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INTEGRAL INVARIANTS FOR VECTORS
OVER LOCAL FIELDS

D. G. JAMES

This paper considers isometric invariants of vectors in
lattices (quadratic forms) over the ring of integers in a local
field for the prime 2. By extending the notion of order to
vectors in the lattice we obtain a set of invariants which
enable the general vector to be decomposed into a sum of
simple vectors. The lengths of these simple vectors are in-
variant module certain powers of 2 and these lengths together
with the original invariants form a complete set for the 2-adic
integers. In the special case where there are no one dimen-
sional, orthogonal sublattices (improper quadratic forms) the
invariants form a complete set for all local fields.

Let F Dbe a local field, that is a field complete with respect to a
discrete, non-archimedean valuation with a finite residue class field,
and R the ring of integers in F. Denote by v(x) the order of the
element « in F and by 7 a fixed prime in R; we may assume that
y(r) = 1. Let V be a nonsingular lattice over R, i.e. a finite dimen-
sional, torsion-free R-module with scalar product «-Be€ R. An iso-
metry @ of V is a one-to-one, linear transformation of V satisfying
p(a)-p(B) = a-B. We investigate the isometric invariants of vectors
a € V in the unramified dyadic case, ¥(2) = 1. The p-adic case (p odd)
has been considered by Rosenzweig |[7] and an alternative approach by
Ankeny (on the following lines) is included in the author’s Ph. D.
thesis [1].

In §1 we develop the necessary structure theorems for V, much
of which will also be found in [4],[5] and [6]; §2 gives a complete
set of invariants in the improper case; while § 3 treats the general
case, but here we restrict ourselves to the 2-adic numbers, the results
being more complex.

Frequent use is made of the following generalization of Hensel’s
lemma (see [3, p. 29]): if f(x) is a polynomial with coefficients in R
and z,€ R is such that v(f(x,) > 2v(f'(x,)), then f(x) has a root xe€ R
with v(x — ) = 1.

1. We extend the notion of order to e V by defining v(a) =
min y(a-B), the minimum being taken over all Be V. For each » =
0,1,2, .-+ we denote by V(r) the sublattice {a € V |v(a) = r} and
define v.(a) = miny(@-B), then minimum now being taken over all
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B e V(r). Then
y’r(a) é 1)1"}‘1(a{) é vr(a) + 1 .

We write V=U@W if U and W are orthogonal sublattices
together spanning V. Denote by (&, ---, &) the sublattice spanned
by &,---,&, €V and by U’ the orthogonal complement of the sub-
lattice U.

LEMMA 1. Let € V. Then V= (5P (&) if and only if v(&) =
v(é).

Proof. Clearly (§)P (§) = V. Take € V. Then
a = (a-§/8)s + (@ — (a-§/6)8) e (§) D (&) .

This gives the reverse inclusion. Notice that «a-£/&°€ R since v(a-§&) =

v(&) = v(&).

LEMMA 2. If N, p eV satisfy v(\) = v(p) = v(hept) < V(N then
V=Npdh .

Proof. Let ac€V and write a = (kA + kyt) + (@ — kN — ko)
where &, = (- )\ 1) — (a0~ NS, Ty = (@0 M) (h - f2) — (- N
and £, = (\- ) — N, Sinee v(k;) = 2v(\) it follows that ki, k. R.
From n-(a—kN—F,pt) = pte(@—kA—k,pt) = 0 we have € (N, 1) D (N, 1)’

LEMMA 3. If V=(5 D (N, 1) where v(&) = v(\) = () = v(\- )
then there exist a, B,ve V such that V = () P (B) D (v).

Proof. We may assume by Lemma 1 that v(\?) > v(A) and
v(pr) > (). Let a =4+ N, 8=§E—(&/N-p)p so that a-B8 = 0.
Since v(a®) = y(a) and v(B?) = v(B) we are finished by Lemma 1.

We can now establish the main result on the structure of V.
Let H, denote a hyperbolic plane of the form (A, ¢£) where \-p¢ = 7°,
Yy(\) > v(A) =e and v(®) > v(¢) =e. We call a sublattice of the
form V,=H, & --- B H, tmproper and a sublattice of the form
V.=1() D --- D () with v(&}) = v(&) = e, proper.

ProPOSITION 1. (O’Meara [5]) Let V be a nonsingular lattice over
a local field. Then

V:Vel@Vez@“'@Vem e1<ez<"'<em

with the sublattices V,,1 = ¢ = m, either proper or improper. Fur-
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thermore, ¢;, dim V,
variants of V.

, and the forms of the V,,1 <41 =m, are in-

Proof. Choose a €V to minimize v(a). Since the valuation is
discrete there exists 8 € V such that v(a) = v(B) = v(a-B). If v(a?) =
v(a@) we split off the vector & using Lemma 1 and if v(a®) > v(a) we
split off the plane («, 8). Proceeding in this manner we obtain the
stated structure for V, after using Lemma 3 to get the correct form
for the sublattices V..

We now establish the invariance of ¢; and dimV,,1 =4 =m. Let
&, -+, &, and », --+, 7, be two bases of V arranged so that v(§) =
v(é;4,) and v(m;) S v();,), 1 =4 =<n — 1. It suffices to show that v(¢;) =
v(n;),1=41=mn. Let d be the first discrepancy and suppose that
v(&;) > v(n,) = f. Then expressing 7, in terms of the &, we see that

n, = a11§1 + e+ a1d~15d—1 + a,

Ng = Q& + =00 + ge Euy + g .

In these equations a;;€ R and v{«;) > f. Eliminating the &; we see that
there exist ¢;€ R, with at least one ¢; a unit, such that >%, ¢, =
Swiea,. But v(Xew) = f and v(de,;) > f gives the required con-
tradiction.

Finally we show that the form of V,, is invariant. Let

VeV, ® @OV, =Vid- DV,

be two decompositions satisfying the conditions of the proposition and
&, -+, &, the basis in the first case and %, ---,7, in the second.
Suppose that V, = (&,)P --- P (&,) is proper. To prove that V}* is
proper it is sufficient to show the existence of a vector N\ orthogonal
t0 Ny o ooy Py With (V) = v(\) = €. If &, = D7, a,; take M = 37, a7;;
the required properties of A follow from those of &,.

Lattices with the same invariants above are said to be of the
same type. A basis splitting V into the sum of lines and planes, as
in Proposition 1, is called a canonical basis.

ProposiTiON 2. If a,B € V satisfy v(a) =v(B) =v(a-B) =r, v(a®) =
r+2 and v(B) =r + 1 then there exist A, £ €V such that V=
N 1) DB (N, ) where M = 2 =0, Aot =77 and a = dn"a’\ + p.

Proof. Put N = xa+ B8 where x is a root of the equation
atx? + 2a-Bx + B = 0 (a root congruent to x, = —[5%/2a-L exists by
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Hensel’s lemma). Then A\ = 0 and, multiplying by a unit if necessary,
a-x=mrn". Put p= —inr7a’\ + a.

A hyperbolic plane (A, £#) as in Proposition 2 is called totally tso-
tropic.

PropoSITION 3. (O’Meara [6]) Let H;, = (\;, t),%7 =1, 2, be two
totally isotropic hyperbolic planes with v(\,) = v(\,) = . Then an iso-
metry @: H, — H, extends to an isometry of V.

Proof. It is sufficient to show that the orthogonal complements
of H, and H, are isometric. Assume first that v, =\,. Let 9, «++,7,_,
be a basis of H). Let {; =5, — a7 (- tt)A, 1 =% = n — 2, so that we
have {;-C; =99, LNy =8, =0,1 =4, =n — 2. Since {, -+,
is a basis of H, this case is finished. Now we assume there exist
ac H, Be H, such that v(a-B8) = ». From symmetry we may take
Y(Ai+Ny) = 7 and then the sublattice (A, \,) is totally isotropic by Pro-
position 2. By the first part we now have that H/ and H, are both
isometric to (A, \,). Finally we assume that v(a-G) > » for all e H,,
Be H,. The sublattice (A, £t, 4+ ) is now totally isotropic and its
orthogonal complement is isometric to H, and H, by the second part of
the proof.

For a € V with v(&®) = v(@) = r we define N.(«) to be 0 if there
exists 8 € V(r) such that a-8=0 and v(8*) = r, and to be 1 other-
wise. A vector « € V is called tmprimitive if a =S with BeV,
otherwise it is primitive.

PRroOPOSION 4. Let V=(&) P E) = @) B (). Then there exists
an isometry ¢ of V such that @(§) =7 if and only if & = 7% v(é) =
v(7) = r and N, = N,().

Proof. For the general case see O’Meara |5, Theorems 5.1, 5.2].
See also Jones [2] for a discussion of related results in the 2-adic case.

The rest of this section will be devoted to constructing isometric
invariants of vectors.

We call »(#0) a critical index of a € V if
V(@) = v (@) < Y,n(@) ;
0 is a critical index of a € V if
v(a) < v(a) .

The critical indices can only be the orders of basis vectors (the e; of
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Proposition 1) and hence a vector has only a finite number of critical
indices. They are isometric invariants.

We say that the vectors A\, :---, N, are fully orthogonal if V =
V.g:-- BV, where \;e V,, 1 =1 < m.

ProposiTiON 5. Let a have critical indices at »,, #,, -+, 7, where
r<r,< - < 7, and let vrj(a) = r; + b;. Then

b <P b, < oo < 4+ b, b >b, > .. >b,

and « = >_, w’\; where \; are fully orthogonal, primitive vectors.
Each )\; has only one critical index and

v(N) = v, (N) =1y, 1<j<s.

Proof. Let &, .--,&, be a canonical basis of V, so that a =
».a;&. We will use induction on the number of critical indices.
Let N, = 77 >} a,& € V, the sum being over those & for which either
V(&) = 71y, or Y(E) = (&) and v(a,) = b, or V(&) > v(E;) = v(&;-&,) and
via;) = b, v(a;y) = b.. N now satisfies the conditions stated and the
rest of a is a vector with critical indices at 7»,, ---, 7.

COROLLARY. There exist B, € V,1 <1 =<s, such that B;-»; =0
(t # J) and v(\;) = v(B;) = v(Bi-Ny).

The \; are called critical components of a. In general they are
not uniquely determined. However, the 7; and b; are invariant and
the lengths of the \; are invariant modulo certain powers of x.

PROPOSITION 6. Suppose a = 35, wlin; = S\, whip; are two de-
compositions as in Proposion 5 with v(\,) = v(¢t;) = r;. Then

t 2 t 2
(75"’5 S ﬂbfpj> = <7r“’t s nbmj> (mod 771 1+%e410e) |
j= J=1

1<t<s—1.

Proof. Fix t,1 =t <s — 1. By Corollary to Proposition 5 there
exist B; such that v(B;-\,) = v(B;) = 7, BNy = 0 (2 # 7). Then

t
a-B; = whing-B; = S whip;« By(mod wrerithe+) | 1<+=5¢.
j=1

We can therefore find x;€ R such that v(x;, — 1) = 7., + b,y — 7; — b;
and N8, =% i whip;-B;,. This shows that the vector 7 =
S whi(p; — xn;) is orthogonal to all the vectors 8, ---, 8,. Fur-
thermore
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t t
(1) ; X mIN; + 7 = ;:]1 mhip; .

We now have

t s

t s
o= S mhing + 21 TN =1 + ,; TTIN; F jz%ln”wj .

=1 P

<.

Since v{(x; — 1)) = 7,., + b4, for 1 < 7 < ¢, we have
7T~bt7] € V(/"tﬂ + bt+1 - bt) .

The result is now obtained by squaring (1).

Notice that it is not necessary to assume that the p; are or-
thogonal. Let D,(a) = (z7% 3%, w%\;)* and dy(a) = 7.y, + b, — b, for
1=t=s—1. We have established that D,(a)(mod 7%*), 1<t<s—1,
are invariants of the vector a and hence also isometric invariants.

COROLLARY. If V does mot contain any vectors & such that
V(&) = v(§) = da) then D,(a) modulo w%“** 43 actually imvariant.

Under certain conditions an even stronger condition can be estab-
lished.

Let a = > m"\; be as in Proposition 5. Define N, [a) to be 0
if there exists a 8 € V(r;) such that 8:-N; =0 and v(5?) = r,, other-
wise let N, (@) be 1. N, (a),1=j =s, are independent of the choice
of the critical components (left to the reader) and hence are isometric
invariants.

We will show that in certain cases the above isometric invariants
form a complete set.

We conclude this section with a simple observation. Let W, & V =
&, -+, &) and dmW, =dimV,¢7 =1,2. Then for some k=0 we
have n*V = (a*&, -+-, t*€,) S W,. Let @: W,— W, be an isometry.
Let a ¢ W, be primitive in W, but imprimitive in V, i.e. a =8
where B¢ W,,8¢ V. Then if ¢ is to extend to an isometry of V,
@(a) must be imprimitive in V, p(a) = 78 say, and then we must
have @(B8) = . Thus by considering 7©*&, € W, we can determine
whether ¢ extends to an isometry of V or not.

2. We now give a complete set of invariants for the improper
cagse. We assume that V contains no vectors & such that v(&) = v(§).
Call such a lattice V fully improper.
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PRroposITION 7. Let a and 8 be vectors with one critical index,
at r. Then there exists an isometry ¢ of V such that (o) = 8 if
and only if a® = £8* and v(a) = v(B).

Proof. We may assume « and (B are primitive so that v(a) =
y(B) =r. If v(@)=y(a-B) then by Lemma 2 V = (a, 8B) D («, B).
Define an isometry ¢ by @(a) = B8, p(6) = a and identity on («a, B)'.
We may therefore assume v(a-8) > v(a). Now choose p € V(r) such
that v(a-p) = v(B-p) = v(a) = v(0). If v(0®) > v(p) + 1, then («, o) and
(B, p) are totally isotropic, and we are finished by Proposition 3. If
v(0®) = v(p) + 1, put v = xp + a where x0* + 20-a = 0, so that & =
B = +*. Now as above, we can find isometries ¢,, @, such that ¢,(a) =
7, P7) = B. Put ¢ = ¢,

For vectors with more than one critical index we use the in-
variants of Proposition 6 to adjust the lengths of the critical com-
ponents and then split them off in orthogonal sublattices. The proof
is then complete by induction. We need first another result.

ProOPOSITION 8. Let V = (A, ) D (\y, £) where v(\) = v(\,-7) =
v(m) =r, and v(\,) = v(E) = v\ E) =1, If a=7rN + N, where ¢ =1,
and if v(y)=7r,— r, — ¢ > 0, then there exists an isometry ¢ of V
such that

pla) =B =70\ + yn) + 26 — N,
for some z€ R.
Proof. Let ze R be a root of the equation
%zﬁsﬁ — € + 7r2°y(x1~77 + %77) =0.

Then v(2) = ¢ and a* = 8. Put

M= n°<x1 + %yv) + %z& )
T = %ﬂ”yv + %zé = Na
wer= (o
== (Fo

It follows that v, — v, =a, v, + v =08 and viVs = Yi*Ve= YV =
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v:+vs = 0. Define an isometry ¢ on the sublattice (7., Vo, 73 V) of V
by

P =7, @7 = =7,
() =Y, (V) = —.

By considering the vectors in this sublattice that are imprimitive in
V' we see that ¢ extends uniquely to an isometry of V. Since p(a) =
B we are finished.

ProposITION 9. Let V be a fully improper lattice. Take o, B e V.
Then there exists an isometry ¢ of V such that @(a) = 8 if and only
if

1. a* =8

2. « and B have the same critical indices 7,, ---, 7,

3. v (@=v,B) =r+Db 1=¢=<s

4. D,a) = D,(B)(mod md‘=)+1) 1<t=ss-—1.

Proof. The necessity of the conditions follows from §1. Notice
that the invariant N, (@) is always 1 in this case. For the sufficiency
we use induction on s. The case s = 1 is Proposition 7. Take s > 1.
Let @ = >i_, ¥\, and B = >}, n%u,; be decompositions into fully or-
thogonal critical components. Let 7 be such that v(n) = v(»-\) = v(\)
and A, =0 (¢ # 1). Then from 4, with ¢ = 1, we have

A = p(mod mrrtre-tity) |

Take ye R such that (\, + y»)* = pi; this equation has a solution
y such that v(y) = », + b, — r, — b,. By Proposition 8, taking ¢ =
b, — b, = 1, there exists an isometry of V mapping 7°\, + 7’2\, into
(N + ym) + w(z€ — \,), i.e. mapping @ into a vector @, whose first
critical component has the same length as the first critical component
of B. We now split off the first critical component of «; into a binary
sublattice. We then proceed to adjust the lengths of the remaining
critical components of a.

In this way we can map a = X7\, into a vector a* = Xmli\}
with M2 = 2,1 < ¢ <s. Those \}, p; satisfying v(z) = v(¢t;) + 2 can
be imbedded in totally isotropic, binary lattices and mapped into each
other using Propositions 2 and 3. We may therefore assume that
v(ud) = v(p,) + 1 for all 4.

We now restrict ourselves to studying a = Xz, and B = Inliy,
with A} = g} and v(\}) = v(\,) + 1. By Proposition 7 we may assume
¢, =N, after applying an isometry to a. Take pe V such that
v(py-0) = v(p) =v() and p-p¢; =0,2=<¢=<s. Using Lemma 2 we
can split off (#, p). However, we will not have p-\; = 0 in general.
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We apply a further isometry 6 to « keeping )\, fixed and mapping \,,
2 = ¢ < s, into vectors orthogonal to p. Then splitting off (A, p) we
are finished by induction.

We construct ¢ as follows. Let V = (A, ) B (\y, §&) B U where
Ny 3 =1 = s, are in the sublattice U. We may assume that v(n}) =
v(n,) + 1 and v(&}) = v(§,) + 1, for otherwise we have totally isotropie,
binary lattices and these may be concelled. Thus we may assume
£ =N\. Let

M
>‘*1 ° 771

pN— .’;C?Z'rz—-vj(),l — ( 771> + yn, + &,

where © and y are chosen so that A = A} and \;-0 = 0 (the equations
for # and y have solutions in K). Then A -\, =0 and y(A-N\,) = v(\,).
Thus V =(\,7)B A, M) P U for some vy € V. We now take an iso-
metry mapping A\, into A, and acting as the identity on (A, A;)’. Simi-
larly we can map \;, 3 =1 = s, into vectors orthogonal to p.

3. We now consider the general case but restrict ourselves to R
being the ring of 2-adic integers.

ProprosiTiON 10. Let o and B be vectors with one ecritical index,
at r. Then there exists an isometry ¢ of V such that ¢p(a) = B if
and only if a* = 8% v(a) = v(B) and N.(a) = N,(B).

Proof. We may assume « and B primitive so that v(a) = »(8) = r.
If v(a®) = v(a) we are finished by Proposition 4. Assume v(a®) > v(a).
As in Proposition 7 we take p € V(r) such that v(a:p) = v(8-p) = v(a).
‘We need only consider the case v(0*) = v(p). Then we may assume that
a=20+7nB=p+§& with p.o=8&-0=0. We now wish to find
N, €V such that @« =N+ g, v-£ =0 and N = 0. The necessary
equations can be solved, but only because v(x) =0 so that for the
2-adics v(2* — 1) = 3. We then construct an isometry ¢ such that
@(\) = o and @(¢) = & using Proposition 4.

This result need not be true if we go beyond the 2-adics; further
invariants are necessary as is shown by an example latter.

To treat vectors with more than one critical component we must
establish some results analogous to Proposition 8. The situation is
now more complex and the particular invariants depend on the struc-
ture of V. For there to exist an isometry mapping « into 8 we need
the following invariants:

(i) a=g

(ii) « and B have the same critical indices 7, ++-, 7,
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(i) N, (@) = N,(8), 1<iss

(iv) v, (@) =v,,(8 =7 +b, 1=1=<s

(v) Dya) = D(B)(mod r'®+7e), 1=t<s—1,
where f, = 0,1 or 2 depending on the structure of V.

These conditions, with f,= 2, are always sufficient, but usually not
necessary. The conditions with f, =1 are necessary, provided there do
not exist any &, € V satisfying v(&) =v(,) =dya) for 1 =t <s—1,
and also sufficient provided further that b,_, = b, + 1 or 7,y -+ b, #
r,+ b, + 1 for any . The proofs of these remarks are similar to the
proof of Proposition 9 using results analogous to Proposition 8 to
adjust the lengths of the critical components.

ProposiTioN 11. Let V = (\) P (\,) where v(\,) = 7, v(\;) = 7, and
let ¢c=1 and r,— 7, —¢=1. If a = 7\, + A, then there exists an
isometry ¢ of V such that

@(“) = B = TN, — YA,

for some y € R, provided either
@ ve—-1=zr,—r,—c-+1,
or
b ve—1)z=r,—r —c=2,¢c=2.

Proof. Let y be a root of the equation
)\:2
Y= 1+71'2°(1—x2)—>-h—;, y = 1(mod 4) .
2
This equation has a root ye R by (a) or (b) using Hensel’s lemma.

Put

vo= Lo+ o + (1 — g,
2 2
and
1., 1
Yo = Eﬂ' 1 —an + E(l + YN, .

Then v, + v, = &, v, — ¥, = B and 7,7, = 0. For (a) we have v(7}) =
v(7,), so that V= (v,) D (v.)’ and we take @ such that o(v,) = —7,
and ¢ is the identity on (v,). Then ¢p(a) = 8. For (b) we take the
isometry on (v, 7,) defined by (7)) = v, (7)) = —7, and extend this
to V through the imprimitive vectors as in Proposition 8.

PRrRoOPOSITION 12. Let V= (\) D (\y, &) where v(\) = 7, V() =
V(&) = v(Ny+8) = 75, () > v(N,) and ¥(&%) > v(§). If a= 7\, + N\, with
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¢ =1, then there exists an isometry ¢ of V such that
p(@) = B = TN, + Y& — Ny

for some y e R, provided either v(x — 1) =%, —r,—c+ loryv(x —1) =
ry,— 1, —c= 2.

ProposiTioN 13. Let V = (A, ) G (\,) where v(\) = v(n) =
Y\ om) = 7y, V(A > v(\y), ¥(77) > () and y(\p) =7, If @ =7\ + N
with ¢=1 and r,— 7, — ¢ > 0, then there exists an isometry ¢ of
V such that

‘P(a) =B = nc(xl + ?ﬁ?) — RN,

for some ze R, provided that either v(y) =7, — 7, —c¢ + 1 or v(y) =
ry— 7, — ¢ and ¢ = 2.

The proofs of Propositions 12 and 13 are similar to those of Pro-
positions 8 and 11. These results now enable us to establish the
results stated for isometric invariants in the 2-adic case above.

Suppose that a = 3., 7"\, and B8 = 3\, iy, satisfy conditions
(i)—(v) above (in some case of f,). If v(\}) = v(\,), then from (v) \} =
Mi(mod 7 *+71) go that N = x4 with v(x — 1) = d(a) + f, — .. Pro-
vided that d(a) + f, — 7, = 3, we may take \! = 2} with v(x — 1) =
d(a) + f, — r, — 1. Then, applying an isometry as in Proposition 11
or 12, we may assume that )\, = p,, ete. Likewise, if v(\}) > v(\),
we use suitable combinations of the methods given above.

The presence of vectors satisfying v(£&}) = v(&,) = d,(a) for certain
t enable us to use the weakest form of (v) with f, = 0, but because of
the proliferation of cases we proceed no further with this.

To extend the above beyond the 2-adics requires further invari-
ants as is shown by the following example:

V=1(5)D &) DE)
f=4&=1, =2
a:él_l—gz; B:a51+a52+b53

where the residue class field has four elements (i.e. ab =1, a*= b,
*=a and a + b =1). Although (i)—(v) are satisfied no isometry of
V maps a into 5. To show this look at the conditions imposed upon
the image of & modulo 4.
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