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A CHARACTERIZATION OF GROUPS IN TERMS
OF THE DEGREES OF THEIR CHARACTERS

I. M. Isaacs AND D. S. PASSMAN

The purpose of this paper is to study properties of groups
which are related to the degrees of their absolutely irreducible
characters and in particular to the biggest such degree.

Let p be a fixed prime. We say group G has r.x.e (repre-
sentation exponent ¢) if the degrees of all the absolutely
irreducible characters of G divide p°. If G has a subinvariant
abelian subgroup whose index divides p° then by Ito’s Theorem,
G has r.x.e. We show conversely that if G has r.x.e then G
has a subinvariant abelian subgroup whose index divides p*.
While we do not obtain the best possible value for the exponent
in the above bound, we do show that it is essentially a linear
function of e.

We can obtain information about somewhat larger sub-
groups, We show that a group G with r.x.e has a subgroup
H of index p° with [H: 3(H)] < p*'t?, where 3(H) is the
center of H. The latter bound is by no means best possible.
However we show by example that a similar result cannot
hold in general for subgroups of index less than p°,

We study the case ¢ =1 in more detail and completely
characterize all such groups. This generalizes a result of
Amitsur which discusses the p = 2 situation. We prove that
G hasr.x.l if and only if (i) G is abelian, (ii) G has a normal
abelian subgroup of index p or (iii) [G : 3(G)] = p3.

The previous results apply to rather special groups. We
consider the more general case now. We say group G has
r.b.n (representation bound 7) if the degrees of all the abso-
lutely irreducible characters of G are < n. If G has an abelian
subgroup A with [G : A] < n then as is easily seen G has r.b.n.
Conversely we show here that there is a finite valued function
h with the property that if G has r.b.n then G has an abelian
subgroup A with [G: A] < h(n). This result can be viewed

as an analog to Jordan’s Theorem for complex linear groups
of degree n.

The analogy between groups with r.b.n and linear groups
of degree n can be carried further., We show that if G has
r.b.n and if p is a prime with p > n then G has a normal
abelian Sylow p-subgroup.

Finally we discuss some extensions of the above results to
infinite discrete groups.

1. Preliminary remarks. The main tool of this paper is the char-
acter theory of finite groups. We record here our notation and
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nomenclature.

Let % be an irreducible character of a group G and let @ be an
irreducible character of a subgroup H. ¢ induces a character @* of
G and ) restricts down to a character x| H of H. The Frobenius
Reciprocity Theorem ([5] Theorem 38.8) then states

[X’ SD*]G = [Xl Hr @]H

where [ , ] denotes the inner product over the appropriate group.

Suppose H 4 G (H is normal in G). Then G acts on the irreducible
characters of H by conjugation. That is for g € G and z € H, ¢%(x) =
@(grg™™). The subgroup 7T fixing a given irreducible character ¢ is
called the inertia group of @. Clearly T2 H. If t=[G:T] (the
index of T in G) then ¢ has precisely ¢ distinct conjugates

P =P1, P2y **°s Pt »
If y is a constituent of p* with multiplicity a then ([5] Theorem 49.7)

XIH=a@ + @+ -+ + @) .

Let H4G. Each character of G/H can be viewed in a natural
way as a character of G with kernel containing H. Conversely every
such character of G comes from a unique one of G/H in this manner.
In general we will use the same symbol to denote the character
whether viewed in G or G/H. The precise situation will always be
clear from context.

Finally we denote by C[G] the group algebra of G over the complex
numbers C.

We mention here a few results which yield information about the
degrees of the irreducible characters of G from a knowledge of the
structure of the group.

ProrosiTioN 1.1. (Ito). Let A be an abelian subinvariant sub-
group of G. Then the degrees of the irreducible characters of G all
divide [G : A].

Usually this is stated with A normal. However the more general
statement is true as can be seen from Theorem 53.17 of [5].

LEMMA 1.2, Let H be a normal subgroup of G and ¢ an irre-
ducible character of H with conjugates @ = @, @y, +++, @,. Let
Y Xas =+, A De the distimct irreducible constituents of @*. Then if
LIH=a(p+ @+ +++ + @) we have [G: H| = alt + ajt + -+ +ak.
In particular for each i, a% < [G: H].
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Proof. We have deg y; = a;t deg . By Frobenius Reciprocity,
% oceurs in @* with multiplicity a;. Hence

[G: H]deg p = deg p* = Y a;deg ); = (X alt)deg @

and the result follows.

PropPoSITION 1.3. Let A be an abelian subgroup of G. Then the
degrees of the irreducible characters of G are =[G : A].

Proof. Let x be any character of G and let X be a constituent
of x| A. Then y is a constituent of \A* and hence deg y < deg\* =
[G: A].

This result is true more generally without the assumption that G
is finite (see Corollary 1 of [1]).

ProrosITION 1.4. Let Z = B8(G) be the center of G. Then the
degrees of the irreducible characters of G are < [G: Z]"%.

Proof. Let y be any character of G and % | Z = @ 3\,. Since Z
is the center of G we must have ¢t = 1. Thus

degy =a = (@®)* £ [G: Z]"

and the result follows.

This paper is concerned with the converse problem, namely to
obtain information about the structure of the group from the degrees

of its characters. We use the above propositions as guide lines to
indicate the directions in which to look.

2. Extra-special groups. We study here the structure and
characters of groups E with the following properties.

DEFINITION 2.1. We say a group E is extra-special if
(i) E is a non-abelian group containing a nontrivial normal abelian
subgroup.

(ii) All nontrivial normal subgroups of E contain the commutator
subgroup E’.

We mention first how these extra-special groups occur. Let G be
any non-abelian group. Let K be normal in G and maximal with
respect to G/K being non-abelian. Then clearly F = G/K satisfies (ii).
If for some reason (for example the solvability of G) we can guarantee
that E has a nontrivial normal abelian subgroup, then E is extra-
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special.

ProposITION 2.2. Let E be an extra-special group. Then E has
the properties of one of the following two cases:

Case P: (i) E is a p-group for some prime p.

(ii) B(E) is cyclic and E’ has order p and is contained in Z =
B(E).

(iii) if B is any nonlinear absolutely irreducible character of E
then @ vanishes off Z and deg 8 = [E: Z]"A
Case Q: (iv) FE is not a p-group for any prime p.

(v) E’'= Q is a normal, elementary abelian Sylow ¢-subgroup of
E with E/Q cyclic.

(vi) every nonlinear character of E has degree [E: Q].

(vii) if N is a nonprincipal character of @ then N has [E:@Q]
distinct conjugates in E. For any linear character \ of @ and any
element g € E-Q there exists a character ¢ of @ with » = pog.

Proof. First suppose E is a p-group so we have (i) of Case P.
Let Y be a cyclic subgroup of order p contained in the center Z =
B8(E). Since Y is normal in £ we have Y2 E’. But E’'>1 so we
in fact have Y =FE’ and |E’'| =p. Thus Z has one and only one
such cyclic subgroup of order p and so Z is cyclic. This yields (ii).

Now let 8 be a nonlinear character of E and let g ¢ Z. Since ¢
is not central there is an element 2 with (g, 2) = g7'A'gh = 1. But
(9, h) e B’ < Z so say (g,h) = 2. Then h~'gh = gz. Since B is a class
function we have B(g) = B(h~'gh) = B(g2). Now z€ Z so z is repre-
sented by the scalar matrix MJI in the representation associated with
B. If x =1 then z and hence E’ is in the kernel of the representation.
Since this is not the case M = 1. But clearly B(gz) = AMB(g) so we
have B(g) = M3(g) and hence B(g) = 0. Finally for any z € Z we have
clearly | B(z) | = b where b = deg 5. Hence

1=[8, Bl =G| 2:p9)8g) = | G| 2.8(9)B@) = ¥ | Z|/| G| .

Thus b* = [G: Z] and (iii) follows.

Now we assume that E is not a p-group for any prime p. Let
A be the nontrivial normal abelian subgroup of E guaranteed by
Definition 2.1. If | A| has two distinet prime factors say p and g then
&,(4) (the Sylow p-subgroup of A) and &,(A) are characteristic in A
and hence normal in £. Thus &,(A)2 E’ and S(4A)2 E’ so E' =1,
a contradiction. Hence A is a ¢-group for some prime ¢. Let @ be
a Sylow g-subgroup of E containing A. Since A 2 E’ we see that @
is normal in E. Now E is solvable so by a theorem of P. Hall ([7]
Theorem 9.3.1) @ has a complement B which is abelian since B ~ E/Q.



THE DEGREES OF GROUP CHARACTERS 881

We show first that @ is elementary abelian. Let @(Q) be the Frattini
subgroup of Q. Suppose that @(Q) > 1. Then since @ is characteristic
in @ it is normal in E and hence @(Q) 2 E’. Thus (B, Q) & 2(Q) so
B has trivial action on Q/@(Q), the Frattini quotient of @. But B is
a ¢'-group so ([7] Theorem 12.2.2) B centralizes @ and E = B X Q.
Hence since B>1, E'S BN Q =1, a contradiction. Thus #(Q) =1
and @ is elementary abelian.

Now @(Q)=2 @ where €(Q) is the centralizer of . Suppose
€(Q) > Q. Then if C is a complement for @ in €(Q) we have €(Q) =
QX C and so C=6&,€(Q). Thus C is normal in E and again
E'=QNC =1, a contradiction. Thus @ is its own centralizer. Let
g¢ Q@ and set D =<Q, ¢>. Now 3(D)< Q and this is clearly the set
of fixed points in @ under the action of g. Note since @ is abelian
we have a well-defined action of E/Q on Q. Since D DQ=2FE’, D and
hence B(D) is normal in E. If 3(D)>1 then 3(D)2E’'2 D" and D
is nilpotent. But this would imply that g centralizes @, a contradiction.
Thus 8(D) =1 and so g acts fixed point free on @. Hence E/Q acts
fixed point free on @ and E is a Frobenius group with kernel Q. Since
E/Q is abelian, it is cyclic ([4] Theorem V, page 336). Let z,y € @
and g ¢ Q. Then 2% = y% "' implies (xy~*)? = xy~* so that x = y.
Hence the | Q| elements x%x~* for all € Q@ are all distinect. Thus
Q = E’ and (v) follows.

Let A be a linear character of Q. Suppose for some g ¢ Q@ we
have M = A, Then for all € @, M) = Mgxg™™) so that Mgrg~a™) =
1. But as above gxg~'x~' takes on all elements of @ as = does. So
A is in fact the principal character of @. Hence any non-principal
character has [E: Q] distinct conjugates. Since the characters pf
are all distinet (vii) follows. Finally let 8 be a nonlinear character of
E. Since @ = E’, 8| Q has a nonprincipal character as a constituent.
But this has [E:Q] =1t distinet conjugates. Hence B |Q = a I\,
Since ot <[E:Q], a =1 and degB = at = [E:Q]. This completes
the proof.

We remark that in the proof of (iii) above we actually obtained
the more general result:

LEMMA 2.3. Let F be a class 2 group with |F'|=p. If B 1is
an irreducible nonlinear character of F then deg B = [F: B(F)]'

3. Groups with r.x.e,

DEFINITION 3.1. Let p be a fixed prime. We say a group G has
r.x.e (representation exponent e) if the degrees of all absolutely irre-
ducible characters of G divide p®. We say a group G has r.x. (e, s)
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if G has r.x.e and &,(G) has r.x.s.

Let f be the function with the following property. If G has r.x.e
then G has a subinvariant abelian subgroup whose index in G divides
p7®, Moreover f is the smallest such function.

Let g be the function with the following property. If G has r.x.
(e, s) then G has a subinvariant abelian subgroup whose index in G
divides p?“®. Moreover g is the smallest such function.

There is of course no apriori reason to assume that finite valued
functions f and g exist. We show below that they do exist and give
bounds for their values.

THEOREM A 3.2. The functions f and g exist and satisfy

f(0)=0 2¢ < f(e) < 4e — log,de
gle,0) = ¢ e + min (e, s) = g(e, s) < e + 3s — log,4ds .

This yields in particular

f0)=0, f1)=2, f@=4o0rb
gle,0)=¢, gle,1)=¢+1, e+2=g(e,2)<e+3.

We will show in a later paper that f(2) = 4.

Let @ be an irreducible character of &,(G) and ) a constituent
of p*. Then @ is a constituent of ¥ | &,(G) so we have deg ¢ = deg .
If G has r.x.e then deg ¥ < p°. But &,(G) is a p-group so the degrees
of all its characters are powers of » and so &,(G) has r.x.e. Thus
G has r.x.(e, ¢) and it clearly suffices to consider only the funection g.

LEMMA 8.3. Let N4G. If G has r.x.(e,s) then so does N and
G/N.

Proof. Let @ be an irreducible character of N and y a constituent
of o*. Then since N is normal ¥ | N = a Xip; where the @, are the ¢
distinct conjugates of . Hence deg ¥ = at deg . Since deg ¥ divides
p° so does deg @ and N has r.x.e.

Choose a Sylow p-subgroup of N and extend it to one of G. Thus
S, (N)ZS &,(G). Let ¢ be a character of S,(N) and ) a constituent
of ¢* (induction to &,(G)). Then @ is a constituent of x| &,(NN) and
so deg @ = deg ). Since deg e is a power of p and deg )} = p°, the
first result follows. The second is obvious.

PropoSITION 3.4. Let G have r.x.(¢,s). Then G has a normal
abelian Hall p’-subgroup 9(G).

Proof. We show first by induction on |G| that G has a normal
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H(@). If Gisa p’-group the result is of course trivial. So we assume
that p divides |G |. From the equation

G| =[G:G"]+ 3,

where the «? are the degrees of the nonlinear irreducible characters
of G we can conclude that p divides [G :G']. Let K be the complete
inverse image in G of a subgroup of index p in the abelian group
G/G’. Then K AG so by the previous lemma K has r.x.(e,s). By
induction K has a normal Hall p’-subgroup O(K). Clearly S(K) is a
Hall p’-subgroup of G and since it is characteristic in K, it is normal
in G. Hence G has a normal {G).

Since H(G) has r.x.(e, s) all its characters have degrees which are
powers of p. But | 9(G) | is prime to p so all the characters are linear
and $(G) is abelian. This completes the proof.

LeMMA 3.5, Let G be an arbitrary group. Suppose K 4G with
E = G/K being an extra-spectal case P group. Let Z be the complete
wnverse vmage in G of the center of E. Let 8 be a nonlinear charac-
ter of E viewed tn G. Given any absolutely irreducible character

@ of Z, if Y is a constituent of @* and if Y, 18 a constituent of B
then

(deg %) (deg 1)) = p"i(deg @)’
where t 1s the number of distinct conjugates of ¢ and deg B = p™.
Proof. If deg 8 = p™ then by (iii) of Proposition 2.2 we have
|G:Z]=p"™ Also B|Z = p™» where \ is a linear character of Z/K.
Moreover since Z/K is central in /K, \ is invariant under the action

of G. That is M* =\ for all z € G.
Let % be a constituent of ¢*. Then since Z4 G

XNZ=aXip;, p=p.
Now %8 vanishes off Z by (iii) again and
AB | Z = ap™ 2 pih .
Also (p\)* vanishes off Z and
(PN | Z = (p™[t) Tipah

The first is clear. The second follows since (p\)” = @"\* = @°\ and
deg (p\)* = |G : Z] deg o\ = p™ deg oN. Thus we have

AB = atp~"(PN)*.
Say (pn)* = Y a;);. Then 38 = X aatp~™y; and hence a,at = p™. .In
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particular a,at = p™. By reciprocity ¥, | Z = a, 3! p;\ so we have
deg x = at deg ¢, deg ¥, = a,t deg p\ = a,t deg @ .
Hence
(deg 1) (deg x,) = aa,t’(deg @)° = p t(deg @)
and the result follows.

We are now ready to prove the theorem.

Proof of Theorem A. The main difficulty is the upper bound.
We show this by induection on |G |.

Since G/H(G) = S,(G) the second parameter in r.x.(e, s) can be
viewed as a bound for the characters of G/9(G) and this is the ap-
proach we take. These of course correspond to the characters of G
containing $(G) in their kernel. Since the upper bound for the funection
g is always nonnegative we see that the result holds if G is abelian.

So we assume G is nonabelian. Choose K 4G maximal with
respect to G/K being nonabelian. Such a subgroup of course exists.
Now E = G/K always has a normal abelian subgroup by Proposition
3.4, hence E is extra-special. By Propositions 3.4 and 2.2 we see that
E is either a p-group or a Frobenius group where E/E’ is a cyclic p-
group. This yields two cases to study. We discuss the latter first.

Case Q. Let Q be the complete inverse image in G of E’, the
Sylow ¢-subgroup of E. Then [G:Q] = [FE: E’] = p™ for some integer
m. Let N be a fixed linear character of ¢ which corresponds to a
nonprincipal linear character of E’' = Q/K.

Now let 0 be any character of @ and let T'(¢) be its inertia group.
The product O\ is also an absolutely irreducible character of Q. Sup-
pose both T(4) > Q and T(O\) > Q. Since G/Q = E/E’ is a cyclic p-
group there is a unique minimal subgroup of G containing Q. Hence
we can find ¢ ¢ Q@ with « € T(0) N T(Or). Then

On = (ON)F = 05\ = ONF

80 0 = 6\"x. But x ¢ Q so ¢ = A"\ is not the principal character of
E'. If N denotes its kernel in @ then @ > N2 K, N4 Q and since
0 = Oy, 0 vanishes off N. Say ¢ | N = a X} ¢, with ¢, = . Then deg
0 = at deg . Since 0 vanishes of N

1=10,0le=(NI|/|QN [0]N,0|Nly=(N|/|QIa%

so a’t = [Q: N]. Now a and t divide deg 0, a power of p. But they
also divide [@ : N] which is prime to p. Hencea =t =1 and [Q: N] =
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1, a contradiction.

Thus either T(#) = Q@ or T(ON) = Q or both. Since deg 0N = deg 9,
it sufficies to assume 7T(0) = Q. Let x be a constituent of 6*. Then
x| Q =b20, where the 0, are the p™ distinct conjugates of 0. So
p™ deg @ divides deg x. Since G has r.x.e, @ therefore has r.x.(e-m).
But Q also has r.x.(e,s) by Lemma 3.3. Hence @ has r.x.(e-m, s).
Since | Q| < |G| we have by induction a subinvariant abelian subgroup
A of @ of index p™ with n < e-m + 3s — log,4s (or n < e-m if s =
0). Then A is subinvariant in G with index p™*" and here

m+n=e-+ 3s —log,4s (or m +n = e).

Thus induction goes through in this case.

Case P. Let Z be the complete inverse image in G of the center
of E. Let B be a nonlinear character of ¥ viewed in G so that deg
B =pm. If ¢ is a character of Z then by Lemma 3.5

(deg @)* = 1/p™t (deg %) (deg 1) < p*~™/t .

If in fact ¢ is a character of Z/9(Z) then since H(Z) = H(G) and B
is a character of G/9(G) we see that so are both ¥y and y,. Hence

(deg @)* = 1/p™t (deg x) (deg x,) =< p™™/t .

Thus clearly Z has r.x.(e-m/2, s-m/2).
If m is odd we do slightly better. If deg @ = p” then » < ¢ — m/2
implies » < e — (m + 1)/2. Hence we have:

(*) If m is odd G has a normal subgroup Z with [G:Z] = p™™
and such that Z has r.x.(e-(m + 1)/2, s-(m + 1)/2) .

Now let m be even. Let B > Z with [B:Z] = p. Since B/K is
normal in G/K, B is normal in G. We show that B has r.x.(e-m/2,
s-m/2). Both the ¢ and the s terms follow in the same manner so it
suffices to just discuss the e term here. Suppose B has a character
0 of degree > p*™*. Let 0|Z = a2l @, Since a’r <|[B:Z]=1p by
Lemma 1.2 and both a and » are powers of p it follows that a =1
and r =1 or p. But deg o, = p°™?* by the above so we must have
r =p and deg @, = p*™* Now ¢, has at least » conjugates in B.
Hence if ¢, has ¢ conjugates in G we have t = » = p. But finally

er——m — (deg @1)2 é pze—m/t é pZe—-m——l,
a contradiction. Thus we have:

(**) If m is even G has a normal subgroup B with [G : B] = p*~!
and such that B has r.x.(e-m/2, s-m/2).
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Suppose m is odd. By induction and (*) Z has a subinvariant
abelian subgroup A with [Z: A] = p™ where

n = (e-(m + 1)/2) + 3(s-(m + 1)/2) — log, 4(s-(m + 1)/2).
But A is subinvariant in G with [G : A] = p"** and

"+ 2m = e + 3s — 2 — log, 4(s-(m + 1)/2)
=e + 3s — log,4(4s —2m — 2) .

Clearly s = m since deg 8 = p™ s0 4s — 2m — 2 =25 — 2= s for s = 2
and the result follows here. If s = m =1 then n < e-1 so

n+2m=e+1=c¢e -+ 3s — log,4s

so the result follows.
Finally let m be even. By induction and (**) B has a subinvariant
abelian subgroup A with [B: A] = p™ where

n = (e-m/2) + 3(s-m/2) — log, 4(s-m/2) .
But A is subinvariant in G with [G: A] = p*™~'*" and

2m — 1+ n=e+ 3s — 1 — log, 4(s-m/2)
= e + 3s — log, 4(2s-m)
=e+ 3s — log, 4s

since s = m. Thus the result follows and the upper bound in Theorem
A is proved.
For the lower bound we need the following.

Lemma 3.6, (i) f(H)=2
(ii)  fle. + ) = fle) + flen)
(iii) ge,s)=e—s+ f(s) fore=s.

Proof. Let G; be a group with r.x.e; which has no subinvariant
abelian subgroup with index p/“’~!, Then G, X G, has r.x.(e, + e,)
and has no subinvariant abelian subgroup whose index divides p”tev+7 (-1,
Hence f(e, + e,) = f(e)) + f(e,) and (ii) is proved.

Let G be a group with r.x.s which has no subinvariant abelian
subgroup with index dividing p”*~*. Let @ be an elementary abelian
g-group with p°° generators and let H be the semi-direct product of
@ with an element of order p°~* where the element merely cyclically
permutes a basis of Q. Clearly @ is a maximal abelian subgroup of H.
By Proposition 1.1, H has r.x.(e-s, 0) since S,(H) is cyclic. Then
G X H has r.x.(e, s) but has no subinvariant abelian subgroup whose
index divides p*~**7-1  Thus g(e, s) = e¢-s + f(s) and (iii) follows.
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Part (i) is a consequence of Example 3.7 below.

ExaMPLE 3.7. Let F, be the group of order p° generated by
elements u, v, w, 2, ¥, z all of period » with the additional relations:
x, ¥y, and z are central and

(w,v) = =, (v, w) =y, (w,u) =z.

It is not hard to see that F, has no abelian subgroup of index p and
that [F,: 3(F)] = p°. By Proposition 1.4, F, has r.x.1.

We can now finish the proof of Theorem A. Since f(1) = 2 we
have by (ii) of Lemma 3.6 and induction that f(e) = 2¢. Then by (iii)
of Lemma 3.6 if ¢ = s we have g(e, s) = e-s + f(s) = e-s + 25 = ¢ + s.
If G has r.x.(¢e,s) and s > ¢ then clearly G has r.x.(e,e) so that
g(e, s) = g(e, e) in this case and the result follows.

While we do not have the exact value for the function f, the
following may be of interest.

PRoPOSITION 3.8. There exists a real number ¢ with 2 <c¢ =14
and f(e) ~ ce.

Proof. Set p(e) = f(e)Je — f(1)/1. By Theorem A, 2 = ru(e) = 0.
Clearly it suffices to show that y(e) has a limit as e — c>. By Lemma
3.6, f(e,) + f(e) = fle, + €,) so we obtain

(*) e + 1) = e/(e + 1)p(e)
(**) t(ne) = p(e) for all positive integers n.

Fix ¢ = 1 and let  be any positive integer. Say (n + 1)e = x > ne.
Then by (*) and (**).

() = (J“ 1)(“3 - 2_> < ne >/<z(ne)

@ r—1 ne -+ 1

ne n
= | —— ne) = — - .
(22)smey = " )
As w— e, m— <« and so lim inf p«(x) = pt(e). Since this is true for
all ¢, lim inf p«(w) = lim sup ygx) and by the boundedness of g« the
limit exists.

We will need an additional result for our later study of groups
with r.x.1. Since the akelian group occurs on the first step in this
case in the inductive proof of Theorem A we obtain

LEMMA 8.9. Let G have r,x,1. Then G has a mormal abelian
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subgroup whose index divides pd.

4. Large centers. Let G be a group with r.x.e. In the previous
section we showed that some subgroup of index p” with 2¢ < n < 4e
is abelian. We now study subgroups of index p°.

TeHEOREM B 4.1. Let G be a group with r.x.e. Then G has a sub-
group H of index p° with [H: 3(H)] = p¥e?,

We first need certain counting formulas.

DEFINITION 4.2. Let A be an abelian subgroup of an arbitrary
group G. Group A acts on G by conjugation and we call the orbits
of this action the A-classes of G. Clearly G is partitioned into mutually
disjoint A-classes. We denote by 7(A) the number of such classes.

If A is normal then G acts by conjugation on the linear characters
of A. We denote by s(A) the number of orbits in this action.

LEMMA 4.3. Let G be a group with r.x.e. and let A be an abelian
subgroup. Let k., k,, --+, k. denote the A-classes of G with r = r(A)
and let x; be a representative of k;. Then

(1) |k | =[A:C(x))]

(i) k| + k| + o + [k [ =G|

(iii) 7r(A) = | G |/p® with strict inequality if G is nonabelian.
If A is normal we have in addition

(iv) r(4) =[G : Als(4) .

Proof. Formulas (i) and (ii) are clear. Let C[G] be the group
algebra of G over the complex numbers and let A be naturally em-
bedded. We consider =" (4), the centralizer of A in the group algebra.
Let k; denote the sum of the elements of k; in C[G]. It is clear that
ky, ky, - -+, k, form a basis for 2 (4) so that r(4) = dim Z (4).

We now compute this dimension in another manner. C(G) is a
direct sum of full matrix rings over the complex numbers. Say

CIG] = - 3 BIC),
since G has r.x.e. In any such direct summand [C]p,- the projection

of A can be diagonalized. Thus & (A) contains all diagonal matrices
in each term. Hence

dim & (4) = 3 bp'.
But
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|G| =2bp" = p° > bp*

with striet inequality if G is non-abelian since then ¢ =1 and b, = 1.
Thus 7(4) = dim & (4) = | G |/p® and (iii) follows.

If A is normal we can compute the dimension more precisely. We
consider one of the direct summands of the group algebra and assume
A is diagonalized in it. Let ¥ be the character of this representation
with ¥ | A = a Xix;. We write ¢ = a(y) and ¢ = t(y) to indicate their
dependence on ¥. It is easy to see that the dimension of the centralizer
of A is equal to a*. Hence

dim = (4) = >, a(O)H(X) -
In view of Lemma 1.2, we obtain by grouping these terms
(4) = dim & (4) = [G : A]s(A)

and the proof is complete.

LEMMA 4.4. Let G be a group with r.x.e and let A be an abelian
subgroup. Suppose |G :C(A)] = p***. Then there exists an element
x ¢ C(A) with

[A:C @] <@ =D/ —1)=p°+p 7+ -+ + 1 < pit,
If G is a p-group then [A:C (x)] =< p°.

Proof. Let n=min {[A:C€(x)]|x ¢ C(A)}. We show that
n < (p*t —1)/(p — 1).

If ge @A) then the A-class containing ¢ has only one element
and there are |C(A)| such classes. If g ¢ €(4) then the A-class
containing ¢ has at least n members by definition of n. Hence there
are at most (|G| — | €(A)|)/n such classes. By the previous lemma
we have

&) [+ (G — &4 )n = r(A) > |G |/p

since clearly G is non-abelian. Let a =[G :€(A)]. Then the above
equation becomes

1+ (a—1)/n>a/p’

or n/p° < (@ — /(e — p°) = (p*** — 1)/(p°** — p°) since a = p°*'. Hence
n < (" — 1f(p —1). If G is a p-group then % must be a power of
p and so we have n < p° in this case. This completes the proof.

Proof of Theorem B. We show by induction on ¢ with 0 =< 7 < 3e
that G has a subgroup H; of index p*~" with [H;: 3(H,)] =< p'“*¥. By
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Theorem A we have the group H,.

Suppose we have H; with 7 < 3e. Let A = B3(H;). Suppose first
that [G : €(A)] = p°. Then we can choose H,., with €(4) 2 H,,, > H,
with [H;,,: H;] = p. This follows from Proposition 3.4 and Dbasic
properties of p-groups. Then 3(H;.,) =2 3(H;) and

[H;y, B(H )] = [Hiy, : Hil[H; - 3(H))] = p piet» < plitvets,

Now assume that [G:E(A)] > p°. Since €(A) 2 H; and H,; has
index p*~* we see that [G : €(4)] = p°"*. Then by Lemma 4.4 we can
find an element = € G with « ¢ €(A) and hence © ¢ H; with [4:C (x)] < p**.
Let H;,, be a subgroup with (H;, ) 2H;,, > H; and [H,,,: H;] = »p.
Then 3(H;,) 2 € (x) so

[Hivo: 8(H )] = [Hyyy s HLH 2 S(H)IB(H) = € ()]
= » pi(e+2>pc»1 1 p(i+1)(e+2)

and the induction follows.
With 4 =3¢ we have a subgroup H = H,, of index »° with
[H: 3(H)] = p*c'?.

The bound given in the above theorem is certainly not best possible.
However we can show by example that a result of this nature cannot
be extended to subgroups of index < p°. We first need another example
of a group with r.x.1.

ExAMPLE 4.5. Let A be an elementary abelian p-group with pn
generators. Let F, be the semi-direct product of A by an element of
order p which permutes a basis of A in cycles of length p. By
Proposition 1.1, F, has r.x.1. Also [F,: B(F,)] = pp*V". Hence by
choosing 7 sufficiently large we can make this index as large as we
please.

Now set G = F, X F, x -+« X F, the direct product of e copies
of F,. Then G hasr.x.e. Any subgroup H of G of index < p° must
project fully onto one of the direct summands. Hence there can be
no bound on [H : 3(H)].

The following two propositions are more general than we will need
to study groups of r.x.1. However they are of interest in their own
right.

PropPOSITION 4.6. Let G be an arbitrary group. Let g be the
smallest prime for which &,(G) is noncyclic. Given any 7% nonidentity
elements g¢,, +--, g, € G with n = q then G has an absolutely irreducible
representation ¢ with x(g;) # 1 for 4 =1,2, ---,n, Moreover n = q is
best possible.



THE DEGREES OF GROUP CHARACTERS 891

Proof. We first show this for abelian G by induction on |G]|.
If G is cyclic the result is of course clear. So assume that G is not
cyclic. Then G has a subgroup of type (q,¢q). This group has ¢ + 1
disjoint subgroups of order q. Since there are only % =< ¢ elements
there is some subgroup K of order ¢ not containing any of the g¢,.
Then g, —g; # 1 in G/K. If q is the smallest prime with &;(G/K)
noneyeclic then # < ¢ = ¢. So by induction there is a linear character
A of G/K with \(g,) # 1. View N as a character of G and the result
follows.

Now let G be arbitrary but suppose that all the g, commute. Set
A=<gl1=1,2,---,n>. Then A is abelian and for any prime p,
S, (4) € &,(G) for some Sylow p-subgroup of G. Thus if ¢ is the
smallest prime with &3(A) noncyclic we have n =< q¢ = §. Then by
the previous result A has a linear character » with \g;) # 1 for all
1. Let y be a constituent of N*. The N is a constituent of ¥ | A so
the g, are not in the kernel of .

Finally let G be arbitrary. We prove the result by induction on
n. If all the g, commute and in particular if % — 1 the result follows
by the above. Suppose then that say g, and ¢,., do not commute.
Set h = (g, g.—,) so that h =+ 1. Then by induction we can find an
absolutely irreducible representation x of G with x(g;) # 1 for ¢ =
1,2, ---,(n — 2)and g(h) # 1. But g(h) = (x{g.), £(g9._.)) # 1 so certainly
t(g.) = 1 and ¥(g,.) #+ 1.

To see that » = ¢ is best possible let G be abelian of type (g, q).
If g, ---, g,.. are generators of the ¢ + 1 proper subgroups of G then
one is always in the kernel of every linear character. This completes
the proof.

ProposITION 4.7. Let G he a group with r.x.e and suppose all
primes ¢ dividing | G | are larger than e¢. It A, < 4, < --- < A4,, be
a series of normal abelian subgroups of G such that

C4) >6A) > --- >C(4,).

Then m = e.

Proof. It suffices to show that no such series exists with m =
e + 1. So suppose m = e + 1 in the above and set N; = €(4;). Then
by assumption N; centralizes A; but not A;,, so we have 1 == (N, 4,.,).
Choose «; € (N;, 4;.,) with 2, # 1 for 2=0,1,-.-,e. These are
e + 1 < q nonidentity elements of G for all ¢ dividing |G|. Thus by
Proposition 4.6, G has an absolutely irreducible representation r with
r(x;) =1 for © =0,1, --- e.

Set N; = x(N,), A; = 1(A;) and since A,., is abelian we can assume



892 I. M. ISAACS AND D. S. PASSMAN

it is represented by diagonal matrices. Let .%°(4;) denote the linear
subspace of matrices spanned by A;. If y is the the character of 1
with say x| A4; = a; 3% \; since A; 4G then clearly dim .7 (4,) =t;
which is a power of p since t; divides the degree of g. Set ¢, = p°i.

Since A4;,, > A; we have ¥ (4,,,) 2 .7 (A,). But since (N;, 4,,,) #1,
N, centralizes .~ (4;) but not & (4;,). Hence ¥ (4;.) > .F (4)
and so s;.; >s; for ©=0,1, ---,e. Since s, = 0 we haves,,;, =¢ + 1.
But G has r.x.e so deg 1 < p° and since &~ (4,,,) is a space of diagonal
matrices dim &7 (4,,,) = p*+ < p°, a contradiction. Thus the result
follows.

THEOREM C 4.8. Group G has r.x.l if and only tf G s one of
the following types :

(i) An abelian group

(ii) A group with a mormal abelian subgroup of index P

(ili) A group with center of index p°.

Proof. Let us assume that G is a non-abelian group which has
no normal abelian subgroup of index p. If G has r.x.1 then by Lemma
3.9 G has a normal abelian subgroup A of index p°. Clearly A = €(4).

Let K be a subgroup of G with G > K > A. Since G/A is of
order p* K is normal in G. Clearly 3(K) < A. Set 4, = 3(G), A, =
8(K) and A, = A. Then A, S A, < A,. Suppose that A, # A,. Then
we have 4, < A, < A, and

(SH(A(,) > (SEAI) > @gAz) .
G K A

Clearly the hypotheses of Proposition 4.7 are satisfied by G and so
this cannot occur. Hence 3(K) = 3(G).

Let H= $(G). We show now that H is central. In view of
the above it suffices to show that C€(H) > A. Let P = &,(4). Then
A=Px H and P4G. Now the group G = G/P has r.x.(1,0) since
its Sylow p-subgroup has order p*>. Thus by Theorem A, G has an
abelian subgroup of index p. Let B be its complete inverse image in
G. Then B2 H but BZ A. Choose z € B-A with 2 ¢ A. Since B
is abelian, (v, H) S P. But H is normal so (x, H) & H. Hence
(z, HYy =1 and H S 3(K) = 3(G) where K = {4, x).

Thus G = H x &,(G) and it suffices to assume that G is a p-group.
Now by Lemma 4.4 since [G : A] = p® there is an element x ¢ €(4) = A
with [A: €, (x)] = p. We can assume that z* € A. Then with K =
(A, x) we have [A: B(K)] =[4:3(G)] = p. Hence [G: 3(G)] = p°.

Conversely by Propositions 1.1 and 1.4 any group of type (i), (ii)
or (iii) has r.x.L
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That all of the above possibilities occur can be seen by examples.
Type (i) is clear. Group F), is an example of type (ii) which is neither
(i) nor (iii). Finally F is type (iii) but not (i) or (ii).

5. Groups with r.b.n. The results of the previous sections
apply to rather special groups. We consider the more general case
now.

DEFINITION 5.1. We say group G has r.b.n (representation
bound n) if the degrees of all the absolutely irreducible characters of
G are =< n.

Let h, be the function with the following property. If G has
r.b.n then G has a subinvariant abelian subgroup whose index is at
most h,(n). Moreover h, is the smallest such function.

Let h, (respectively h,) be the corresponding function where we
restrict G to the class of solvable (respectively nilpotent) groups.

We show here that the h; exist and obtain bounds for each. This
may be viewed as an analog of Jordan’s Theorem ([14] Satz 200) which
we state below.

PROPOSITION 5.2. (Jordan). There exists a function J with the
following property. If G is a complex linear group of degree » then
G has a normal abelian subgroup with index = J(n).

We assume that the function J above is best possible. One of
the known bounds for J is

Jn) < 1 12

where m(n + 1) is the number of primes < n + 1.
We prove

THEOREM D 5.3. hi(n) < J(2n)
hz(n) é nSIZ logg 21
hy(n) = n'.

The third case is an immediate corollary of Theorem A. Let G

be nilpotent so that G = P, x P,--- x P, where P, is a Sylow p;-
subgroup of G. Suppose the degree of the biggest character of P, is
¢i, Then the biggest character of G has degree I[;»{ =< n. Now
by Theorem A, P, has a subinvariant abelian subgroup A; with
[P;: A] = pi. If A=A X A, X +-+ X A, then A is a subinvariant
abelian subgroup of G with index = ][ pi* =< n*. Hence we need only
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consider the first two cases.
We use a variant on the techniques of §2. We first need a few
simple facts about the function J.

LEmMMA 5.4. Forall n=1, Jn)=n* For all n,n, we have
Jm)I(ny) = J(n, + m,).

Proof. The symmetric group S,., has a faithful irreducible charac-
ter of degree n. Since for » = 4, S,,, has no normal abelian subgroup
we have J(n) = (n + 1)! for n = 4. But then

Jm)yz m + 1) = @ + Unn — 1)2 = 2n(n* — 1) = ».

Thus we need only consider n = 1,2,3. Case n = 1 is clear.

Let H be a linear group of degree 2. Then H/S(H) is a collinea-
tion group of degree two. These are known to be ([12] Chapter X)
(1) cyclic or dihedral, (2) order < 60 and (3) the alternating group A,
of order 60. From this we conclude immediately that J(2) = 60. Hence
60 = J(2) > 2° and J(3) = J(2) = 60 > 3°. The first result follows.

Let G, be a linear group of degree n; having no normal abelian
subgroup of index less than J(n;) for ¢ =1,2. Then G = G, X G, is
a linear group of degree %, + m, having no normal abelian subgroup
of index less than J(n)J(n,). Henece J(n, + n,) = J(n)J(n,) and the
result follows.

LEMMA 5.5. Given K 4G with G/K non-abelian. If G has r.b.n
then K has r.b.(n/2).

Proof. Let ¢ be an absolutely irreducible character of K and let
% be a constituent of ¢*. Set y| K =+. Then + = aip, with
¢, =@. Now +* =|[G:K]|y on K and +* =0 off K. Hence if p
denotes the character of the regular representation of G/K in G we
have * = ypo. If {B;} is the set of absolutely irreducible characters
of G/K in G with b; = deg £, then p = 3 b,5,.

We compute [+*, 4v*]. By Frobenius reciprocity this is equal to

[V, 4| Kl = |G : K] [y, vl .
On the other hand +* = yo = 2 b;xB; so we have
G : K] [V, vl = [¥*, v*] = 23,00, |18, x6i] -

Suppose for some nonlinear character 8 = 8; we have that ¥8 is
irreducible. Then

n = deg x8 = (deg y )(deg B) = 2deg 1 .
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So deg x < n/2. But deg ¢ < deg ) so the result follows here.
If for some nonlinear B = B, we have that y8 is reducible then
[x8, xB] > 1. Hence

[G: K] [y, ¥]e > 20 =[G : K]
so that [y, ¥]x > 1. Now [v, ¥]x = ¢’ > 1 implies that at = 2. But
n=degy = atdeg p = 2deg @

s0 n/2 = deg @ in this case also. Hence K has r.b.(n/2) and the result
follows.

We are now ready to prove the theorem.

Proof of Theorem D. The proof is by induction on |G|. If G
is abelian the result is trivial so we assume that G is non-abelian.
Choose K 4G maximal with respect to G/K being non-abelian. If
E = G/K has a nontrivial normal abelian subgroup then FE is extra-
special and we have two possibilities by Proposition 2.2. Thus there
are three cases to consider: Case P, Case @ and Casze R, the latter
being the possibility that £ has no nontrivial normal abelian subgroup.
Note Case R cannot occur if G is solvable.

We point out the obvious fact that the r.b.n property (as well as
solvability) is inherited by subgroups and quotient groups.

Case P: Let ¢ be a character of Z as in Lemma 3.5. Then
(deg @)* = 1/p™t (deg 2)(deg 1)

so deg ¢ is properly smaller than at least one of degy) and deg ..
Since deg ¢ divides both deg ¥ and deg ¥, we have, if say deg ¢ < deg %,
that degp < 1/2degx =< n/2. Thus Z has r.b.(n/2). Now [G:Z] =
p™™ < n® since p™ is the degree of a character of G. Thus

(*) G has a normal subgroup Z of index = »’ with r.b.(n/2).

Case Q: Let @ be the inverse image in G of E’' the Sylow ¢-
subgroup of E. Now [G:Q] is the degree of a character of G by
(vi) of Proposition 2.2. Hence [G:Q] =n. If Q has r.b.(n/2) then

(**) G has a normal subgroup @ of index = n with r.b.(n/2).

We assume now that this is not the case. Let 0 be a character
of @ of degree > n/2. If y is a constituent of 0* then y |Q = a 2i 0,
and degy = at degf. But degy =n so a =t¢t=1. Hence for all
xeG—Q we have ¢° =0. Let p be any linear character of @
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corresponding to one of E’. Then 6/ has degree > n/2 so also (dp)* =
6p. Thus

Op = (Op)” = 0°p* = Opr°
and ¢ = 0pft. Hence 0 vanishes off the kernel of p#*zz. Now given
any linear character » of /K we can find a character p¢ with » = p*u
by (vii) of Proposition 2.2. Hence 0 vanishes off the kernel of . But
the intersection of all these kernels is K and so 6 vanishes off K.

Let 0| K=aZXip,. Then [0|K, 0| K] = a*. On the other hand
since 6 vanishes off K

1=10,0l,=(K|/|Q) 01K O0|K]le=(K||Qa’t.
Hence
[Q: K] = a't = (at deg ))* = (deg 0)* = n’.

So [G:K]=[G:Q]Q: K]=n’. Since G/K is non-abelian, K has
r.b.(n/2) by Lemma 5.5 so we have

(***) G has a normal subgroup K of index < n® with r.b.(n/2).

Case R: Suppose E = G/K has no normal abelian subgroup. Let
¥ be a nonlinear character of E with kernel N. If N >1 then N2 E’
and so x would be linear. Hence N =1 so F is a faithful linear group
of degree m =<7 since G has r.b.n. But then E has a normal
abelian subgroup of index = J(m) =< J(n) by Proposition 5.2. Hence
[G: K] < J(n). Since E is non-abelian, K has r.b.(n/2) by Lemma 5.5.
Thus

(****) G has a normal subgroup K of index < J(n) with r.b.(n/2).

We now apply induction. If G is given to be solvable then so is
every quotient and subgroup. Thus only Cases P and @ occur. Then
(*), (**), and (***) imply that G has a normal subgroup N of index
< n® and with r.b.(n/2). By induction N has subinvariant abelian
subgroup A with

[N: A] < (n/2)¥2 oeam,
Then A is subinvariant in G with
[G . A] < ns(,n/z)s/z loggn — g,3/2 logy2n

and the bound for &, follows.
In the general case all four possibilities can occur. Since by
Lemma 5.4, J(n) = n® we see that G has a normal subgroup N of
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index = J(n) with r.b.(n/2). By induction N has a subinvariant abelian
subgroup A with [N: A] < J(n). Then A is subinvariant in G with

[G:A] =[G :N]IN:A] = Jn)J(n) < J(2n)

by Lemma 5.4 again. This completes the proof.

6. Normal Sylow p-subgroups. The analogy between groups
with r.b.n and linear groups of degree n can be carried further. We show

THEOREM E 6.1 Let G be a group with r.bn. If p is a
prime with p > n then S,(G) ts normal and abelian.

If » =1 the result is trivial. Thus we assume that » = 2 and
hence p > 2. Let G be a group of order g = p°g, with g, prime to p
and @ = 1. Let 0 = ¢ed, be a primitive gth root of unity over the
rational numbers @ with € a primitive p“th root and J, a g,th root.
Then as is well known, the Galois group of Q(0)/Q(9,) is cyclic of
order p*(p — 1). Let o be an element of order »p — 1 in this group.
Then ¢ is an automorphism of @Q(6) which fixes Q(d,) and cyeclically
permutes the p — 1 primitive pth roots of unity. Moreover as is well
known ¢ permutes the characters of G.

LeMMA 6.2. Let G be a faithful linear group with character
X such that y ts fixed under the action of 0. Then degy = p — 1.
If degy = p — 1 and G has trivial center then G has mo elements
of order pq with q prime to p.

Proof. Let x be an element of order p in G. Its eigenvalues (in
the matrix representation) are all pth roots of unity. Since ¥°(x) =
x(x) we see that x(x) is rational. From the form of the minimal
polynomial of a primitive pth root ¢ over @ we see that x has at least
» — 1 eigenvalues. Hence degy = »p — 1.

If degx = p — 1 then the eigenvalues of « are g, g, -+, ",
Clearly we can assume that z is in diagonal form so that

x :dlag(#, #2’ ] #p—l) .

Let y be an element of G of order ¢ where ¢ is prime to p. Suppose
a2y = yx.. Since all the diagonal entries of « are distinet, y is also
diagonal. Say y = diag(\, Ny, + -+, A,_;) and so each A; is a gth root
of unity. Thus

It = q(ey) = x°(wy) = Tio(\ptf) = Ino ()

since o fixes Q(J,).
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Suppose o(x) = p*. Then with the subscripts taken modulo p we
have

It = It = Iovo(pt) = I p
or
v — Nt =10,

Since the p** are linearly independent over Q(d,) we have )\, = \,, for
each 7. Hence N\, =\, = A2 = --- and all of the \, are equal since
o has order p — 1. Thus y is central.

Suppose z is an element of G of order pgq. Then x = 2’ has order
p and ¥y = z” has order q. Moreover x and ¥y commute. By the above
y € B(G) = 1, a contradiction. Thus the lemma is proved.

Suppose o0(0) = ¢*. Since ¢ is an automorphism u is prime to
g =|G|. Now o fixes Q(0,) so we see that v = 1 mod g,. Let a be
the permutation on the elements of G defined by a(x) = x*. If x is
p-regular (x% = 1) then a(x) = . Clearly o permutes the conjugacy
classes of G. If y is any character of G then ¥°(x) = y(a(x)). It
follows ([3], §6 and T) that the number of irreducible characters fixed
by ¢ is equal to the number of classes fixed by «. Since both ¢ and
« have order p — 1, the number of transitivity classes in the respective
actions of groups (o) and (&) on the characters and classes are equal.

LeMMA 6.3, Let G have r.b.(p —1). Suppose G' >1 is the
unique normal subgroup of G and assume that [G:G'] divides p.
Then p s prime to |G |.

Proof. Suppose to the contrary that |G| = g = p°9,. Now G has
t =[G : G’] linear characters and clearly all nonlinear characters are
faithful. If all nonlinear characters of G have degree p — 1 we have

g=1t-+bp— 1>

But p — 1 being the degree of an irreducible character must divide g.
Thus p — 1 divides ¢t = 1 or p, a contradiction for p > 2.

Since G has r.b.(p — 1) some nonlinear faithful character of G has
degree k < » — 1. Thus by Feit’s theorem ([6]), [G : ©,(G)] is divisible
by » to at most the first power. Here O,(G) is the maximal normal
p-subgroup of G. Since G is not a p-group (having r.b.(p —1) it
would be abelian) we see that O,(G) = 1. Hence p divides |G| to the
first power only and so S,(G) is cyclic of order p.

Since G has at least two p-regular classes, including the identity
class, a fixes at least two classes and hence o fixes at-least two charac-
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ters. Now o fixes the principal character but no other linear character
since [G:G'] =1 or p. Hence ¢ fixes a nonlinear faithful irreducible
character ¥y and Lemma 6.2 applies. Since G has r.b.(p — 1), y has
degree p — 1 and thus G has no elements of order pg with ¢ prime
to p. Note B(G) =1 since otherwise G would be a cyclic extension
of G < B(G) and hence would be abelian.

This implies that every p-singular (order divisible by p) class
consists of elements of order ». Thus if z and y are p-singular
elements of G then 2 is conjugate to some power of % by the second
Sylow theorem. Hence all p-singular classes form a single transitivity
class under the action of {a). We conclude then that the total num-
ber of {a)-transitivity classes is equal to the number of a-fixed classes
plus one and the same is therefore true for o. Thus all irreducible
characters moved by ¢ are {o)-conjugate. Therefore their number
r > 1 divides p —1 and their degrees are all equal to k. Hence we
have

g=1=t+ rk’+ b(p — 1)

Since 7 divides »p —1 and p — 1 divides g we see that » divides ¢.
But t =1 or »p so » =1, a contradiction, and the result follows.

Proof of Theorem E. If G has a normal Sylow p-subgroup then
the latter is clearly abelian. We show by induction on |G| that
&.(G) 4G.

We can clearly assume that p divides |G| and that G is non-
abelian. By Lemma 6.3, G has a normal subgroup N with G > N > 1
and [G: N]+# p. Suppose that p divides |G/N|. Now G/N has r.b.n
so G/N has a normal Sylow p-subgroup by induction. If G/N is not
p-group then M = N&,(G/N) is normal in G, G > M > 1 and p divides
| M|. If G/N is a p-group then since |G/N |+ p we can again find
such a normal subgroup M. If p does not divide | G/N | then p divides
| N|. Hence G has a proper normal subgroup M with p dividing | M|.

Now G > M so by induction &,(M) is normal in M. Since &S,(M)
is then in fact characteristic, it is normal in G. Set K = G/S,(M).
Then | K| < |G| so K has a normal Sylow p-subgroup. Hence &,(G) =
S,(M)S,(K) is normal in G. This completes the proof.

7. Infinite groups with r.b.n. We show here that Theorem D
holds for arbitrary (not necessarily finite) discrete groups.

DEFINITION 7.1. Let G be an arbitrary discrete group and let
C[G] be its group algebra over the complex numbers. If & is an
irreducible representation of the algebra then .& (C[G]) = P is primi-
tive and hence is isomorphic to a dense set of linear transformations
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over D, the commuting ring of & ([10] page 28). Let L be the
center of D. If dim; P < c then we say & is finite and since P
is central simple over L ([10] page 122) we have dim, P = m®. We
set m = deg %, the degree of & .

If G is finite then C is always the commuting ring of every
irreducible representation. Thus the degree defined above agrees with
the usual one in this case.

We say G has r.b.n if all irreducible representations & of C[G]
are finite and for each deg . =< n.

-

The following lemma was obvious for finite groups.

LemMMmA 7.2. If G has r.b.n themn so does every subgroup and
quotient group.

Proof. The fact for quotient groups is clear. Now since C[G]
is semi-simple ([13] Theorem 5.2), a result of Amitsur ([1] Theorem 1)
yields the fact that G has r.b.n if and only if C[G] satisfies the
polynomial identity [z, 2, *--, %,,] = 0. But if H is a subgroup of G
then C[G] 2 C[H] and so the result follows.

ProPOSITION 7.3. A finitely generated linear group is a sub-
direct product of finite groups.

Proof. Let G < [R], the ring of m x m matrices over field R,
Let S be the prime field contained in R. Then S=@Q if R has
characteristic zero and S = GF(p) if R has characteristic p. Let
g, 0z °+*, 0, generate G as a semi-group, that is we include with each
generator of G its inverse. Each g; is represented as a matrix over
R. Let X denote the set of all the matrix entries for all the g;. This
is of course a finite set.

Given nonidentity g € G we must show that G has a normal sub-
group N of finite index with g ¢ N. Since g # 1 choose = to be a
nonzero entry of g — 1 (subtraction in [R],). Now X U {«} is a finite
set so by the Extension Theorem for Places ([2] Contention, page 49)
there exists a place ¢ of R into S, the algebraic closure of S, union
o, the ideal point, with ¢(X U {#}) £ S and ¢(x) # 0. Now ¢ clearly
induces a homomorphism of G into [S], with ¢ not in the kernel.
Since G is finitely generated it is clear that the image of G is in fact
contained in [T'], where T is a finite algebraic extension of S. If
S = GF(p) then T is a finite field and so the image of G is a finite
group. Hence if N denotes the kernel of the homomorphism we have
[G:N]< ~ and g ¢ N. Thus the result follows here.

Hence it suffices to assume that S = Q. Then T is a finite alge-
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braic extension of @ and hence Int(7T'), the ring of algebraic integers
in T, is a Dedekind domain. Now every element of T is of the form
a/n where « € Int(T') and % is a rational integer. Let 7 denote the
set of primes in the rational integers which divide the denominators
of the ¢(X) which of course generate all of the entries of ¢(G) as a
ring. Here we have let ¢ denote the natural extension of the place
to the group homomorphism. Now 7 is clearly a finite set. Let
¢(x) = a/n so a« # 0. Then « is contained in only a finite number of
prime ideals of Int(7). Thus we can find a prime ideal p of Int(T")
with «a ¢ p and such that p does not divide any of the primes in 7.
Then clearly ¢(G) S [U],, where U = Int(T), is Int(T') localized at p.
The map 0: U— U/pU induces a homomorphism of ¢(G) whose image
is finite since U/pU is a finite field. But by choice of b, ¢(x) is not
in the kernel of 4. Thus 0¢ is a homorphism of G into a finite group
with ¢ not in the kernel. This completes the proof.

We will have need for the following lemma of M. Hall ([11] page
56): If G is a finitely generated group then G has only a finite num-
ber of subgroups of any given finite index. The following proposition
was proved in [8]. We offer a shorter proof here due to G. Glauber-
man.

PropPOSITION 7.4. Let G be an arbitrary group. Then G has
an abelian subgroup with index at most m if and only if every finitely
generated subgroup of G has such an abelian subgroup.

Proof. If A is abelian with [G: A] = m then for any subgroup
H of G we have

m=[G:Al=[GNH:AnNH|=[H:An HJ.

Hence A N H is an abelian subgroup of H with index at most m.
Conversely let us assume that every finitely generated subgroup
of G has an abelian subgroup of index at most m. For each finite
subset « of G let G, = (&) be the group generated by the elements
in a. Let .o be the set of abelian subgroups of G, and let m, —
min {[G, : A]| A € .&%}. By assumption 1 < m, =< m for each @. Choose
@, such that m, = m,, is the largest of the m,’s and set G, = G.,,.
Let A, A,, -+, A, be the abelian subgroups of G, having index
‘m, in G%. By the above mentioned lemma of M. Hall there are only
a finite number of these. We show that for some ¢ =1,2,-.-, or »
both [G : €(4,)] = m, and G(A4,) is abelian. This will of course yields
the result. Suppose not. Then for each 7 choose «; to consist of two
noncommuting elements of €(A4,;) if the latter is non-abelian or m, + 1
elements in distinet right cosets of €(4,) if [G:E€(4)] > m,. Let
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a=a,Ua U -+ Ua,. This is a finite set so let 4, be an abelian sub-
group of G, with [G,: A,] = m,. Now

My = My = [Ga 1 Aa] 2 [Ga N Gy A N Go] = [Go: Au N Go] = g .

The last inequality follows since A, N G, is an abelian subgroup of G,.
Thus [G,: A, NG =m, =m, and A, N G, = A; for some 7. Say
Aw N Go = Av

Since A, is abelian we have A, < €, (4). On the other hand

[Go: € (A)] = [Ga N Gyt Cg (A) N Gy =[Gy i Ai]l = My = My

since A, is its own centralizer in G,. Thus 4, = € (4,). Now «a, & G..
Hence if €(A4,) were non-abelian then «; would contain noncommuting
elements in €; (4,) = A,. But A, is abelian so this is not the case.
On the other hand if [G: €(4))] > m, then G, would contain m, + 1
elements in different right cosets of €(4,) and hence of €, (4, = A,.

But [G,: A,] = m, so we have a contradiction here and the result
follows.

We now consider the extension of Theorem D to arbitrary groups.

DEFINITION 7.5. Let h, be the function with the following
property. If G is a not necessarily finite, discrete group with r.b.n
then G has a subinvariant abelian subgroup A with [G : A] £ hy(n).
Moreover %, is the smallest such function.

Let #, (respectively ;) be the corresponding functions when we
restrict G to the class of solvable (respectively nilpotent) groups.

THEOREM F 7.6. The functions h; are finite valued. In fact
hi(n) = hy(n) for i =1,2,3.

Proof. First we notice that the property of being solvable or
nilpotent is inherited by subgroups and quotient groups. Let & be the
function of interest here and let 2 be the corresponding function
for finite groups. Clearly h(n) = h(n).

Let G have r.b.n. If F is a finitely generated subgroup of G
then by Lemma 7.2, F' has r.b.n. If we know that F' has an abelian
subgroup to index = A(n) for all such F then the result follows by
Proposition 7.4. Hence it suffices to assume that G is finitely generated.

Let G be a finitely generated group with r.b.n. Since C[G] is
semi-simple, G is clearly a subdirect product of the groups .7 (G) for
all irreducible representations .&# of the algebra. But & is finite so
Z (G) is a finitely generated linear group. By Proposition 7.3, .7 (G)
and hence G is a subdirect product of finite groups.
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Now let A4,, 4,, ---, A, be the subgroups of G of index = h(n).
By M. Hall’s lemma there are only a finite number of these. We
show that for some 7, A; is abelian. Suppose not. Choose nonidentity
x; € A, the commutator subgroup of A,;, for 1 =1,2, ..., 7. Since
G is a subdirect product of finite groups we can find a normal sub-
group N of G with [G:N]< « and z; ¢ N for all . Now G/N is
a finite group with r.b.n and hence G/N has an abelian subgroup of
index =< h(n). Let B be its complete inverse image in G. Then
[G:B] = h(n) so B= A, for some ¢. Say B = A,. Now B/N is abe-
lian so B' < N. But by choice of N, A]Z N. This is the required
contradiction. Thus G has an abelian subgroup of index = h(n) and
hence h(n) < h(n) and the result follows.
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