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A NOTE ON MULTIPLE EXPONENTIAL SUMS

L. CARLITZ

Put

S(c) = PΣ e(x + y + cx'y') ,
x,y=l

Where e(x) = e2πi/p and xxf = yyf = 1 (mod p), Mordell has
conjectured that S(c) = O(p). The writer shows first, by an
elementary argument that S(c) = O(p3/2). Next he proves,
using a theorem of Lang and Weil that S(c) = O(p11/8). Finally
he proves that S(c) = O(p5/i) the proof makes use of the
estimate

where ψ(a) is the Legendre symbol and fix) is a polynomial
of the fourth degree.

If we put

K(a, b) = 2 Φ% + bx') ,

where ab

( 2 )

For proof
Since

it follows

ί 0 (mod

of (2) see

that

p),

[1]

s =

it is known that

K(a, b) | g 2p112 .

, [4].

p-l p-l

x=l y=l

--Σ,e(ax)K(b,cx') ,
x — 1

ΐy (2). Thus, assuming (2), we get

(3) S

However it is not difficult to prove (3) directly without making
use of (2). Put
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(4) S(c) = Σ, e{x + y + cx'y') .

There is evidently no loss in generality in taking a — b — 1. Then
we have

2 I S(c) I2 = 2 2 % e{x + y - u v + c{x'y' - u'v')}
c=0 e—Q x,y=l u,v—l

= p Σ e(x + y — u — v) .
xy~uv[moά p)

But

Σ e{x + y — u —v) = Σ e(x + y — u — xyu')
xy=uv(mod p) x,y,u=l

= Σ e(y - «)ΣΦ(1 - yu'))
y,u=i x—i

= - Σ e(» - M) + *Σ e(2/ - M) S Φ ( l - »»')}

= - 1 + 2> Σ 1 = ^2 - P - 1 ,
l

so that

( 5 ) Σ I S(c)12 - -3 -2
p* - v .

c = Q

It follows at once from (5) that

(6) \S(c)\<pV>,

so that we have proved (3).

2* Generalizing (4) we define

(7) Su(c) = βi 2 = i Φ i + + xn + cx[ a?y .

We shall show that

Exactly as above we have

( Q \ ^-"i I Cf / \ 12 \r* \p / I _ι ΛΛ

*J ) /1 i &n\Cj i — p f j y j β^ίv^ ~r~ —(- Xn y±

where the summation is over all xjf y3- such that

x,x2 xn = y,y2 yn , χ, Ξ£ 0 , y3-φ 0 (mod
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Let Tn denote the sum on the right of (9). Then we have

Tn = Σ Φι + + α« - Vi - - Vn-i -α?i xny[ •-• i/Li)

= Σ Φ i + + a?w_! - Vi- --- - yn-i)
xV'">xn-l

' Σ e[(l - &i a?n_!i/ί # ; _ > ] .

The inner sum is equal to

p - 1 (α?! — ŵ__! = y1 ^_ x )

- 1 (a?! «?»_! ί f t ^_i) ,

so that

Hence

(10) Γ. = p Γ ^ - 1 .

Now

and generally-

ill) Tn = pn- p"-1 1 .

Thus (9) becomes

(12) Σ I Sn(c) I2 = p«+1 - pn p
c

and (8) follows at once.

It follows from (12) that

Sn(c) = o(p«ι>)

cannot hold for all c.

3. Returning to (4) we shall now show that

(13) S(c) = O(p11/8) .

It is convenient to put

S(a, 6, c) = Σ e(ax + by + cx'y') .
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Then

(14)
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222
a=i 6=0 c=0

where N denotes the number of solutions of the system

xx + x2 = x3 + x*

Vι + y* = Vs + y4

0.

Eliminating x4, y4 it follows that iV is the number of solutions of

(15) {x1yι + x2y2)x5y3(Xi + x2 - x3)(?/i + ί/a - I/a)

such that

\ l ξ)/ «Λ/l«^2»ί/3έ/lί/2έ/3\ */l ~> *^2 *"3)\yi ~T~ 472 U 3/ -F~ ^

Now by a theorem of Lang and Weil [2] we have

so that (14) becomes

(17) Σ Σ Σ I S(a, 6, c) |4 - p8 + O(p1512) .

On the other hand

Σ Σ Σ I S(a, b, c) r = I S(o, o, 0) i4 + 3 Σ Σ I S(a, b, 0) r
α=0 6 = 0 c=0 a—\ 6=1

+ 3 Σ I S(a, 0, 0) I4 + Σ Σ Σ I S(a, b, c) |4
α = l α = l 6=1 c = l

p - 1

= (p - If + (p - I) 2 + 3(p - I)5 + (p - 1)2

so that (17) reduces to

(18) 2|S(c)|4

c = l

Clearly (18) implies (13).

4. If an exact formula for

) I4 ,

Σ I S(c) Y
0
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were available we should presumably be able to prove

(19) S(c) = O(p5/4) .

In this connection it may be of interest to remark that the sum

p-l

(20) ΣS 3 (c)

can be evaluated. Indeed if we put

S(a, b9 c) = 2 e(ax + by + ex' yf) ,
χ.y

then

761

(21) ΣΣΣ(S(α,M))3 =
α = 0 6 = 0 c = 0

where N denotes the number of solutions of the system

/ $ _j_ $ _|_ $ = Q

χf,y' + χ'y' + χry' = 0

Eliminating cc3, τ/3, we find that (22) reduces to

together with

(24) XiX^ViyJiXi + #2X2/1 + 2/2) Ξ£ 0 .

We may replace (23) by

= 0

If x1x2(x1 + x2)^! ^ 0, it is clear from (25) t h a t | / 2 ί 0 and yλ — y2 3Ξ 0.
The two factors in (25) may vanish simultaneously. This will happen
when

(26) x\ x\ = 0 ,

that is when — 3 is a quadratic residue of p moreover if x19 x2 satisfy
(26) with xλx2 ^ 0 then x1 + x2 ^ 0. Thus the number of solutions of
(26) is equal to
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If — 3 is a nonresidue we find that

(27) N=2(p- l)\p - 2) ,

while, if — 3 is a residue,

(28) N=2(p- l)\p - 2) - (p - I)2 .

For p = 3 we have

(29) N = 4 ,

for it is evident from (22) that â  == x2 = χ3, y1 = y2 = y3.

Combining (27) and (28) we have

(30) N = 2(p - lY(p - 2) - {l + (Z1A.)}(PJ=_1)! (P > 3)

On the other hand, since

S(0, 0, 0) = (p - lYS(a, 0, 0) = - (p - 1) (α φ 0) ,

S(α, 6, 0) = 1 (αi ^ 0) ,

we have

Σ Σ Σ (S(α, δ, c))3 = (D - l)β - 3(p - I)4 + 3(p - If
a=0 6=0 c=0

Σ Σ Σ ( % M ) )
α = l 6=1 c = l

2 Σ= (p - If - 3(p - I)4 + 3(p - I)2 + (p - I)2 Σ
c = l

Therefore, using (21) and (30), we get

(31) Σ (S(c)Y = 2V\p - 2) - (p - 1Y
l

5. We shall now show that

(32) S(c) =

With the notation of § 3 we have, as above,

(33) Σ Σ Σ I S(a, b, c) |4 - p W ,
a=0 6=0 c—0

where N is the number of solutions of the system
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(34) (2/i + 2/2)2/32/4 = 2/12/2(2/3 + 2/4)

{ x^x.x^y^y, Φ 0 .

Note that we have replaced each xj9 yo by its reciprocal (mod p).

If we put

(34) becomes

(35) (l/i

0 .

Now put #2 = #!#, i/2 = ^2/ and (35) reduces to

(36) (1 + J/Ji ̂ a Ξ ^ + j/t;2

1 + xy = u1v1 + xyu2v2

xyx1y1u1v1u2v2 Ξ£ 0 .

Finally, eliminating x, y we get the single equation

(37) i 1 ^

subject to

(38)

- u2)(l - v2)(l - u2v2) Ξ

xιy1u1v1n2v2 Ξ£ 0 .

It should be noted that for fixed u19 v19 u2, v2 satisfying (37), x, y are
uniquely determined by (36) unless ux = u2 = v± = v2 = 1 also we find
that the forbidden cases xy = 0 or xy "infinite" contribute O(p2).

Let N'(k) denote the number of solutions u, v Ξ£ 0 of

(39) (1 - u)(l - v)(l - uv) = kuv

and let N(k) denote the total number of solutions of (39), so that

N(k) = N'(k) + 0(1) .

Then clearly the number of nonzero solutions of (37) is equal to

(40) ΣN(k)N(- k) + O(p2) .
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Let ψ(a) denote the Legendre symbol (alp). Then for fixed u and
fc, the number of solutions of (39) is equal to

ku- u2)2 - Au(l - n)2} ,

so that

where

(41) /(&, u) = (l + ku- u2)2 - Au(l - uf .

Thus (40) becomes

(42) P3 / £ £

Σ Σ Σ
fc 0

Since f(k, u) is a quadratic in k we have

unless u(l — u) = 0. It follows that

(43) Σ Σ t(/(fc» ^)) = O(p2) .

Consider next the sum

p-ι

Σ

It is easily seen from (41) that for fixed Jc, f(k, u) is the square of a
polynomial in u only when k = §. We therefore have the estimate

(44) Σ + ( / ( M ) ) = 0(p" !),
u=--0

so that

(45) Σ Σ Σf(/(fc, u))ψ(f(- lc, u)) = O(p2) .
λ; = 0 u — 0 v = 0

Substituting from (43) and (45) in (42) we see that the number of
nonzero solutions (37) is

p* + O(p2) .

Therefore N, the number of solutions of (34) is
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and (33) becomes

Σ Σ Σ I S(a, b, c) I4 = p8 + O(p7)
Q 6 0

since S(0, 0, 0) = p2 ,

S(α, 6, c) = S( l , 1, α&c) (α6c ^ 0)

and there are (p — I)2 terms S(a, b, c) in the sum that give the same
S(l, 1, c), (32) now follows immediately.

Note that, except for (44), the proof is elementary.
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