A REMARK ON THE LEMMA OF GAUSS

FRED KRAKOWSKI

Let R be the ring of integers of some algebraic number field K and $\mathfrak{P} = R[x_0, \dots, x_r, y_0, \dots, y_s]$, where the x_i 's and y_j 's are indeterminates. Call two ideals of \mathfrak{P} equivalent, if after substitution of the indeterminates by arbitrary elements of R they always yield identical ideals in R. For example, consider the ideal I generated by the coefficients of the product of the two polynomials $f(t) = \sum_{i=0}^r x_i t^i$ and $g(t) = \sum_{j=0}^s y_j t^j$. According to the so-called Lemma of Gauss, I is equivalent to the product J of the ideals (x_0, \dots, x_r) and (y_0, \dots, y_s) .

The object of this note is to show that the ideal I has the following minimal property: It has the smallest number of generators, namely r + s + 1, among all ideals in \mathfrak{P} which are equivalent to J in the above sense.

LEMMA 1. For every nonconstant polynomial $f \in R[t]$, t an indeterminate, there exist infinitely many prime ideals $P \subset R$, such that the congruence $f(x) \equiv 0 \pmod{P}$ has a solution $x \in R$.

Proof. Denote by f_1, \dots, f_m the polynomials conjugate to f over the rationals and let $f = f_1$. Consider their product $F = f_1 \dots f_m$. The coefficients of F are rational integers and thus there is an infinite sequence of rational primes p_1, p_2, \dots and corresponding rational integers x_1, x_2, \dots , such that $F(x_i) \equiv 0 \pmod{p_i}, i = 1, 2, \dots$ (see e.g. [1], p. 33).

Let now L be a normal extension of the rationals containing K. For each p_i choose a prime ideal $P_i \subset L$ containing p_i . Then $F(x_i) \equiv 0$ (mod P_i). Since $(p_i, p_j) = (1)$ for $i \neq j$, we also have $P_i \neq P_j$. Thus there exist infinitely many prime ideals of L which divide numbers of the sequence $F(x_i)$, $i = 1, 2, \cdots$.

Assume now there exist only finitely many prime ideals in R, say Q_1, \dots, Q_k , such that the congruence $f(x) \equiv 0 \pmod{Q_j}$ has a solution in R for $j = 1, \dots, k$. Denote by Q'_1, \dots, Q'_k the ideals in L generated by Q_1, \dots, Q_k . A prime ideal of L containing $F(x_i)$ would then have to be also a divisor of some Q'_j or of an ideal conjugate to Q'_j , because $F(x_i)$ is the product of the conjugate elements $f_1(x_i), \dots, f_m(x_i)$. It would follow that there are only finitely many prime ideals of L containing numbers of the sequence $F(x_1), F(x_2), \dots$, which is a contradiction. This proves the lemma.

The next lemma gives a necessary condition which is satisfied by

Received June 2, 1964. The author is grateful to Professor Ernst Specker for many helpful conversations.

equivalent ideals of a polynomial ring over R. Denote by R^n the set of *n*-tuples of elements of R. If t_1, \dots, t_n are indeterminates and

 $I = (f_1, \dots, f_r) \subset R[t_1, \dots, t_n], a \in R^n$, let $I_a = (f_1(a), \dots, f_r(a))$. Further let C stand for the field of complex algebraic numbers, C^n for the *n*-dimensional affine space over C and V_I for the algebraic variety in C^n defined by the ideal I.

LEMMA 2. Let I and J be ideals of $R[t_1, \dots, t_n]$ and suppose that for all $a \in R^n$ we have $I_a = J_a$. Then $V_I = V_J$.

Proof. Let f_1, \dots, f_r be a basis of I and g_1, \dots, g_s a basis of J. Suppose $V_I \neq V_J$ and assume there is a point $\alpha = \langle \alpha_1, \dots, \alpha_n \rangle$ of V_I not contained in V_J . We must show that there exists a *n*-tuple $a \in \mathbb{R}^n$, such that $I_a \neq J_a$.

Now $f_i(\alpha) = 0$, $i = 1, \dots, r$ but, say, $g_i(\alpha) \neq 0$. $K(\alpha_1, \dots, \alpha_n)$ is a separable algebraic extension of K, and let θ be a primitive element. We then have $\alpha_i = h_i(\theta)$, $i = 1, \dots, n$, where h_i is a polynomial whose coefficients may be assumed, without loss of generality, to be integers of R. Also let p(t) be a polynomial in R[t], of which θ is a root and which is irreducible in K[t].

Put $F_i(t) = f_i(h_1(t), \dots, h_n(t))$, $i = 1, \dots, r$ and $G_1(t) = g_1(h_1(t), \dots, h_n(t))$. Since $f_i(\alpha) = 0$, $i = 1, \dots, r$ and $g_1(\alpha) \neq 0$, we have $F_i(\theta) = 0$, $i = 1, \dots, r$ and $G_1(\theta) \neq 0$. Hence there are polynomials $q_i(t) \in R[t]$ and elements $s_i \in R$, $i = 1, \dots, r$, with $s_i F_i(t) = p(t)q_i(t)$, $i = 1, \dots, r$. On the other hand, since p(t) is irreducible and $G_1(\theta) \neq 0$, p(t) and $G_1(t)$ are relatively prime in K[t], and there are polynomials A(t), $B(t) \in R[t]$, such that

$$A(t)p(t) + B(t)G_1(t) = c$$
,

where $c \in R$ and $c \neq 0$.

By Lemma 1 there are infinitely many prime ideals P in R, such that the congruence $p(x) \equiv 0 \pmod{P}$ has a solution in R. Each one of the numbers s_1, \dots, s_r and c is contained in only a finite number of prime ideals. Hence there is a prime ideal $P \subset R$ and an element $x \in R$, such that $p(x) \equiv 0 \pmod{P}$, but $s_i \not\equiv 0 \pmod{P}$, $i = 1, \dots, r$ and $c \not\equiv 0 \pmod{P}$. Therefore $B(x) G_1(x) \not\equiv 0 \pmod{P}$. If we now let $a = \langle h_1(x), \dots, h_n(x) \rangle$, then $a \in R^n$ and we get $g_1(a) = G_1(x) \not\equiv 0$ (mod P) and thus also $J_a \not\equiv 0 \pmod{P}$. On the other hand, since $s_i \notin P$, it follows that $F_i(x) \equiv 0 \pmod{P}$. Therefore $I_a \neq J_a$, which was to be shown.

COROLLARY. If for all $a \in \mathbb{R}^n$ we have $I_a = (1)$, then $V_I = \phi$.

LEMMA 3. Consider polynomials $f_1, \dots, f_k \in R[t]$. Assume that for all nonzero elements $r \in R$ the k numbers $f_1(r), \dots, f_k(r)$ generate the same ideal $I \subset R$. Then we also have $I = (f_1(0), \dots, f_k(0))$.

Proof. If D is an ideal in $R, D \supset (f_1(0), \dots, f_k(0))$ and r is an arbitrary nonzero element of D, then $f_i(r) \in D$ for $i = 1, \dots, k$. Since $I = (f_1(r), \dots, f_k(r))$, we have $I \subset D$.

Conversely, if $D \supset I$ and $r \in D$, $r \neq 0$, then $f_i(r) \equiv f_i(0) \pmod{D}$. Since $f_i(r) \in D$, also $f_i(0) \in D$ for all i and hence $(f_1(0), \dots, f_k(0)) \subset D$. This proves the lemma.

LEMMA 4. Let f_1, \dots, f_k be arbitrary and g_1, \dots, g_m homogeneous linear polynomials in $R[t_1, \dots, t_n]$. Assume that for all $a \in R^n$ we have

$$(f_1(a), \cdots, f_k(a)) = (g_1(a), \cdots, g_m(a))$$
.

Also denote by h_1, \dots, h_k the subpolynomials of f_1, \dots, f_k formed by their linear terms. Then $(h_1(a), \dots, h_k(a)) = (g_1(a), \dots, g_m(a))$ for all $a \in \mathbb{R}^n$.

Proof. Since $(g_1(0), \dots, g_m(0)) = (f_1(0), \dots, f_k(0)) = (0)$, we have $f_1(0) = \dots = f_k(0) = 0$. Thus $f_i = h_i + \text{terms}$ of degree $\geq 2, i = 1, \dots, k$. Take a fixed *n*-tuple $a \in \mathbb{R}^n$ and let $r \in \mathbb{R}$ be arbitrary but $\neq 0$. Then

$$egin{aligned} (f_1(ra),\,\cdots,\,f_k(ra)) &= (\mathrm{r}h_1(a)\,+\,r^2(\cdots),\,\cdots,\,rh_k(a)\,+\,r^2(\cdots)) \ &= (r)(h_1(a)\,+\,r(\cdots),\,\cdots,\,h_k(a)\,+\,r(\cdots)) \ &= (g_1(ra),\,\cdots,\,g_m(ra)) = (r)(g_1(a),\,\cdots,\,g_m(a)) \ . \end{aligned}$$

R being an integral domain, we get

$$(h_1(a) + r(\cdots), \cdots, h_k(a) + r(\cdots)) = (g_1(a), \cdots, g_m(a))$$

for all nonzero $r \in R$. By Lemma 2 therefore

$$(h_1(a), \cdots, h_k(a)) = (g_1(a), \cdots, g_m(a)),$$

which was to be proved.

THEOREM. Consider in $R[x_0, \dots, x_r, y_0, \dots, y_s]$ the ideal $J = (x_0, \dots, x_r)(y_0, \dots, y_s)$ and suppose I is an ideal such that for all $a \in R^{r+s+2}$ we have $I_a = J_a$. Then the number of elements in a basis of I is at least r + s + 1.

FRED KRAKOWSKI

Proof. Let f_1, \dots, f_n be a basis of I and let I' be the ideal generated by the subpolynomials b_1, \dots, b_n of f_1, \dots, f_n , which are linear with respect to x_0, \dots, x_r and with respect to y_0, \dots, y_s . Since also the generators of J are bilinear and for all $a \in R^{r+s+2}$ we have $I_a = J_a$, by Lemma 3, we also have $I'_a = J_a$ for all a.

Now the ideal J has only trivial zeroes in C^{r+s+2} , either all $x_i = 0$ or all $y_j = 0$. On the other hand, if $n \leq r+s$, it follows from a theorem of Macaulay (see [2], p. 54) that I' has a nontrivial zero in C^{r+s+2} . By Lemma 2 this cannot happen. Hence $n \geq r+s+1$.

References

1. A. Scholz, *Einführung in die Zahlentheorie*, Sammlung Göschen Band 1131, Berlin 1939.

2. F.S. Macaulay, Algebraic Theory of Modular Systems, Cambridge Tracts in Math. 19, Cambridge 1916.

UNIVERSITY OF CALIFORNIA, DAVIS