x) |, + 0,log Q |,
= 8,log Q, .

Regarding (1.2) as a function of % and applying 9, |,, the right
side becomes 8,0, log @ |, = —7,(u, v), while the left side yields

au{{aE(:t)v IOg Q}oEx} |1/ = aw{aE(x)v lOg Q} IE(:&)I/
by the chain rule where w = 8,F, |, = E,u; thus the left side finally
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reduces t0 0pwyu0rw 108 @ lrwyy = — Trw(Bou, E,v). Equating gives
(1.3).

Now regard (1.2) as a function of « and apply 0,|.. The differ-
entiation is routine, but we will go through it in detail this once.
The left side of (1.2) is F(E,v, E,y) if F(z,y) = d,log Q|,, and

0,F(Ev, Ey) |, =0F(E,v, Ey)l|, + 0,F(E, Ey)|.

by the usual rule for differentiating a function of two variables. F
is linear in the first variable so we can move the partial inside; hence
the first term is F(@,{E,v}|., ¥) = F(aL,v, y) = ad;,,, log Q|,. By the
chain rule the second term reduces to 8,F (v, %) |54, = 0,0,log Q |, =
—7,(w, v) for w =0,{F,y}|. = aL,y. Now the right side of (1.2) is
independent of x, so applying @, ]|, gives 0. Thus

aaL(u)v lOg Q |y - Ty(w! ’U) =0 ’
aaL(u)v lOg Q |y = aT’y(Luyy v) .

Canceling « gives (1.4).
Similarly, applying 9, |, to (1.4) as a function of y gives

to(Lyw, v) + 0,{t,(u, )} [, = (Lw, v) — 8,0,9, log Q |,

for the left side and 9,0;.,,logQ|. = —7(w, L,v) for the right side.
Equating gives (1.5).
Interchanging % and v in the dual of (1.5) we get

(R,u, v) + t(u, R,v) = 8,0,0, log Q

c e

The latter is symmetric in «, v, w so comparing with (1.5) we get
=(u, vw) = t(w, uv), proving (1.6).

3. Nondegenerate forms. We call a form @ on an algebra A
with identity ¢ mondegenerate if the trace form = = 7, is a nonde-
generate bilinear form.

Assume for the moment that the characteristic of @ is 0 or p > ¢,
and let @ be an arbitrary form of degree ¢ on a vector space X. Then
q! is not zero in @; we claim

[xly tc xQ] - 1/q! a.’cl e 8qu |c

is a symmetric ¢-linear form with Q(x) = [«, ---, 2]. Clearly it is a
symmetric and multilinear. Note that since @ is of degree q, 9, --- aqu
is of degree 0, ie. constant, so [z, ---, ] = 1/¢!8, --- 8, Q. for any
2. From the Euler equations we have
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9 91
U, oo, @] =0, - 0,Q|, =118, -+ 2,Q |, = -+
(1.7) , 1

= (@ —1)18,Q1, = ¢! Q) .

Thus Q(x) =[x, «--, 2], and hence [z,, -+, 2,] is the unique symmetric
g-linear form obtained by polarizing @. R. D. Schafer has called Q
nondegenerate if there is no # # 0 such that [z, -+, z, 4] = 0 for all
2 (or equivalently, by linearizing, [%,, ++-, ®,_,, w] = 0 for all x;). As
in (1.7) we see [x, +++, x,u] = 0 for all « if and only if 1/¢3,Q |, = 0,
so Schafer’s condition of nondegeneracy is that 6, = 0=wu = 0. Since
the characteristic is 0 or p > ¢, this means that @ is not independent
of any variables in the sense that there is no basis {x,, ---, z,} for X
relative to which Qe @[§, ---, &,_,]. Certainly this is a reasonable
restriction.

If @ is nondegenerate in our sense it is always nondegenerate in
Schafer’s, since 9, = 0 would imply

t(u, v) = —0,0,log Q|. = —0,{Q7'0,&Q} [. = 0

for all v. We claim the converse is true if @ is a form admitting
composition on an algebra 2 (still assuming the characteristic is 0 or
p > q). Suppose such a @ is degenerate in our sense, so ¢ has a non-
zero radical M. 7 is associative by (1.6), so R is an ideal. As we
remarked after Lemma 1.1, we may assume Q(c) = 1. Then 8,Q|, =
Q) 0,Q|.=0,logQ|, = 7(c,w) (taking y = v =c¢ in (1.4)) so as in
a7 [e, <+, c,ul =1/90.Q |, = 1l/gr(c,w) = 0 if ueR. Thus we have
proven the relation [¢, <+, ¢, 9, -+, y,u] =0 for all ueR, ye WA when
the number of %’s is 0. Assume it proven when there are m ¥’s.
Applying 0, --- 9, to QFE,y) = e(x)Q(y) as a function of y gives

(B2, « -, B2 = e(@)[;, -« -, 2] .
By our induction hypothesis we conclude
[Ezc; ) Excy Exy’ ct ety E:cy; Exu] =0

for weR if there are m y’s. If we apply 9, |, to this as a function
of x we get three groups of terms. Applying 8,|, to E,u gives the
term [c, -+, ¢,9, - -+, Y, u*] where there are m y’s and where

w* = 0,{Fu}|, = aLu = ayu ;

but u* € R since RN is an ideal, so the term vanishes by the induction hy-
pothesis. Applying 8, ], to the E,y’s gives the term m[e, - «,c,y,+ -, 4,y* %]
where there are m — 1 y’s and where y* = ayy. But this is just the



NORMS AND NONCOMMUTATIVE JORDAN ALGEBRAS 933

result of applying 0,-|, to the induction hypothesis as a function of
9, so it vanishes too. Thus the final term (¢ — 1 —m) e, ---, ¢, c*,
Y, +++, Y, u] obtained from the FE,c’s must vanish. But ¢* = ay, so
le, «++,¢,9, <+, y,u] = 0 when there are m + 1 y’s, and the induc-
tion is complete. Hence [y, ---, %, 4] = 0 for all ueR,yeA and Q is
degenerate in Schafer’s sense.

4. Normed algebras. A mnorm on an algebra 2 is a nonde-
generate form @ admitting composition on 2(. If 2 has a norm it is
called a normed algebra. Since a nondegenerate form remains nonde-
generate on any extension of the base field, 2, is normed for all ex-
tensions 2 of @.

We saw in §2 that the algebras studied by Schafer [11, 12]
were normed algebras. Another important example of a normed alge-
bra is the following. Suppose X is just a vector space, with no alge-
bra in sight. Let @ be a form on %X,ce€ ¥ a point where the trace
form 7z (u, v) = —8,0,log @ |, is nondegenerate. Then each bilinear form
7, 18 obtained from 7 = 7, as

z.(u, v) = t(H,u, v)

where H:x — H, is a rational mapping of ¥ into Hom (X, %) defined
for all ® with Q(x) # 0. H depends on the choice of basepoint c.
H, =1, and the H,s are self-adjoint relative to 7 since each 7, is
symmetric. Consider the symmetric trilinear form

o(u, v, w) = —10,{z.(v, w)}|. = 49,9,0, log @ |. ;

since 7 is nondegenerate o(u, v, w) = t(L,v, w) for some L, < Hom (%, %)
where w — L, is linear. Then u-v = L,v defines a bilinear pairing on
X. From the definition of ¢ we see L, = —140,H,|,; H is homogeneous
of degree —2 in x since 7, is, so the Euler equations imply 8.H, |, =
—2H,, and L,= H,= 1. Since 7 is symmetric the pairing is com-
mutative, so u-c =c-u — u. If @ admits composition in the sense
that Q(H.,y) = h(x)Q(y) for some rational function # whenever both
sides are defined we define the Koecher algebra (@, ¢) to be A = (X, -).
Then 2 is a commutative algebra with ¢ as identity. Taking F = F = H,
a=pB=—2,e=f=nh we see that 2 is a normed algebra. Such alge-
bras were first studied by M. Koecher [9, pp. 39-43] in connection
with w-domains. We will see later there is a close connection be-
tween normed algebras in general and Koecher algebras (Theorem 2.9).

From now on let © =7, be the trace form of a norm @ on an
algebra 2A. We define H, for Q(x) # 0 as above by =(H,u,v) = 7,(u,v).
Since 7 is nondegenerate, each linear functional 8log @ |, can be ob-
tained from 7 as
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0, log Q |, = 7(x%, v)

for some vector x#. # is a rational mapping of X into itself defined
whenever Q(x) = 0. We have 0,c(x%, v) |, = 0,0,log @ |, = —7.(u, v) =
_T(qu’ Iv), S0 6%# |fﬂ = ——qu"

LemmA 1.3. If U is a mormed algebra them for those x for
which all mappings involved are defined we have

(1.8) L}*=R,, R}=1L,
(* the adjoint relative to T)
(1.9) H.R,=L,, HL,=R,
(1.10) H,, R, L, commute ; H,, L,, R, commute
(1.11) xEwx =x-2f =c
(1.12) e’ =otxk =2

(1.13) U,H,=1I where U,=R,(R,+ L,) — R>=L,(L,+ R,) — L,»
(1.14) A has no monzero ideals B with B* =0 .

Proof. By our assumptions it suffices to pass to the algebraic
closure 2 of @ and prove the result there.
(1.8) is just the associativity (1.6) of .

©(H,L,x, v) = t,(L,x, v)
= Oy log @ |, = t(2%, L) = (L}, v)
from (1.4) so that
H.Ru = H,(u-x) = H,L,x = L}z = R,x% = L,u ;
dually H,L, = R, so (1.9) is proven. Hence we have
R.H, = L;H} = (H,L,)* = R}, = L,, = H,R, ,

so R, and H, commute, hence both commute with their product L,;.
The dual result holds, so (1.10) is proven.
(1.11) is a bit longer. First,

o wf-a} [, = {0.2% |.}-2 + o¢-{0.2 |}
= —Hu-x+ x-u={—R,H, + L,u=20

by (1.9), (1.10) for all w, x. Hence

0 = 0,7(xg-x, v) = 0,7(xk, x-v) = 0.{0,., log @ |}
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for all w, v, z. Thus relative to a basis for X 9,.,log @ |, is in (&}, «- -, &2)
where p is the characteristic of 2; since @ is perfect, it must be a pth
power. If @ = [[ Q% for @, distinct irreducible factors then

9,.,log Q = 3q,0,.,log Q;
= Zq'LQb_lavaz - R_lzyquiavaz = R—IS

for R =1 Q,, R, = Q'R, S a polynomial. But in reduced form RS
must be a pth power, and the denominator of the reduced form is
composed of some of the distinct irreducible factors @Q;, so it can be
a pth power only by being constant. Hence z(xf-x, v) = 0,.,log Q |,
itself is a polynomial. Yet it is homogeneous of degree 0 since by
the chain rule

a)\x'v 108' Q |)\a; = 605 v ].Og {QOX} |aa
= 0,.,{log M + log @} [, = 0., log @ |, ,

so it must be constant. Thus z(x#-x, v) = t{ct-¢, v) = 7(c, v) since
ct-c=L,c=HR,c=c by (1.9). This holds for all v, so by nonde-
generacy 2%-x = ¢ wherever 2% is defined. The dual result is estab-
lished similarly, so (1.11) is finished.

(1.12) follows from (1.10), (1.11) by

xf-0’ =L, R, x =R, L,x = R, (x(-x) = Rc =2
and dually. (1.13) holds since for all

Iw=u=0x| =0Jct-2%|,
= (—Hu)-x* + xf-(x-u + u-x)
={—R..H, + L(L, + R,)}u
={—R.H, + H.E(L, + R)lu
={R,(R, + L,) — Es}Hu = U, Hu

by (1.9), (1.10) and dually.

For (1.14), suppose u,v€B where B is an ideal with B* = 0.
Then z(u, v) = z(c, u-v) =0, so 7(B, B) = 0. If Q) = 0 then H, is
defined, and by (1.13) U,H, = I, so U, is invertible. Since B is an
ideal and U, is composed of multiplications, U,B < B; by nonsingularity
UB=3B=HSB. Thus t(u,v) = c(Hu,v)er(B,B)=0. If {x, -+, x,}
is a basis for ¥ with {x,., +--, ,} a basis for B, and if 2 denotes the
algebraic closure of 2(¢, +--, &,) then 9,0,log Q|, = —7,(u, v) = 0 for
w, v€ B implies 8, log Qe P(&%.,, +-+, £). Repeating the argument of
(1.11) with all factorization taking place over 2 we see 9,log @ must
be a polynomial in &,.,, -+, & with coefficients in 2. But for ve B,
deg Q > deg 9,Q = deg {Q-0, log Q} = deg Q + deg 9, log @ = deg Q unless
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0,log Q is the zero polynomial (where deg means the degree as a poly-
nomial in &,,, -+, &,). Hence we must have 8,log @ = 0. Then

T(w’ 7}) = _awav lOgQ [c =0

for all we 2, and by nondegeneracy v = 0,8 = 0.

Notice that the proof would be greatly simplified if we assumed
the characteristic of @ to be 0 or greater than ¢. At least in this
case, formulas (1.8) to (1.13) arise quite natually when one starts dif-
ferentiating the relations (1.1). In fact, they appear (disguised) in the
work of O. S. Rothaus [10, p. 210] on the differential geometry of w-
domains.

5. Norms and noncommutative Jordan algebras. Recall that
a noncommutative Jordan algebre [11] is a nonassociative algebra in
which L,, R,, L., R,» commute for each . An algebra is separable if
it is a direct sum of simple ideals with separable centers, or equiva-
lently if it is semisimple and remains so under any extension of the
base field.

THEOREM 1.1. If U is a normed algebra then it s a separable
noncommutative Jordan algebra, and the symmetrized algebra A+ is
a separable commutative Jordan algebra.

Proof. We can apply Lemmas 1.2 and 1.3. By (1.6), = is a non-
degenerate associative symmetric bilinear form, and by (1.14) 2 has
no ideals B = 0 with B = 0, so by Dieudonne’s theorem 2 is semi-
simple. Any extension of 2 remains normed, hence semisimple, so %A
is separable. If Q(xz) = 0, from (1.13), (1.8), and the selfadjointness
of H, we get

Rx(R:c + Lx) - Ra:2 - Hx_l = (H;l):k

hence R, commutes with L,. From (1.10) we see H,, L,, B, generate
a commutative algebra of linear transformations which contains U, by
(1.13), hence also R,: and L,. Thus R,, L,, R,., L,» commute for those
x where Q(x) # 0; since @ is assumed to be infinite this set is dense,
so they commute for all z, and % is a noncommutative Jordan algebra.

In A+ we have L} = (L, + R,) = R}, so A" is a commutative
Jordan algebra. 7 is still a nondegenerate associative form for A+,
and averaging (1.13) shows

U,=%R, + L,) — iR,. + L,2) = 2L;* — Lz = U}
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is composed of multiplications in 20+, so the proof of (1.14) carries over
verbatim. Thus 2* is semisimple by Dieudonne’s theorem; the same
holds for all extensions of 2+, and 2* is separable.

It is known [1, p. 585 and argument on pp. 590-593] that this
implies the simple summands of 2 are either commutative Jordan alge-
bras, quasiassociative algebras, or are of degree 2. We will see in
Theorems 2.8 and 2.4 that the generic norm of a separable commuta-
tive Jordan algebra is nondegenerate and admits Jordan composition
N(U,y) = N(x)*N(y) and therefore such algebras are normed. If U is
a separable quasiassociative algebra and 2 the extension of @ such
that 2, = A(n) for A associative, » € 2, then A must be separable too
and Theorem 2.8 shows that the generic norm is nondegenerate. By
the remarks at the beginning of § 2 we see that 2 is a normed alge-
bra. However, it is not known if all separable flexible algebras of
degree 2 are normed, so the converse of Theorem 1.1 is incomplete.

THEOREM 1.2. If Q is a form on a veclor space X,c€X a point
where the trace form t, is mnondegenerate and relative to which
Q(H,y) = h(®)Q(y) whenever both sides are defined (where t,(H,u,v) =
z.(u, v) and h ts some rational function) then the Koecher algebra
WA, ¢) is a separable commutative Jordan algebra. If mormalized,
Q admits Jordan composition Q(U,y) = Qx)Q(y) for U, = 2L2 — L,..

Proof. We have observed before that 2 is normed; since it is
commutative, Theorem 1.1 shows that it is a separable commutative
Jordan algebra. (1.13) shows that U, = H.*, so Q(U,y) = h(x)"'Q¥).
If @ is normalized, putting ¥y = ¢ gives Q(x*) = Q(U,c) = h(x)'Q(c) =
h(x)™, so Q(U.y) = Q@)Q(y). Putting y = a* gives Q((@°)°) = Q(z*)},
80 Q(z*) = Q(z)* if z is of the form a®. But the differential of z — #*
at ¢ is 2I since 0,x°|, = 2u; by Lemma 1.1, Q%) = Q(z)* for all =z.
Thus Q(U.y) = Q=) 'Qy).

REMARK. This is related to a result of Koecher’s [8, Satz 5].
We note also that the above result holds over the field of real num-
bers if @ is a positive homogeneous real-analytic function @ on an
open subset ¥) of ¥ such that c¢€9) is a point where the Hessian of
log @ is nondegenerate and w(H,y) = det H,-o(y) for all z,yc%. The
Koecher algebra can be defined as before and the formulas of Lemmas
1.2 and 1.3 remain valid on ¥. We can conclude that L, commutes
with L, for ye9, and the commutativity extends to all xe€X by
analytic continuation. This gives an algebraic proof that the algebra
of an w-domain is a Jordan algebra [9, p. 44].

5. Some results of R. D. Schafer. In this section we will ont
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assume that @ is infinite, so we cannot immediately apply the methods
of the differential calculus as previously formulated. A polynomial
Qe dlg, --+,E,] together with a choice of basis {x,, -- -, x,} for a vector
space X determine in a canonical way a function on X; if this induced
function Q(u) = Q(gty, +--, p,) vanishes for all w = pa, + -+ + p,2,
in ¥ and if |@| > deg @ then by the usual specialization theorem we
conclude @ must be the zero polynomial. For w = Xpx;, we set 0,Q =
Jp0,Q where 9; is formal partial derivation with respect to the in-
determinate &. Then we can define a bilinear form

Tx(u’r ’U) = mauav IOg Q(x)
= Q) {Q(2)0,0,Q(») — 0,Q(%)0,Q(v)}

whenever Q(x) + 0. Note that if @ is infinite these definition agree
with the usual ones of the differential calculus.

THEOREM 1.3. Let U be an algebra with identity ¢. If {x, +--, %,}
is a basis for A and Qe g, -+, E,] a homogenesus polynomial of
degree q such that the trace form T, is defined and mnondegenerate
and Q(ab) = Q@)QD) for all a,be, and if |@| > q then A s a
separable alternative algebra. Conversely, if 2 s a separable al-
ternative algebra and {x, :---,2,} o basis then the generic norm
N, --+,&,) 1s nondegenerate and N(ab) = N(a)N(b).

Proof. The assumption that |@| > ¢ implies that Q(xy) = Qx)Q(y)
holds under extension of @ to an infinite field 2. As we have noted
before, taking E, = L,, F, = R, makes 2, a normed algebra. Hence
by Theorem 1.1 it is separable. By (1.3), ©(u, v) = Ty (E.u, E,v) =
t.(L,u, L,w) so I = L¥H,L, = R, H,L,=R,L,H, by (1.8), (1.10). But
form (1.13) I =U,H,; thus R,L,=U, =R,(R, + L,) — R,.,, whence
R: = R,.. Dually L = L,., so U, is alternative (again, strictly speak-
ing this has been proved only for those x where Q(x) # 0, but since
2 is infinite this set is dense and hence the identities hold every-
where). Since 2, is a separable alternative algebra, so is 2L,

Conversely, if 2 is a separable alternative algebra then by Theorem
2.8 and the Corollary to Theorem 2.5 the generic norm has nondegener-
ate trace form and N(xy) = N(x)N(y).

THEOREM 1.4. Let U be an algebra with identity c. If {x,, +--,x,}
is a basts for A and Qe @&, ---,E,] a homogeneous polynomial of
degree q such that the trace form t, ts defined and mnondegenerate
and Q({abal,) = Q(a)yQ®d) = Q({aba},) for all a,beW where {aba}, =
2a(ba) — ba’, {aba}, = 2(ab)a — a’b, and if |@| > 2q then

(a) A is a noncommutative Jordan algebra
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(b) A and A+ are separable

(¢) (L, — R, =0 for all ac?.
Conversely, of U satisfies (a), (b), (¢) and tf {x, -+, 2, s o basis
then the generic norm N(&, «--,&,) has nondegenerate trace form and
admits the above compositions.

Proof. For the first part we may pass to an infinite extension @
of @ by our assumptions on |@|. Let E,=2L,R,— R, F',=2R, L, — L,
a=RB=2e=f=Q@ thenE,=F,=1,0,F,|,=2L,,0,F,|, =2R,, and
Q(E.y) = Qx)Q(y) = Q(FLy) since {aba}, = Kb, {aba}, = F,b. By (L.1)
we see that @ is a norm on 2,. By Theorem 1.1, %, and UA; are
separable noncommutative and commutative Jordan algebras respective-
ly. From (1.3) we have z(u, v) = tp,(E.u, Ev) so I = EfHy, JE, =
F.H,.E, by (1.8), and E.F, = Hz'. As in the proof of Theorem 1.1,
H;*=U;; now U is a commutative Jordan algebra, so U;: = (U;)
(see (2.1) below). Thus E.F, = (U}). Applying 9,|, we get

= 2{L,F, + E,R.}

and 0,(U;) |, = 2L U} + 2U}L}; hence L,F,+ E,R, = L;U}; + U;L}.
Applying 9, |, again, the left side becomes

F,+E,+4L,R, =4L.R, + 4R, L, — (L,» + R,)
= 8L,R, — 2L}

and the right side becomes 2U; + 4L;* = 8L;* — 2L, so equating gives
L*=L,R,, (L, + R, =4L.R,, and finally (L, — R,)* = 0. Since these
results hold for 2, they hold for 2I.

Conversely, suppose 2, 2+ are separable; since the generic norm of
A=A is N =TI N, it suffices to consider simple algebras 2, and
as we remarked after Theorem 1.1 such an 2 is either a commutative
Jordan algebra, a quasiassociative algebra, or is of degree 2. In the
first case E, = F, = U,, and the result follows from Theorems 2.4 and
2.8 below. Suppose 2 is a separable quasiassociative algebra with
(L, — R, =0. Since this identity is of degree 2 it is valid on the
extension ,, 2 the algebraic closure of @. Now U, = A(\) for r e 2,
so if B,, I, denote the multiplications in the associative algebra % we
have

L,=)L,+@ —)\R,, R,=\R,+(1—NL,,
(L, — R = (2n — 1L, — R,».

If x=14,U is a Jordan algebra, and we just saw the result holds in
that case. Otherwise we must have (L, — E,)* = 0. This is impossible
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in matrix algebras of degree > 1 (take a, b such that ab = b =~ 0, ba = 0),
and since ¥ is separable it is a direct sum of matrix algebras; hence
these must be of degree 1, and since 2 is algebraically closed % is a
direct sum of fields, so again U is a commutative Jordan algebra.

It remains to consider the case where 2l is a separable flexible
algebra of degree 2 satisfying (b) and (c); these hypotheses remain
valid on an infinite extension 2 of @, and it will suffice to show the
extension of N is nondegenerate and admits the given composition on
A,. Now (b) and Theorem 2.8 imply N is nondegenerate (since 2, and
A5 have the same generic norm), so we only have to show N admits
E,, F, as composition. Since 2, is flexible,

R(R,+ L) — Ro=L(L, + R,) — Ly =2L:* — L = U?

by averaging (see (2.6) below). Hence E,=U; + R, (L, — R,), F, =
Uf + L,(L,— R,). Write 2, = 2¢P M where M = ¢* is the orthogonal
complement of Q¢ under 7; since 7 is the generic trace and U} is of
degree 2, ay +yxe e if x,ye WM. Thus if xy = ac + 2z (2e€ M) then
yx = B¢ — z. By flexibility,

ax + zx = (xy)r = 2(yx) = Bxr — 2z,
B—ax =zx+axzele.

But xe M, so 8 =a. Then z(c, [x, y]) = 7(c, 22) = 0.. Since
e + @, e + yl = [, y]
we have z(c, [u, v]) = 0 for any u,ve A, Since
Ew=U;w + (L, — R)R,w = Ujw + [z, wx]
we have
(¢, E,w) = z(c, Ufw) .
Next,

t({L. — R.}y, y) = 7({R, — Ly}, R;c)
= T(R;{Ru - Lu}x, ¢) =t({R, — LII}R;—x! c)
= t(|R;x,y],¢) =0

by the above since Theorem 2.4 and Lemma 1.2 show 7 is associative
for 2. Polarizing gives

(L:c - Rz) + (Lx - Rz)* =0 ’
hence (L, — R,)*(L, — R,) = 0 by (¢). Now (c) also implies
Lx(Lx - Ra:) = R:z:(L:c - Rx) = L:(Lx - Rz) H
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all operators commute here, so

E:E, = {Uf + Li(L, — R)}U: + Li(L, — R)}
= Uz + UILH(L, — R,) + (L. — R.)")
+ Li(L, — R)*(L, — R.)
= Ur = U U;

and finally
(B, Ev) = c(Uu, Uv) .
But from N(¢) =1 and deg N = 2 we get

7(u, v) = N(¢)™*{9,N [, 8,N |, — N(¢)9,0,N |.}
= z{(c#, w)r(ck, v) — 0,N|, .

By (1.11), ¢ = c#-c¢ = c; therefore

8u{NOEa:} |’u = aE(x)uN lE(x)v
= z(¢c, Eu)c(c, E,v) — t(E,u, E,v)
= (¢, Ufw)c(e, Utv) — o(Uwu, Uiv)
= 6l7+(x)uN 7 +210 = au{Non} lo

for all w,v; from 8, {NoE, — NoU;}|, =0 we see NoE, — NoU; is
in Q[&7, - -+, E]. But it is homogeneous of degree 2, 0o NoE, = NoU},
and by Theorem 2.4 N(E,y) = N(U;y) = N(x)’N(y). Similarly for F,,
so N admits composition.

These theorems are due to Schafer [11,12]. He assumed that Q
was given as a function Q:x — [z, ---, 2] on 2 where [, ---,] was a
g-linear form. It is easy to see that a basis {x,, ---, 2,} for 2 deter-
mines a unique homogeneous polynomial Q€ @&, +--, &,] of degree ¢
such that the functional relation Q(x) = [z, - -+, 2] remains valid under
all extensions of @, so our assumptions are essentially equivalent to
his. His formulation in terms of functions has the advantage of be-
ing intrinsic, but it requires that @ have characteristic 0 or »p > g,
while the above proofs hold if only |@| > q or |@]| > 2q.

Schafer proved Theorem 1.4 only for the special cases ¢ = 2, 3.2
Different choices for the noncommutative ternary compositions lead to
slightly different classes of algebras; for example,

E,=2I)—L,., F,=2R.—R,
leads to the algebras satisfying (L, — R,)X(L2 — L,:) = 0, which includes
all alternative algebras.

2 Professor L. Paige informs me that Mrs. E. Papousek has independently ex-
tended Schafer’s results to arbitrary q.
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When » =0 or p > ¢ analogous results hold even if the dimension
of A is infinite. The differential caleulus, Lemma 1.2, and the discus-
sion of nondegeneracy carry over straightforwardly; in the analogue of
Lemma 1.3 we cannot define H, or x#, so the notation is less con-
venient, but the proof is not much longer. Although we cannot draw
any conclusions about separability, we can conclude that an infinite di-
mensional normed algebra is a noncommutative Jordan algebra (Theorem
1.1) and from this we can get Schafer’s result that infinite-dimensional
algebras admitting associative or Jordan composition are alternative or
Jordan algebras respectively (Theorems 1.3 and 1.4). However, it is
conjectured that all normed algebras are necessarily finite-dimensional,
so for convenience we have restricted ourselves to the finite-dimensional
case.

CHAPTER 11

1. Inverses. In this chapter we do not assume that @ is infinite,
and in this first section we do not assume that the algebras are finite-
dimensional. Let 2 be a commutative Jordan algebra; then we have
the following identities [5, pp. 1155-1156]:

(2.1) Upiy = UU,U, (U, =2L — L)

(2.2) [L., L,.] + [L,, L..] + [L,, L,,] = 0

(2.3) L.L,L,+ L,L,L, + Ly,, = L,L, + L, L, + L,,L,
(2.4) Lgn = 2Ll — LU, (0 Z=2).

We say that an element a €2 is regular with inverse b if ab =c¢ and
a*b = a (where ¢ is the identity of ).

THEOREM 2.1. Let A be a commutative Jordan algebra with
identity c. Then for acU the following are equivalent:

(a) a 1s regular

(b) ¢ is in the range of U,

() U, is an tnvertible transformation.
The inverse s unique; 1f o has inverse b then b has tnverse a and
UU,=UU,=1. In this case L, = U;*L,, all L,,, L,; commute, and
?(a, b) s a commutative assoctative algebra.

Proof. If U, is an invertible transformation then clearly ¢ is in
its range; conversely, if ¢ is in the range of U,, say U,d = ¢, then by
@21) I=U, =Upq =U0,U0,U0, so U, is invertible.

If U, is invertible and b = U;'a then U, = a* = L,a = L, U,b =
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U,L,b =U,adb) (U, commutes with L, since L,. commutes with L, in
a Jordan algebra). Since U, is one-to-one, ab =c. We get U,a = U,(a*)
in the same way, so a’® = a (which also follows from

a = U,b = 2a(ab) — a’b = 2a — a’) .

Hence a is regular with inverse b.
If a is regular with inverse b, then L,, = I, so (2.2) shows [L,, L,.] =
[L,, L] = 0. Thus

U = 2L%(Lyse) — Loa(b?) = 2Ly(Lic) — a’b?
— @ = Ll = LyLyab = Lya = ¢

is in the range of U,.

U,b = 2a(ab) — a’d = a shows the inverse b is uniquely determined
as U.%; it also shows U, = Uy, = U,U,U, by (2.1), so U, U, =
U,U, = 1. Then b has inverse U;%b = U,b = a.

In this case [L,, L,:] =[L,,U,] =0 (since U, = U;"), so L, com-
mutes with 2L = U, 4+ L,.. Thus putting * =y =a,z =0 in (2.3)
yields L, = (2L — L)L, =U,L,, L, = U;'L,. Hence U,, L, are in the
commutative algebra of linear transformations generated by L,, L., U,
by (2.4) this includes all L., L,;, so they all commute. Then it is easy
to see that @(a, b) is a commutative associative algebra.

This theorem is due to N. Jacobson [4, 5]. The above proof is
simpler than his; the simplification comes from repeated use of the
“fundamental formula” (2.1), which was unknown when he first proved
the theorem.

Now let 2 be a (possibly infinite-dimensional) noncommutative
Jordan algebra. The following identities hold [1, pp. 573-575]:

(2.5) (L., B.] = [R,, L]
(2'6) Rym + L:::Ly - Lx:!/ + R:cRZI
(2.7) R.L(R. + L,) + Ly» = R:L, + L,(R, + L,) .

We define ae? to be regular with tnverse b if ab = ba = ¢, a’b =
ba’ = a (¢ the indentity of ).

THEOREM 2.2. If U 4s a mnoncommutative Jordan algebra then
ac has an inverse b vf and only if b is the inverse of a in the
commutative Jordan algebra A+. Then L, = U,*R,, R, = U,;'L, where
U,=R(R,+L,)— Ry2=L(L,+ R,) — L, =U}. All Ly, Rz, Lys, R,;
commute, and @(a,b) is a commutative associative algebra.

Proof. Clearly if ab = ba = ¢, a’b = ba® = a then a has inverse b
in A+, Conversely, suppose a has b as inverse in 2*; then ab + ba =
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2¢, a’b + ba® = 2a. From (2.6)

(Ly: — Ru)b = (L2 — RYb
— (L, — R)L, + R)b = 2L, — R)e = 0

so a’h = ba? = a. Then ba = b(a’®) = (ba*)b = ab, so ab = ba = ¢, and
b is the inverse of a in 2.

By (2.5), [L,, R,] = [R., L,]; by (2.6), ab = ba = ¢ implies R, R, =
L,L,, R,R, = L,L,, so [R,, R,] =[L,, L,]. Then

[B. + L, L)) = 4R, + L., Ry + L] = 2[Lg, Li] = 0
from Theorem 2.1. Hence putting = a,y = b in (2.7) yields
R, = {R(R. + L) — Ro}L, = U,L, .
Now (2.6) implies R — R,s = L’ — L, so averaging gives

Ua, - Ra(Ra + La) - Rcﬂ
=LJ(L,+R,) — Lp=2L"*—Lh=U;.

By Theorem 2.1, U; is invertible, so L, = U;'R,. R, = U;'L, follows
by duality. It is standard that R,, L,, R, L,» generate all R,x, L, (by
induction using (2.7), its dual, and power-associativity) so the rest of
the proof proceeds as in Theorem 2.1.

COROLLARY. An algebraic element a in a noncommutative Jordan
algebra has anm inverse if and only tf it has an inverse in the as-
sociative algebra @lal.

Notice that formulas (1.9) to (1.13) of Lemma 1.3 show again that
in a normed algebra xf =« H, = U;*, L, = U;’R,, R,-» = U;'L,,
and U,, L,, R,, L,—1, R,-1 all commute.

2. Standard properties of the generic norm. In this section
again all algebras are finite-dimensional, but @ is not assumed to be
infinite. We will give alternate proofs of the results of N. Jacobson
[3] concerning the generic norm. After first proving a general lemma
about polynomials admitting some kind of composition, an application
of a technique involving the theory of inverses and the Hilbert Nul-
Istellensatz (due to N. Jacobson [3, p. 37]) yields the desired results
in a direct fashion.

Lemma 2.1. If Qe@[n, --+,71,]ts a polynomial and M, ---, M,
are rational expressions in @&, +++, &, 0y =+, V) Which are linear
wn the indeterminates 1; and such that

(@) QM(E, ), -+, M(§ 1) =mE)Q®) for some rational expres-
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S’I:O’n m(gly ct én) € @(gl; AR gn)
(b) Mfc,n) =mn, for some ¢ = (c, *--,c,) where c,€ @
then each trreductble factor Q; of @ admits the composition

QiMLE, M), -+, M(E 7)) = mi(E)Q:(7)

for some rational expression m,.

Proof. For convenience let M(&,7) denote (M(E, %), «+-, M,(& n)).
Let Q = [ Q% be the factorization of @ into distinct irreducible factors.
From (a) we have

IT QUM(E, n)" = QIMIE, 7)) = m(E)QM) = m(&) IT Q)" .

Since each @, divides the right side and is irreducible as a polynomial
over O, ---,&,) it must divide some Q;(M(, n)), say Q;(M(&, 1)) =
my(& n)Q;(E) where m,; is rational in & and a polynomial in 7. From
(b), specializing &—c gives Q;(n) = m,(c, n))Qi(n). Since the Q, are
distinct and irreducible, ¢ = j; then Q,(M(&, 1)) = m (&, n)Q:(n) and the
assumed linearity of the M(&, ») in » imply m; is of degree 0 in 7,
my(&, 1) = my(€). Hence Q(M(E, 7)) = m(&)Q,(n) as desired.

As a corollary, if @ is homogeneous we may take n =1, M(\,7) =
A7; then from

QUM(\, 1)) = QA7) = NQ(7)

we conclude by the lemma that each irreducible factor @, satisfies
Q:(\) = m,(M\Q;(m). But I m;(\) =279 so m;(\) =A% and we see that
each irreducible factor of a form is again a form. Of course, this is
obvious anyway.

If A is a strictly power-associative algebra over @ (ie. remains
power-associative under any extension of the base field) the generic
mintmum polynomial m.(\) of A is the mimimum polynomial of the
generic element & = &x, + -+ + &2, of Uy, I = OE, ---, &,), relative
to some basis {x,, ---,2,} for A over @. Specializing & — = gives a poly-
nomial m,(\) which has the same irreducible factors as the minimum
polynomial g,(\) of « in 2 (this and the following assertions are found
in [3, pp. 27-28]). The generic norm is the constant term N(&,---,§&,)
of m.(\); it is a homogeneous polynomial in the &. As a polynomial
function the generic norm is independent of the basis for 2, and the
generic norm of an extension algebra 2, is just the natural extension
of N to %,. Note, however, that N is given initially by a polynomial
and a choice of basis rather than by a polynomial function (compare
with Theorems 1.3, 1.4).
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THEOREM 2.3. If U is a commutative Jordan algebra, the generic
norm N(x) has the same irreducible factors as K(x) = det U,.

Proof. It suffices to prove everything over the algebraic closure
2 of @. the K, N of 2, are just the natural extensions of those of
A, so if the former have the same irreducible factors over 2 the latter
must have the same irreducible factors over @. By Theorem 2.1 and
the Corollary to Theorem 2.2 K(x) = 0+« 2 has no inverse in Q[x].
Since Q[x] is associative, ¢ has no inverse < the constant term of
¢(\) is zero. But pg,(\) and m,(\) have the same irreducible factors,
so their constant terms vanish on the same set. The constant term
of m,(\) is N(x), so K(x) = 0+ N(x) = 0. Because 2 is algebraically
closed we can apply the Hilbert Nullstellensatz to conclude that K and
N have the same irreducible factors.

THEOREM 2.4. If U s a commutative Jordan algebra, all nor-
malized irreducible factors M of the generic morm admit Jordan
composition M(U,y) = M(x)M(y).

Proof. By the fundamental formula (2.1), Uy, = U,U,U,, so
taking determinants gives K(U,y) = K(x)’K(y). Since this holds for
an infinite extension of @, it becomes an identity between polynomials
relative to a choice of basis for 2, and since U, = I we can apply
Lemma 2.1 and Theorem 2.3 to conclude that each irreducible factor M
of K or N admits composition M(U,y) = m(x)M(y). From M(c) =1
we can conclude M(U,y) = M(x)’M(y) as in the proof of Theorem 1.2.

THEOREM 2.5. Let U be a strictly power-associative algebra, B
a subalgebra. Then the restriction N |y of the gemeric norm N of A
to B is a polynomial on B having the same irreducible factors as
the generic morm Ng of B. If M 1s any normalized factor of N
then M(xy) = M(2)M(y) +f x,y are contained in an associative sub-
algebra.

Proof. For the first assertion, if x€ B then
N |g () = 0 — N(») = 0 — 2 has no inverse in &[x];

since P[x]Cc B A the same reasoning shows Ngx(®) = 0«2 has no
inverse in @[x]. Thus N |gy(x) = 0 = Ng(x) = 0; this remains valid on
extension of @ to its algebraic closure, so as in Theorem 2.3 we con-
clude N |g, Ny have the same irreducible factors.

Next, let M be a normalized irreducible factor of N and assume
B is an associative subalgebra of 2. If D(x) is the determinant of
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left multiplication by « on 8 then the associativity L,, = L,L, of B
gives D(xy) = D(x)D(y). Since this remains valid on an infinite ex-
tension of @, relative to a basis for B it becomes an identity between
polynomials. Applying Lemma 2.1 we see that every irreducible factor
of D admits composition. But by the same argument as before, N |y
has the same irreducible factors as D. Hence M|y, as a factor of
N |g, admits composition M |y (vy) = m(x)M |4 (y); taking y = ¢, the
assumption that M is normalized gives m(x) = M |y (x). Hence if x,y
are in an associative subalgebra B we have

M(xy) = M |g (xy) = M | ()M |g (y) = M(x)M(y) .

COoROLLARY. If U is an alternative algebra, all normalized irre-
ductble factors M of the generic norm admit associative composition
M(zy) = M(2)M(y).

THEOREM 2.6. Let U be an alternative or Jordan algebra. If
{©, «++, 2,} ©s a basis and Q< @§, ---, &,] a homogeneous polynomial
of degree q such that Q(adb) = Q@)Q®) or Q(U,D) = Q(a)yQ(db) respec-
tively for all a,beW, and if |@|>q or |@| > 2q then in either
case Q s a product of irreducible factors of the gemeric morm N.

Proof. The assumptions on |@| guarantee that we can pass to the
algebraic closure of @ and prove the result there. We saw Q(c) # 0 in
§ 2 of Chapter I (¢ the identity of ). If N(x) #+ 0 then z has an in-
verse y in @[x], 2y = U,y = ¢. Thus Q(c¢) equals Q(x)Q(y) or Q(x)Q(y),
and in either case @(x) cannot be 0. Thus Q(x) = 0= N(x) = 0, and
the Hilbert Nullstellensatz yields the result.

THEOREM 2.7. The generic norm of a simple alternative or Jordan
algebra ts irreducible.

Proof. We refer to [3, pp. 33 and 39].

THEOREM 2.8. The generic norm of an alternative or Jordan
algebra A with identity ¢ has mondegenerate trace form t, vf and
only 1f W is separable.

Proof. By the Corollary to Theorem 2.5 or by Theorem 2.4 N
admits R,, L, or U, on 2,, 2 an infinite extension of @. Thus if 7,
is nondegenerate A, is normed, so is separable by Theorem 1.1, and
hence A is too. Conversely, assume 2 is separable; it will suffice to
prove N, is nondegenerate for £ the algebraic closure of @. Then
WA, = @A, for A; simple alternative or Jordan algebras respectively,
and N, = [IN,, = @r;, so it will suffice to prove N, is nondegen-
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erate. We are thus reduced to considering the case of a simple alge-
bra 2 over an algebraically closed field £. By Lemma 1.2 7 is a well-
defined associative biliner form, hence by simplicity it is either non-
degenerate or the zero form. Assume 7 = 0; from (1.4) with y =e¢,
E,=L, or U, we get 7,(L,u, L,w) =7(u,v) =0 or 7,(U,u, Uw)=
z(u, v) = 0 respectively. Then 7z, =0 or 7, =0 on the sets where L,
or U, are nonsingular. Since 2 is infinite, 7, =0 for 2z in a dense set
in either case, so 7, = 0 for all «; in other words 9,0, log N = 0 for all
u,v. Thus 0,log Ne Q(&, ---, £); but it is homogeneous of degree —1,
so it is zero, and 8,N = No,log N =0 for all v. Then Ne Q[&], -, EL];
since £ is perfect, N is a pth power, which contradicts Theorem 2.7.
Thus 7z #+ 0, so it must be nondegenerate.

4. Applications to normed algebras. In this section we use
the foregoing results to characterize all possible norms on a normed
algebra. Throughout the section we will assume that @ is infinite.

LemMA 2.2, If Qe@[n, «--,7,.] ts a polynomial and M, ---, M,
are rational expressions in @&, «--, &, Ny, <+, n,) which are linear
in the indeterminates 7, and such that

(@) 0, log QM(E,7), -+ -, M,(§ 7)) =0, log Q(p) for all k where 0,
is formal partial derivation with respect to 7,

(b) Me,n) =n; for some ¢ = (¢y, +++,¢,) where c,;€ @
then Q@ = Q'Q" where each irreducible factor Q; of Q admits the com-

position Q:(ME,7), ---, M,(&, 1) = mi((EQ.(n) for some rational ex-
pression m; and where Q" e @[y, +++, Nh].

Proof. For convenience we set M(&, n) = (M, ), +-+, M, (& n)).
Let Q@ =TI Q% be the factorization of @ as in Lemma 2.1 Suppose
@, ---, Q; are the @, which admit composition. Write @ = Q'Q"” for
Q" = [I:<; @%. Then Q'(M(E, 7)) = m'(&)Q'(n), so

0, log Q'(M(E, 1)) = 9, log m/(§) + 8, log Q'(n)
=0, log Q'(n) .

Since 8, log Q@ = 8, log Q" + 0, log ", subtraction from (a) gives
0, log Q"(M(, 1)) = 0, log Q"(7) .
Now
0, log Q" = g—; ¢,0, log Q;
=2 ¢,Q:0,Q; = R 3, q,.R9,Q; = B~'S
where R = [[:;»; @;, B; = Q7'R. In reduced form the denominator of
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9, log Q" thus consists of some of the distinet irreducible factors Q, of
R with 7 > 7, while the denominator of

0, log Q"(MI(E, 7))
= R(M(§, 7)) 25 ¢.R(M(E, 1))0,Q{ME, 7))
= R(ME, )7 T(E, )

considered as a rational expression in » with coeflicients in @&, -+, &,)
is just R(M(§, n)) = Ilis; Q:(M(E, ). If Q; is a factor of the former
denominator it must be a factor of the latter; then as in Lemma 2.1
we see that @, admits composition. This contradicts our assumption
that Q, does not admit composition for ¢ > j, so no such Q; exists, and
the denominator of RS in reduced form must be a constant. Then
d,log Q" is a polynomial; we noticed after Lemma 2.1 that each Q; is
homogeneous, so 8, log @’ is homogeneous of degree —1, and thus
must be identically zero. Then 9, Q" = Q"0,log @ = 0 for all &, and
Q' ednt, -+, Ml

THEOREM 2.9. If Q is a morm on a mormed algebra A with
tdentity ¢ then Q is a product of trreducidble factors of the gemeric
norm N of U. The symmetrized algebra A+ s the Koecher algebra
W@, c). In particular, any commutative normed algebra is the Koecher
algebra of its norm.

Proof. @ remains a norm on %,, 2 the algebraic closure of @, and
N remains the generic norm, so it suffices to prove the result over 2.

We have

auav 10g {Qon} ‘y = a1~I(:::)ualil(a:)v log Q Iﬂ(x)y
= —TH(x)y(-qur Hx/v)
= "—T(Ha:kHH(x)nyu’ 1)) .

Now H} = H, and by averaging (1.13) H,;*=2L}* — L} = U}, so from
the fundamental formula (2.1) for the commutative Jordan algebra A+

H.Hy.,H, = (U,Ug,U,)™"
= (Uvriyawy) = U, =H,.

Therefore

0,0, log {QOHy} lv = —t(H,u, v)
= _Ty(u’ /U) = auav IOg Q ly ’

and
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0,{0,log {QoH,} —3,logQ}|, =0.

The term in braces is homogeneous of degree —1, so taking u =y
gives 9,log {Qo H,} |, = 0,log Q |, by Euler’s equations. Since 2 is in-
finite, the relation 8, log Q(H,y) = 9, log Q(y) becomes a relation between
polynomials relative to a basis for 2[, and we can apply Lemma 2.2 to
write @ = Q'Q” where all the irreducible factors @, of @' admit H, as
composition and where Q" is a pth power (since 2 is perfect). If @Q;
admits H, it admits U, = H,'; if we normalize it as in Theorem 1.2
we can apply Theorem 2.6 to conclude @; is an irreducible factor of
N. Let Q = J] Q% be the factorization of Q. If p does not divide
q; then Q% is not a pth power, hence not all of it can appear in Q”,
S0 @; must appear in @ and hence be an irreducible factor of N. To
complete the proof we need only show that for each j we can alter
the exponents so that @ = [] Q% is still a norm but p does not divide
G;,, By Lemma 2.1, all @, admit E,, F, of (1.1), so any Q does too;
hence @ will be a norm as soon as its trace form 7 is nondegenerate.

If A, = @A, is the decomposition of A, into simple ideals guaran-
teed by Theorem 1.1 then N = [] N;, N, the generic norm of 2,. By
Theorem 2.7 the N, are the irreducible factors of N over 2, so if »
does not divide ¢; then @, is an N;. If p divides ¢; then Q% =0 and
hence @, does not contribute to the trace form 7 of @. Thus 7 is a
linear combination of the traces of the N;. The latter are concentrated
on the A;’s, so by the nondegeneracy of 7 all the N; must appear among
the @; with ¢; not divisible by p. We may renumber so that Q;, = N;
for 1 =<7 <m. Thus the Q; for 7 > m are the ones p divides ¢;. By
Theorem 2.8 the trace form z; of @; = N, is nondegenerate on ;. By
Lemma 1.2, 7; for 5 > m is a (perhaps degenerate) associative bilinear
form on 2,, so 7; = @;<, \iT; for some \; € 2 (because any associative
form on the simple algebra U, over the algebraically closed field 2 is
a scalar multiple of the given nondegenerate form z;). If we pick in-
tegers g, such that g1 + \; = 0 in 2 and set Q = [[:<,, Q% then @ =
Q,;Q has trace form 7 = @,-,, (§; + \;)r; which is nondegenerate. The
exponent of Q; in @ is 1, so @ is the desired norm. (As a matter of
fact, since this implies @; is an irreducible factor of N it is one of the
N; and hence there actually is no @; for 7 > m).

For the last statement of the theorem, observe that the Koecher
algebra is defined because @ admits H,. Multiplication in 2+ is L} =
3L, + R,), so

o(Liv, w) = §r({L, + R,}v, w)
Ho(Lw, w) + (v, L,w)}
= 40,0,0, log Q |,
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by (1.8) and (1.5). But this defines the multiplication in the Koecher
algebra, so A+ = A(Q, ¢).

Note that the norms on U are precisely all @ = [] N where no
n; 1s divisible by p (in particular no n,; is 0).

CHAPTER III

1. Isotopes. Throughout this chapter 2 will denote a finite-
dimensional commutative Jordan algebra (not necessarily semisimple and
@ not necessarily infinite). We first recall the standard results about
isotopes [5], which are all consequences of MacDonald’s Theorem. Let
% be any element of 2 = (%, .). We define a new multiplication on X
by 2.,y = (@-u)-y + (u-y)-x — (x-y)-u. The algebra A = (¥, -,) has
an identity if and only if w is regular, in which case the identity is
4=, In this case we say U™ is the wu-isotope of 2A; A™ is again a
Jordan algebra, and the operator U{” is given by

(3.1) U» =U,U,.

The relation of isotopy is symmetric and transitive.

THEOREM 3.1. Let Q be a form on a finite-dimensional vector
space X over an tnfinite field @ and ceX a point where the Koecher
algebra A = W(Q, ¢) is defined: thus the trace form t, is nondegenerate
and Q(H,y) = hx)QW). If ¢eXisany point where T3 18 nondegenerate
then the Koecher algebra N = A(Q, ¢) is defined and is the u-isotope
of W for w=2¢C"". Thus the Koecher algebras corresponding to dif-
Jerent basepoints are isotopic.

Proof. Let v =7,,7 =77 where z,(u, v) = —0,0,log @ |, as usual;
then o(H,u, v) = 7,(u, v) = Z(Hu, v) = t3(Hu, v) = 7(H;H,u, v) implies
H, = H7'H, by the assumed nondegeneracy of z,%. Then Q(H,y) =
QH'H,y) = k(&) ""h2x)Q(y) = h(2)Q(y) and ¥ is defined. From (1.13)
we see U, = H;*= H;'"H; = U,Us'. Since % is defined we must have
Q(¢) # 0, so we know % = ¢! exists and equals ¢# by (1.11), (1.12).
Thus A is a Jordan algebra with identity 4*=¢ and U =U,U, =
U,Ur, =U,Us" using (3.1) and Theorem 2.1. But % has the same
identity and U, = U,Us' = U™, so A = AW,

COROLLARY. If ¥, N are commutative normed algebras on X, X
over an infinite field @ with norms Q,Q respectively, and if W:%—%
s a one-to-one linear transformation such that @( Wx) = Q(x), then
W is an isomorphism of U with an isotope of A.
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Proof. W carries 2 in the natural way isomorphically onto an
algebra % on X with identity @ = We¢ and norm Q = QoW-!. By
Theorem 2.9, A is the Koecher algebra A(Q, ¢) of @ with basepoint &,
and ¥ is the Koecher algebra UA(Q, &) where & is the identity of 9.
But Q(W=z) = Q(x) = @(Wz) and @ is infinite, so @ = @; by Theorem
3.1 U is the ¢~ isotope of A. Hence W is an isomorphism of ¥ with
an isotope of 9.

COROLLARY. If U is a separable Jordan algebra with generic
norm N, |@| > deg N, then a one-to-one linear transformation W of
A into itself vs an automorphism of WA if and only if We = ¢ and
N(Wa) = N(a) for all ac .

Proof. Clearly any automorphism satisfies the conditions. Con-
versely, any such W satisfies N(W2x) = N(x) on an infinite extension
by our assumption on |@|; if we take U = A, Q = @ = N the proof
of the preceding corollary and the fact that (We)™ =c¢ ' =c¢ show
that W is an isomorphism of 20 with 2 = 9,

Note that Q(Wa) = @Q(a) need not hold for an automorphism W if
@ is an arbitrary norm on the separable algebra 2L.

2. The group Z(A). We here generalize some results of Koecher
[9, pp. 70-73]; remember that A need not be semisimple and @ need not
be infinite. Let < (A) be the set of all nonsingular linear transforma-
tions W on U such that

Uy, =WUW*

for some linear transformation W* and all %, and let Z/(A) be the
group generated by the U, for x regular (see Theorem 2.1). One
easily verifies that () is a group, W*e () for all We = ¥),
and (by (2.1)) /() is a subgroup; since

WU, W = Uy, W*W—
= Uy (WU W*)™ = Uy, Uy € ZZ ()
it is a normal subgroup. If We <) then
Uswary = Uwvywsy = wUw*U,w**U, W+,

but from (2.1) Uyway = Uy U, Uy, = WU W*U, WU, W*, so equating
gives W** =W. (W, Wy)* = WF W5 is clear, so * is an involution on
< (W) which leaves the elements U, fixed. Geometrically, W* =foW-'o g
where # is the mapping 2 — 27 = U;%:
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WHe = W* U;llx“
= W*(WUwﬂx-lW*)‘lx‘l = U;;le——] W—ig—!
= (W-iam) = (oW o tja .

Thus W*v =4 = Wyt = v

THEOREM 3.2. Two isotope A, A are tsomorphic under a linear
tramsformation W if and only if We <) and W*v=u. The group
of automorphisms of A is the subgroup of T (A) fixing the identity
c.

Proof. Suppose W: U™ — AW is an isomorphism. Then W takes
the identity #~' of 2™ onto the identity »~* of 2A™, so Wu~' =v'=
W*v = u, and by the multiplicative property

WLy = L. W= WU = Up, W= WU,U, = U, UW
(by (3.1)=> Uy, = WU, W* for W* = U, W-'U;" and all @, so We % ().

Conversely, if We ©(A) and W*v = u then for all x u = W*v =
(U WUy, so Wx- We =Uy,v = WUu = W(x-,x); by commuta-
tivity this linearizes to W(x-,y) = Wa-,Wy, and W is an isomorphism.

Applying this to the case v = v = ¢ and noting that W*c =c¢=
We = ¢ since ¢ = ¢, we see W is an automorphism of U = A if and
only if We (W) and We = c.

Isotopes are not always isomorphic; for example, the algebras H(D,,7)
for different v are isotopic but not necessarily isomorphic. However, if
@ is algebraically closed then there is essentially only one $(®,,v). This
is a special case of the following general result.

THEOREM 3.3. If @ ts algebraically closed, all isotopes U™ are
wsomorphic.

Proof. Since @ is algebraically closed, every regular element has
a regular square root [3, p. 43]. If 2A™ is an isotope, % is regular
by definition, so there is a regular ve 2 with »* = 4. Then Uyg =
v =wu, and U, = U} ez (W) () since v is regular, so by Theorem
3.2 U, is an isomorphism of A onto A = A,

This can also be seen without recourse to Theorem 3.2. Let v* =u
as above; by bilinearity and commutativity it will suffice to demonstrate
Ufx:,x2) = (Ux)-(Ux) in order to prove U, is an isomorphism of 2™
onto . But z-,2x =2x-(x-u) — «*u=Uu, so Ufx-x) =UUu =
U0, =U0,U,Uc =Uy,.c = (Ux) by (2.1).
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As a corollary of this result we get a quick proof of the following
proposition [3, p. 43].

COROLLARY. The generic norm of an isotope A 43 N™(x) =
N(u)N(x).

Proof. It suffices to pass to the algebraic closure. There we can
find a square root v of u, and by the above U, is an isomorphism of
A onto 2. Under an isomorphism corresponding elements clearly have
the same generic norm, so

N®™(z) = N(U,x) = N(v)’N(x) = N(v*)N(x) = N(u)N(x) .

COROLLARY. If @ +ts algebraically closed, every We £ () can
be written W = UV where Ue Z7(A) and V is an automorphism.

Proof. Since Uy, = WU, W * is nonsingular, We¢ is regular, and
hence as above has a regular square root v. Then U = U, e (), and
V=U"'W has Vez @) and Ve =U"We=U;""=¢, so V is an
automorphism by Theorem 3.2.

Suppose now that 2 is separable over an infinite field @ with generic
norm N.' We claim that < () is just the group of normpreserving
transformations W such that N(Wzx) = o N(x) identically with we @.
If N(Wx) = oN(x) we can apply the differential calculus as in (1.3) to
get Ty (Wu, Wo) = z(u, v), hence W*Hy, W = H,, Hy, = W*H,W,
Uy, =WU,W* and We £ (2); note that * here is the adjoint rela-
tive to the nondegenerate form 7. Conversely, if We £ () then by
Theorem 3.2 W is an isomorphism of 2™ onto A for u = W*c. Then
N(Wzx) = N¥(x) = N(w)N(xz) by the first Corollary, and W is norm-
preserving.

The group £ (A) has been computed by N. Jacobson [6, I, II, III]
for central simple 2[; in each case it is easy to compute W*.

3. The Lie algebra of (). As a final example of the usefulness
of the differential calculus we give short proofs of some results of N.
Jacobson [3, pp. 42, 47, 48] on the Lie algebra of the algebraic group
Z(A). We will assume throughout the section that @ is infinite. We
say a polynomial Q has a linear transformation W as Lie tnvariant if

anQ |x = O

identically. Such W form a Lie algebra <~(%, @) of linear transfor-
mations. Indeed, applying 9, |, to the defining relation gives
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0w, Q1. + 00w Q. =0;
if W,Ve (U, Q) then
Ora@ o = =0y 0wl . = —0w.0,.Q | =0,w.Q 1.,
and 08y,,,Q |, = 0 implies [W, V]e (¥, Q).

THEOREM 3.4. If N is the generic norm of a Jordan algebra A
then L,e &<, N) +f and only if a has trace zero, te. z(c,a) = 0.
If A is separable then

Z@,N) =W 2

where (') ts the space of multiplications L, by elements of trace
zero and () is the Lie algebra of derivations.

Proof. For the first assertion it will suffice to prove 0., ,N|, =
N(y)r(e,a). We apply 8, ]. to N(U,y) = N(x)*’N(y) as a function of zx.
Using the chain rule the left side becomes

0,N(U,y)|. = 0,N |p(0py = 0, N |,

for b =0,{U,y}|, =2L,y. Using N(c) =1 and the Euler equations the
right side becomes

2N(c)o,N |, N(y) = 2N(y)N(c)"0,N |, = 2N(y)9, log N |,
= —2N(#)3.0, log N |, = 2N(y)z(c, a) .

Equating gives 20;,,,N |, = 2N(y)c(c, a).

For the second assertion, let We <<, N), We =a. Since U is
now assumed separable, ¢ is nondegenerate by Theorem 2.8. Hence
we can define # as in § 4 of Chapter I, and

0 = N(x)70y,N |, = 0y, log N[, = =(z¥, Wx) .

Putting x=c¢ we get (¢, a)=0, so L,e X (N)c. &, N). Therefore
D=W—L,e ZUA, N),Dc =0. We will prove D is a derivation. As
above 0 = t(x#, Dx), so 0 =08, {c(z%, Dx)}|, = t(x¥, Dy) — =(H,y, Dx).
By nondegeneracy D*x¢ = H,Dx, and U,D*x% = Dx by (1.13). From
Ue.=U; (by (2.1)) and ()¢ =2 =U;%c = H,c (by (1.11)-(1.13)) we
get
D(x-x) — 2x+Dx = U, D*(2*)¢ — 2L, U, D*xt

=UJ{U,D*H,c — 2L,D*x%}

= —U0{U. D"} |}

=-UJj0.Dx|,} = —U,Dc =0;
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linearizing shows D is a derivation. Hence
W=L,+ De )+ 2®),

and we have shown <, N)c L(A') + 2@); but L(A')c L, N),
and 2(A)c L@, N) is known [14], so L (A, N) = L&) + D).
Finally, <) N 2@A) =0 since L,c=a, Dc=0, so the sum is direct.
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