A REMARK ON THE LEMMA OF GAUSS

Fred Krakowski

Abstract

Let R be the ring of integers of some algebraic number field K and $\mathfrak{B}=R\left[x_{0}, \cdots, x_{r}, y_{0}, \cdots, y_{s}\right]$, where the $x_{i}{ }^{\prime} s$ and $y_{j}{ }^{\prime} s$ are indeterminates. Call two ideals of \mathfrak{P} equivalent, if after substitution of the indeterminates by arbitrary elements of R they always yield identical ideals in R. For example, consider the ideal I generated by the coefficients of the product of the two polynomials $f(t)=\sum_{i=0}^{r} x_{i} t^{i}$ and $g(t)=\sum_{j=0}^{s} y_{j} t^{j}$. According to the so-called Lemma of Gauss, I is equivalent to the product J of the ideals $\left(x_{0}, \cdots, x_{r}\right)$ and (y_{0}, \cdots, y_{s}).

The object of this note is to show that the ideal I has the following minimal property: It has the smallest number of generators, namely $r+s+1$, among all ideals in \mathfrak{P} which are equivalent to J in the above sense.

Lemma 1. For every nonconstant polynomial $f \in R[t], t$ an indeterminate, there exist infinitely many prime ideals $P \subset R$, such that the congruence $f(x) \equiv 0(\bmod P)$ has a solution $x \in R$.

Proof. Denote by f_{1}, \cdots, f_{m} the polynomials conjugate to f over the rationals and let $f=f_{1}$. Consider their product $F=f_{1} \cdots f_{m}$. The coefficients of F are rational integers and thus there is an infinite sequence of rational primes p_{1}, p_{2}, \cdots and corresponding rational integers x_{1}, x_{2}, \cdots, such that $F\left(x_{i}\right) \equiv 0\left(\bmod p_{i}\right), i=1,2, \cdots$ (see e.g. [1], p. 33).

Let now L be a normal extension of the rationals containing K. For each p_{i} choose a prime ideal $P_{i} \subset L$ containing p_{i}. Then $F\left(x_{i}\right) \equiv 0$ $\left(\bmod P_{i}\right)$. Since $\left(p_{i}, p_{j}\right)=(1)$ for $i \neq j$, we also have $P_{i} \neq P_{j}$. Thus there exist infinitely many prime ideals of L which divide numbers of the sequence $F\left(x_{i}\right), i=1,2, \cdots$.

Assume now there exist only finitely many prime ideals in R, say Q_{1}, \cdots, Q_{k}, such that the congruence $f(x) \equiv 0\left(\bmod Q_{j}\right)$ has a solution in R for $j=1, \cdots, k$. Denote by $Q_{1}^{\prime}, \cdots, Q_{k}^{\prime}$ the ideals in L generated by Q_{1}, \cdots, Q_{k}. A prime ideal of L containing $F\left(x_{i}\right)$ would then have to be also a divisor of some Q_{j}^{\prime} or of an ideal conjugate to Q_{j}^{\prime}, because $F\left(x_{i}\right)$ is the product of the conjugate elements $f_{1}\left(x_{i}\right), \cdots, f_{m}\left(x_{i}\right)$. It would follow that there are only finitely many prime ideals of L containing numbers of the sequence $F\left(x_{1}\right), F\left(x_{2}\right), \cdots$, which is a contradiction. This proves the lemma.

The next lemma gives a necessary condition which is satisfied by

[^0]equivalent ideals of a polynomial ring over R. Denote by R^{n} the set of n-tuples of elements of R. If t_{1}, \cdots, t_{n} are indeterminates and
$I=\left(f_{1}, \cdots, f_{r}\right) \subset R\left[t_{1}, \cdots, t_{n}\right], a \in R^{n}$, let $I_{a}=\left(f_{1}(\alpha), \cdots, f_{r}(a)\right)$. Further let C stand for the field of complex algebraic numbers, C^{n} for the n-dimensional affine space over C and V_{I} for the algebraic variety in C^{n} defined by the ideal I.

Lemma 2. Let I and J be ideals of $R\left[t_{1}, \cdots, t_{n}\right]$ and suppose that for all $a \in R^{n}$ we have $I_{a}=J_{a}$. Then $V_{I}=V_{J}$.

Proof. Let f_{1}, \cdots, f_{r} be a basis of I and g_{1}, \cdots, g_{s} a basis of J_{*} Suppose $V_{I} \neq V_{J}$ and assume there is a point $\alpha=\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle$ of V_{I} not contained in V_{J}. We must show that there exists a n-tuple $a \in R^{n}$, such that $I_{a} \neq J_{a}$.

Now $f_{i}(\alpha)=0, i=1, \cdots, r$ but, say, $g_{1}(\alpha) \neq 0 . \quad K\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is a separable algebraic extension of K, and let θ be a primitive element. We then have $\alpha_{i}=h_{i}(\theta), i=1, \cdots, n$, where h_{i} is a polynomial whose coefficients may be assumed, without loss of generality, to be integers of R. Also let $p(t)$ be a polynomial in $R[t]$, of which θ is a root and which is irreducible in $K[t]$.

Put $F_{i}(t)=f_{i}\left(h_{1}(t), \cdots, h_{n}(t)\right), i=1, \cdots, r$ and $G_{1}(t)=g_{1}\left(h_{1}(t), \cdots, h_{n}(t)\right)$. Since $f_{i}(\alpha)=0, i=1, \cdots, r$ and $g_{1}(\alpha) \neq 0$, we have $F_{i}(\theta)=0, i=1, \cdots, r$ and $G_{1}(\theta) \neq 0$. Hence there are polynomials $q_{i}(t) \in R[t]$ and elements $s_{i} \in R, i=1, \cdots, r$, with $s_{i} F_{i}(t)=p(t) q_{i}(t), i=1, \cdots, r$. On the other hand, since $p(t)$ is irreducible and $G_{1}(\theta) \neq 0, p(t)$ and $G_{1}(t)$ are relatively prime in $K[t]$, and there are polynomials $A(t), B(t) \in R[t]$, such that

$$
A(t) p(t)+B(t) G_{1}(t)=c
$$

where $c \in R$ and $c \neq 0$.
By Lemma 1 there are infinitely many prime ideals P in R, such that the congruence $p(x) \equiv 0(\bmod P)$ has a solution in R. Each one of the numbers s_{1}, \cdots, s_{r} and c is contained in only a finite number of prime ideals. Hence there is a prime ideal $P \subset R$ and an element $x \in R$, such that $p(x) \equiv 0(\bmod P)$, but $s_{i} \not \equiv 0(\bmod P), i=1, \cdots, r$ and $c \not \equiv 0(\bmod P)$. Therefore $B(x) G_{1}(x) \not \equiv 0(\bmod P)$. If we now let $a=\left\langle h_{1}(x), \cdots, h_{n}(x)\right\rangle$, then $a \in R^{n}$ and we get $g_{1}(a)=G_{1}(x) \not \equiv 0$ $(\bmod P)$ and thus also $J_{a} \not \equiv 0(\bmod P)$. On the other hand, since $s_{i} \notin P$, it follows that $F_{i}(x) \equiv 0(\bmod P)$, hence $f_{i}(\alpha) \equiv 0(\bmod P), i=1, \cdots, r$ and thus $I_{a} \equiv 0(\bmod P)$. Therefore $I_{a} \neq J_{a}$, which was to be shown.

Corollary. If for all $a \in R^{n}$ we have $I_{a}=(1)$, then $V_{I}=\phi$.

Lemma 3. Consider polynomials $f_{1}, \cdots, f_{k} \in R[t]$. Assume that for all nonzero elements $r \in R$ the k numbers $f_{1}(r), \cdots, f_{k}(r)$ generate the same ideal $I \subset R$. Then we also have $I=\left(f_{1}(0), \cdots, f_{k}(0)\right)$.

Proof. If D is an ideal in $R, D \supset\left(f_{1}(0), \cdots, f_{k}(0)\right)$ and r is an arbitrary nonzero element of D, then $\mathrm{f}_{i}(r) \in D$ for $i=1, \cdots, k$. Since $I=\left(f_{1}(r), \cdots, f_{k}(r)\right)$, we have $I \subset D$.

Conversely, if $D \supset I$ and $r \in D, r \neq 0$, then $f_{i}(r) \equiv f_{i}(0)(\bmod D)$. Since $f_{i}(r) \in D$, also $f_{i}(0) \in D$ for all i and hence $\left(f_{1}(0), \cdots, f_{k}(0)\right) \subset D$. This proves the lemma.

Lemma 4. Let f_{1}, \cdots, f_{k} be arbitrary and g_{1}, \cdots, g_{m} homogeneous linear polynomials in $R\left[t_{1}, \cdots, t_{n}\right]$. Assume that for all $a \in R^{n}$ we have

$$
\left(f_{1}(a), \cdots, f_{k}(\alpha)\right)=\left(g_{1}(\alpha), \cdots, g_{m}(\alpha)\right)
$$

Also denote by h_{1}, \cdots, h_{k} the subpolynomials of f_{1}, \cdots, f_{k} formed by their linear terms. Then $\left(h_{1}(a), \cdots, h_{k}(\alpha)\right)=\left(g_{1}(\alpha), \cdots, g_{m}(\alpha)\right)$ for all $a \in R^{n}$.

Proof. Since $\left(g_{1}(0), \cdots, g_{m}(0)\right)=\left(f_{1}(0), \cdots, f_{k}(0)\right)=(0)$, we have $f_{1}(0)=\cdots=f_{k}(0)=0$. Thus $f_{i}=h_{i}+$ terms of degree $\geqq 2, i=$ $1, \cdots, k$. Take a fixed n-tuple $a \in R^{n}$ and let $r \in R$ be arbitrary but $\neq 0$. Then

$$
\begin{aligned}
\left(f_{1}(r a), \cdots, f_{k}(r a)\right) & =\left(r h_{1}(a)+r^{2}(\cdots), \cdots, r h_{k}(a)+r^{2}(\cdots)\right) \\
& =(r)\left(h_{1}(a)+r(\cdots), \cdots, h_{k}(a)+r(\cdots)\right) \\
& =\left(g_{1}(r a), \cdots, g_{m}(r a)\right)=(r)\left(g_{1}(a), \cdots, g_{m}(a)\right)
\end{aligned}
$$

R being an integral domain, we get

$$
\left(h_{1}(\alpha)+r(\cdots), \cdots, h_{k}(\alpha)+r(\cdots)\right)=\left(g_{1}(\alpha), \cdots, g_{m}(\alpha)\right)
$$

for all nonzero $r \in R$. By Lemma 2 therefore

$$
\left(h_{1}(\alpha), \cdots, h_{k}(\alpha)\right)=\left(g_{1}(\alpha), \cdots, g_{m}(\alpha)\right)
$$

which was to be proved.
Theorem. Consider in $R\left[x_{0}, \cdots, x_{r}, y_{0}, \cdots, y_{s}\right]$ the ideal $J=$ $\left(x_{0}, \cdots, x_{r}\right)\left(y_{0}, \cdots, y_{s}\right)$ and suppose I is an ideal such that for all $a \in R^{r+s+2}$ we have $I_{a}=J_{a}$. Then the number of elements in a basis of I is at least $r+s+1$.

Proof. Let f_{1}, \cdots, f_{n} be a basis of I and let I^{\prime} be the ideal generated by the subpolynomials b_{1}, \cdots, b_{n} of f_{1}, \cdots, f_{n}, which are linear with respect to x_{0}, \cdots, x_{r} and with respect to y_{0}, \cdots, y_{s}. Since also the generators of J are bilinear and for all $a \in R^{r+s+2}$ we have $I_{a}=J_{a}$, by Lemma 3, we also have $I_{a}^{\prime}=J_{a}$ for all a.

Now the ideal J has only trivial zeroes in C^{r+s+2}, either all $x_{i}=0$ or all $y_{j}=0$. On the other hand, if $n \leqq r+s$, it follows from a theorem of Macaulay (see [2], p. 54) that I^{\prime} has a nontrivial zero in C^{r+s+2}. By Lemma 2 this cannot happen. Hence $n \geqq r+s+1$.

References

1. A. Scholz, Einführung in die Zahlentheorie, Sammlung Göschen Band 1131, Berlin 1939.
2. F.S. Macaulay, Algebraic Theory of Modular Systems, Cambridge Tracts in Math. 19, Cambridge 1916.

University of California, Davis

[^0]: Received June 2, 1964. The author is grateful to Professor Ernst Specker for many helpful conversations.

