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TENSOR PRODUCTS OVER H*-ALGEBRAS

Larry C. Grove

Throughout, A, B, and C denote (semi-simple) iϊ*-algebras
whose respective decompositions into minimal closed ideals are
A = Σ © Aa, B = Σ 0 Bβ, and C = Σ © Cy. It is assumed that
A is a right C-module and B is a left C-module. We define
a tensor product A®0B that is again an iϊ*-algebra, and
show that it is isometric and isomorphic with an ideal in
A®B®C. As a corollary, A®GB is strongly semi-simple if
A, B, and C are each strongly semi-simple. The converse to
the corollary is shown to be false. When A, B, and C are
closed ideals in some ίP-algebra, with ordinary multiplication
as the module action, then A®0B is shown to be isomorphic
with the direct sum of all the one-dimensional ideals in
A n B n C. When A = L\G\ B = L\H\ and C = L\K\ for
suitable related compact groups G, H, and K, then the module
actions are defined, and A®oB can be constructed. When
G = H = K9 it is shown that A®GB = L\G/N), where N is
the closure of the commutator subgroup of G. A conjecture
is stated that would generalize this result to the case where
K is a closed subgroup of G Π H.

Since A§§0B will be represented in terms of ordinary tensor pro-
ducts A 0 J 5 of iϊ*-algebras, the requisite facts concerning A ® B
are stated here (details may be found in [2]).

Aξζ)B is the Hubert space completion of the space 4 ® ' ΰ of all
conjugate bilinear functionals T on A x B of the form T — Σ?=iαi®fr;>
where Γ(α, 6) = 2 (ai9 a)(bi9 b) (see [3]). We define (a (g) b)(c (g) d) =
ac§§bd, and extend by linearity and continuity to multiplication on
A0B. Then

I. A0B is an iϊ*-algebra and each Aa§§Bβ may be identified
with a closed ideal in A ® 5 .

II. A (g) B = Σ 0 (Aa 0 ί y is the decomposition of A (g) I? into
minimal closed ideals.

III. A(g).Bis strongly semi-simple (see [5], p. 59) if and only if
both A and B are strongly semi-simple.

1Φ Tensor products*

DEFINITION. FO(A, B) will denote the collection of all finite formal
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sums of the form
Σit-iCiiai, bt), with α< e A^^e B, and ct e C; i.e. F0(A, B) is the

free C-module generated by A x B.
F0{A, B) becomes an algebra and a pseudo-inner product space if

the operations are defined by the formulas:

{c{a, b)) (c'(a', b')) = cc'(aa', W) ,

XΣCi(aif &{) = Σ(XCi)(ai9 ϊ^), λ complex, and

(c(α, 6), c'(a', &')) = (c, c')(α, a')(b, V)

(the first and third must be extended by linearity). The positive
semi-definiteness of the pseudo-inner product follows from the fact that
(c(a, b), c'(a'9 &')) = (a ® & ® c> α ' 0 &' 0 c')ί ^ e other properties required
of an inner product obviously hold.

Let /{ be the ideal in F0(A, B) spanned by the set of all elements
of the following forms:

(1) c(a, + a2, b) - c(al9 b) - c(α2, 6) ,

(2) c(α, b, + 62) - c(α, 6^ - c(α, δ2) ,

(3) (d + c2)(α, 6) - d(α, 6) - c2(α, 6) ,

(4) λc(α, 6) — c(λα, 6) , and

(5) λc(α, 6) — c(α, λ6)

for arbitrary α, a{ e A; b, b{ e B; c, c{ e C; and complex numbers λ.
Let I 2 be the ideal in F0(A9 B) generated by the set of all elements
of the forms:

(6) CAfa, &) — Ci(ac2, b) , and

(7) cxc2{a9 b) - d(α, c26)

for arbitrary α e i , 6 G JB, and ̂  e C. Then let Γ = Γ1yΓ2 = I[ + Γ2,
the ideal generated by the set of all elements of the forms (l)-(7).

PROPOSITION 1. U = {Xe FC{A, B): (X, X) = 0}.

Proof. Straightforward computations show that (X, Y) — 0 if X
is of one of the forms (l)-(5) and Y = c'(a'9 δ') Extending by linearity
we have immediately that (X, Y) = 0 for all X e J{, 7 G F^A, 5) .
Suppose then that X = Σ?=ic<(α*» &») a n d t h a t ( X -X") = ° It m u s t be
shown that X e /ί.

If {cJJLx is not linearly independent, then we may assume that
, and so
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τι—1 fn—1 \

n-1 τι—1

CiV^ii ®i) "T" ^ j C ^ Λ J ^ C I ^ , O M > /
t = l i = l

Kn - 1 \ Ti-l Π

? . ΛΛ C ( (X., . On ) > , CΛ ΛltGLn , On ) I
ΐ=l / ί=l J

The expression in brackets is clearly an element of Γu call it 7i. Thus
we have

ΣΣ
.7 = 1 ί = l

where an — ai9 ai2 — \an, bn = 6$, δ i2 = 6W. Repeating the process as
many times as is necessary we obtain

where ΊV e I[ and {c$=? is linearly independent. Then, for each fixed
index ί, by using an argument similar to the one above, we can write

2P 2QW /2P—q(ί) \

Σ c M i h bu) = Σ ( Σ ci(aa>biik)) + yttu) >
3=1 k=l \ j=l J

where yiq{i) e I[ and {ai3 :j = 1, •••, 2P — q(i)} is linearly independent.
As a result, we have

n—p 2P-q(i) 29d)

^=Σ Σ ΣΦ«,ω + 7,
i=ι j=ι k=i

where {cj is linearly independent, {an} is linearly independent for each
fixed i, and 7 € I[.

Fix any pair < i, j > of indices. By the Hahn-Banach Theorem
and the Riesz Theorem there exist a' e A and c' e C such that

II & II - II a! II = 1, (ci9 c') = d, > 0, (α,,, α') - d 4 i > 0 ,

(o.tf c') = 0 if ΐ ' ^ i, and (αίy,, α') = 0 if i ' ^ j . Since ^ ( A , B) is a
pseudo-inner product space, the Schwarz inequality holds. Thus if we
let V = 2{&<iA: k = 1, , 2?(ί)}, we have

I (X, c'(α', δ') I ̂  (X, X)(c'(a', δ'), c'(α', δ')) = 0 .

On the other hand,

(X, c'(α', 6')) = Σ « . .*(β», O K . , αOί& f̂c, 60

= dAy||6'||2 = 0 f

so that δ' — 0. If we now write
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Σιkθi(aijf bijk) = Ci(aij9 Σ A * * ) + [ΣkCi(aij9 bijk) - Ci(aij9 Σ J A ; * ) ]

= Ci(aij9 0) + Tίi ,

where Ytj is the expression in brackets, which is clearly an element
of Γlf then we have

where 7' = ΣijΎij, and so X e I[.
FC(A9 B) is a pseudo-normed space, with || X\\2 = (X, X). Let us

denote by ^ί(A, J5) its pseudo-normed completion, i.e. the collection
of all Cauchy sequences from FC(A, B). Define a mapping

φ: F0(A, B)~+

as follows:

It is immediate that φ is a linear, homogeneous, multiplicative isometry,
and that its range is dense. Thus φ can be extended to an isometric
homomorphism on j^~0(A,B) onto A®B§Z)C. Note that | | X F | | ^
II X II II F | | for all X, Y e FC{A, B), since 4(g)B(g)C is a Banach al-
gebra. Thus the operations defined on F0(AfB) can be extended to
^Ϊ(A, B), as usual.

Let Il9 J2, and / denote the closures, in j^~Ό(A9 B), of /{, J{, and /',
respectively. It is obvious from Proposition 1 that I^ = {Xe ^0{A,B):
II X| | z= 0}, i.e. i.e. Ix is the closure of (0). Thus I± is a subset of every
closed subspace of ^a(A9 B), which means, in particular, that I— J2. In
other words, /can be described quite simply as the closed ideal of %βr

0(A9 B)
generated by the collection of all elements of the forms (6) and (7).

DEFINITION. A§§CB, the tensor product of A and B, over C, is
the quotient algebra ^(A, B)/I.

is a normed space (as is always the case when a pseudo-
normed space is factored by a closed subspace). We proceed to identify
it with an ideal in A ® ΰ ® C . Let D — φ(I) and define a map
7: A®ΌB — (A®B®C)ID by the formula y(X + I) = φ(X) + D. It
is clear that 7 is linear, and since 7(1) = φφ) + D — D, 7 is well
defined; it is multiplicative since φ is multiplicative. Finally, 7 is an
isometry. For if T ^ I + ί G i f t B , then

= \\φX + D\\= inf {|| φX+Z\\:Ze D}

= iΏί{\\φX+φY\\: Yel}
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since φ is an isometric homomorphism.
Since D is a closed ideal in the H* -algebra A(g)B(g)C, (A(g)B(g)C)/Z)

is isomorphic and isometric with the closed ideal D1, which we shall
denote by E. We summarize the foregoing information in the next
theorem.

THEOREM. There is an isometric isomorphism from A§§0B into
A(£)B§ξ)C; its range is the closed ideal E which is the orthogonal
complement of the closed ideal D generated by all elements of the
forms

(ii) α
Consequently, Aζ>§ΌB is an H*-algebra; its minimal closed ideals
can be identified with those minimal closed ideals Aaξξ)Bβ(g)Cy of

that are orthogonal to D.

COROLLARY. // A, B, and C are strongly semi-simple, then
AξZ)0B is strongly semi-simple.

The following proposition provides means by which it is easy to
construct examples for which the converse to the above corollary is
false.

PROPOSITION 2. If Aa§§Bβ§§Cy is a minimal closed ideal in E,
then Cy is of dimension one.

Proof. Choose a canonical basis {aij§§bkl§§cmn} for Aa

(see [2]). Since α»y(S)&*i®cmΛ

 e E> it must be orthogonal to

If the dimension of Cy were greater than one, then it would be pos-
sible to choose nΦ p, and we would have

0 = (a

since (cmn, cmp) — 0. This, of course, is a contradiction.

COROLLARY. If C has no one-dimensional minimal ideals, then

A®0B = (0).

2. Examples. Perhaps the easiest method of obtaining examples
of H*-algebras A, B, and C related as above is to let A, B9 and C be
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closed ideals in some if*-algebra sf. The structure of A(g)0Bf under
such circumstances, is described in the next proposition.

PROPOSITION 3. Suppose that A, B and C are closed ideals in an
ίf*-algebra Jzf. If A and B are viewed as C-modules with ordinary
multiplication in J ^ a s the module action, then A§§0B is isomorphic
with the direct sum of all the one-dimensional minimal ideals
in A ΓΊ B Π C. The isomorphism is an isometry if and only if the
identity of each one-dimensional minimal ideal in Af] B f] C has norm
one.

Proof. Choose a canonical basis {upq} for J^f. Then {α^ } =
A = Π {<J, {bβ

kι\ = BC\ {u8

pq}, and {cy

mn} = C Π {<g} are canonical bases
for A, B, and C, respectively and {a%(g)bβ

kl®cy

mn} is a canonical basis
for A(g)JB(g)C. If α"(g)%(g)cL e # , then, by Proposition 2, c£» = cγ

is the identity of a one-dimensional minimal ideal. If a Φ 7, then

Similarly, if β Φ 7, then αg06gj®c γ e D. Thus if an element of a
canonical basis is to be in E it must be of the form c γ 0 c γ 0 c Ύ .
Relatively straightforward computations show that each such basis
element is orthogonal to D, and the proof is completed.

Suppose now that G, H, and K are compact groups, and that
Θ:K—>G and φ:K—*H are continuous homomorphisms. Then Θ(K)
and φ{K) are closed subgroups of G and H, respectively, L\G) and
L\H) become modules over L\K), with the module action defined by:

g*k{x) — \ g(x(θz)~1)k(z)dz ,

k*h(y) = 1 k{z)h{(φzγ~1y)dz ,
JK

for all flf G L2(G), Λ e L 2(iϊ), k e L\K), xeG, and y e J ϊ (all integra-
tions are with respect to normalized Haar measures). If we let A =
L2(G), £ - L\H), C = U{K), then A®0B is a well-defined iϊ*-algebra.
As was remarked in [2], A(g)jB®C can be identified with L2(GxHxK),
and so, by the Theorem of §1, A®0B can be identified with a closed
ideal J in L2(G x H x K). At one extreme, suppose θ and <p map if
onto the identities of G and H, respectively. It is not difficult to see
that in this case A ® σ B can be identified with L2(G x H).

At what might be considered another extreme, suppose that G
and H are closed subgroups of some compact group, that if is a closed
subgroup of G Π H, and that θ and φ are the inclusion maps. Define
an equivalence relation on G x H x K as follows: (x, yy z) ~ (u9 v, w)
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if and only if F(x, y, z) — F(u, v, w) for all F e J. Then M = {(x, y, z):
(x, y9 z) ~ (e, e, e)} is a closed normal subgroup of G x H x K, and its
cosets are the equivalence classes of ~ . All functions F e J are thus
constant on the cosets of M, providing a mapping ψ from J to
L2((G x H x K)/M). The map ψ is an isometric isomorphism and its
image is an ideal. On the basis of the Tannaka Duality Theorem (see [4],
p. 439) it seems reasonable to conjecture that ijr is surjective, so that
A®0B can be identified with L2((G xHx K)/M). The conjecture has
not been settled in general, but let us consider the very special case
where G — H — K. Then, by Proposition 3, A§§0B can be identified
with the direct sum of all one-dimensional minimal ideals in L2(G),
which in turn is isomorphic and isometric with L2(GjN), where N is
the closure of the commutator subgroup of G. Since G/N and
(G xG xG)/M are isomorphic via the mapping xN—*(x,e,e)M, the
conjecture is verified in this special case.
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