A NOTE ON MULTIPLE EXPONENTIAL SUMS

L. Carlitz

Put

$$
S(c)=\sum_{x, y=1}^{p-1} e\left(x+y+c x^{\prime} y^{\prime}\right)
$$

Where $e(x)=e^{2 \pi i / p}$ and $x x^{\prime} \equiv y y^{\prime} \equiv 1(\bmod p)$, Mordell has conjectured that $S(c)=O(p)$. The writer shows first, by an elementary argument that $S(c)=O\left(p^{3 / 2}\right)$. Next he proves, using a theorem of Lang and Weil that $S(c)=O\left(p^{11 / 8}\right)$. Finally he proves that $S(c)=O\left(p^{5 / 4}\right)$; the proof makes use of the estimate

$$
\sum_{x=0}^{p-1} \psi(f(x))=O\left(p^{1 / 2}\right)
$$

where $\phi(a)$ is the Legendre symbol and $f(x)$ is a polynomial of the fourth degree.

If we put

$$
K(a, b)=\sum_{x=1}^{p-1} e\left(a x+b x^{\prime}\right),
$$

where $a b \not \equiv 0(\bmod p)$, it is known that

$$
\begin{equation*}
|K(a, b)| \leqq 2 p^{1 / 2} \tag{2}
\end{equation*}
$$

For proof of (2) see [1], [4].
Since

$$
\begin{aligned}
S & =\sum_{x=1}^{p-1} e(a x) \sum_{y=1}^{p-1} e\left(b y+c x^{\prime} y^{\prime}\right) \\
& =\sum_{x=1}^{p-1} e(a x) K\left(b, c x^{\prime}\right)
\end{aligned}
$$

it follows that

$$
|S| \leqq \sum_{x=1}^{p-1}\left|K\left(b, c x^{\prime}\right)\right| \leqq 2(p-1) p^{1 / 2}
$$

by (2). Thus, assuming (2), we get

$$
\begin{equation*}
S=O\left(p^{3 / 2}\right) \tag{3}
\end{equation*}
$$

However it is not difficult to prove (3) directly without making use of (2). Put

Received July 28, 1964, and in revised form September 23, 1964, Supported in part by NSF Grant GP-1593.

$$
\begin{equation*}
S(c)=\sum_{x, y=1}^{p-1} e\left(x+y+c x^{\prime} y^{\prime}\right) . \tag{4}
\end{equation*}
$$

There is evidently no loss in generality in taking $a=b=1$. Then we have

$$
\begin{aligned}
\sum_{c=0}^{p-1}|S(c)|^{2} & =\sum_{c=0}^{p-1} \sum_{x, y=1}^{p-1} \sum_{u, v=1}^{p=1} e\left\{x+y-u v+c\left(x^{\prime} y^{\prime}-u^{\prime} v^{\prime}\right)\right\} \\
& =p_{x y \equiv u v(\bmod p)} e(x+y-u-v) .
\end{aligned}
$$

But

$$
\begin{aligned}
& \sum_{x y=u v(\bmod p)} e(x+y-u-v)=\sum_{x, y, u=1}^{p-1} e\left(x+y-u-x y u^{\prime}\right) \\
& \quad=\sum_{y, u=1}^{p-1} e(y-u) \sum_{x=1}^{p-1} e\left\{x\left(1-y u^{\prime}\right)\right\} \\
& \quad=-\sum_{y, u=1}^{p-1} \mathrm{e}(y-u)+\sum_{y, u=1}^{p-1} e(y-u) \sum_{x=0}^{p-1} e\left\{x\left(1-y u^{\prime}\right)\right\} \\
& \quad=-1+p \sum_{y=1}^{p-1} 1=p^{2}-p-1,
\end{aligned}
$$

so that

$$
\sum_{c=0}^{p-1}|S(c)|^{2}=p^{3}-p^{2}-p .
$$

It follows at once from (5) that

$$
\begin{equation*}
|S(c)|<p^{3 / 2}, \tag{6}
\end{equation*}
$$

so that we have proved (3).
2. Generalizing (4) we define

$$
\begin{equation*}
S_{n}(c)=\sum_{x_{1}, \cdots, x_{n}=1}^{p-1} e\left(x_{1}+\cdots+x_{n}+c x_{1}^{\prime} \cdots x_{n}^{\prime}\right) . \tag{7}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
S_{n}(c)=O\left(p^{1 / 2(n+1)}\right) . \tag{8}
\end{equation*}
$$

Exactly as above we have
(9) $\quad \sum_{c}\left|S_{n}(c)\right|^{2}=p \sum_{x_{1}, \cdots, x_{n}} \sum_{y_{1}, \cdots, y_{n}} e\left(x_{1}+\cdots+x_{n}-y_{1}-\cdots-y_{n}\right)$,
where the summation is over all x_{j}, y_{j} such that

$$
x_{1} x_{2} \cdots x_{n} \equiv y_{1} y_{2} \cdots y_{n}, \quad x_{j} \not \equiv 0, \quad y_{j} \equiv \equiv 0(\bmod p) .
$$

Let T_{n} denote the sum on the right of (9). Then we have

$$
\begin{aligned}
T_{n} & =\sum e\left(x_{1}+\cdots+x_{n}-y_{1}-\cdots-y_{n-1}-x_{1} \cdots x_{n} y_{1}^{\prime} \cdots y_{n-1}^{\prime}\right) \\
& =\sum_{\substack{x_{1}, \cdots, x_{n-1} \\
y_{1}, \cdots, y_{n-1}}} e\left(x_{1}+\cdots+x_{n-1}-y_{1}-\cdots-y_{n-1}\right) \\
& \quad \cdot \sum_{x} e\left[\left(1-x_{1} \cdots x_{n-1} y_{1}^{\prime} \cdots y_{n-1}^{\prime}\right) x\right]
\end{aligned}
$$

The inner sum is equal to

$$
\left\{\begin{aligned}
p-1 & \left(x_{1} \cdots x_{n-1} \equiv y_{1} \cdots y_{n-1}\right) \\
-1 & \left(x_{1} \cdots x_{n-1} \not \equiv y_{1} \cdots y_{n-1}\right),
\end{aligned}\right.
$$

so that

$$
T_{n}=p T_{n-1}-\sum_{\substack{x_{1}, \cdots, x_{n}-1 \\ y_{1}, \ldots, y_{n}-1}} e\left(x_{1}+\cdots+x_{n-1}-y_{1}-\cdots-y_{n-1}\right) .
$$

Hence

$$
\begin{equation*}
T_{n}=p T_{n-1}-1 \tag{10}
\end{equation*}
$$

Now

$$
T_{1}=\sum_{x=y} e(x-y)=p-1, \quad T_{2}=p(p-1)-1=p^{2}-p-1
$$

and generally

$$
\begin{equation*}
T_{n}=p^{n}-p^{n-1}-\cdots-1 \tag{11}
\end{equation*}
$$

Thus (9) becomes

$$
\begin{equation*}
\sum_{c}\left|S_{n}(c)\right|^{2}=p^{n+1}-p^{n}-\cdots-p \tag{12}
\end{equation*}
$$

and (8) follows at once.
It follows from (12) that

$$
S_{n}(c)=o\left(p^{n / 2}\right)
$$

cannot hold for all c.
3. Returning to (4) we shall now show that

$$
\begin{equation*}
S(c)=O\left(p^{11 / 8}\right) \tag{13}
\end{equation*}
$$

It is convenient to put

$$
S(a, b, c)=\sum_{x, y} e\left(a x+b y+c x^{\prime} y^{\prime}\right)
$$

Then

$$
\begin{equation*}
\sum_{a=1}^{p-1} \sum_{b=0}^{p-1} \sum_{c=0}^{p-1}|S(a, b, c)|^{4}=p^{3} N, \tag{14}
\end{equation*}
$$

where N denotes the number of solutions of the system

$$
\left\{\begin{aligned}
x_{1}+x_{2} & \equiv x_{3}+x_{4} \\
y_{1}+y_{2} & \equiv y_{3}+y_{4} \\
x_{1}^{\prime} y_{1}^{\prime}+x_{2}^{\prime} y_{2}^{\prime} & \equiv x_{3}^{\prime} y_{3}^{\prime}+x_{4}^{\prime} y_{4}^{\prime} \\
x_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{3} y_{4} & \equiv \equiv 0 .
\end{aligned}\right.
$$

Eliminating x_{4}, y_{4} it follows that N is the number of solutions of

$$
\begin{align*}
& \left(x_{1} y_{1}+x_{2} y_{2}\right) x_{3} y_{3}\left(x_{1}+x_{2}-x_{3}\right)\left(y_{1}+y_{2}-y_{3}\right) \tag{15}\\
& \quad \equiv x_{1} y_{1} x_{2} y_{2}\left[\left(x_{1}+x_{2}-x_{3}\right)\left(y_{1}+y_{2}-y_{3}\right)+x_{3} y_{3}\right]
\end{align*}
$$

such that

$$
\begin{equation*}
x_{1} x_{2} x_{3} y_{1} y_{2} y_{3}\left(x_{1}+x_{2}-x_{3}\right)\left(y_{1}+y_{2}-y_{3}\right) \not \equiv 0 \tag{16}
\end{equation*}
$$

Now by a theorem of Lang and Weil [2] we have

$$
N=p^{5}+O\left(p^{5-1 / 2}\right),
$$

so that (14) becomes

$$
\begin{equation*}
\sum_{a=0}^{p-1} \sum_{b=0}^{p-1} \sum_{c=0}^{p-1}|S(a, b, c)|^{4}=p^{8}+O\left(p^{15 / 2}\right) . \tag{17}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
& \sum_{a=0}^{p-1} \sum_{b=0}^{p-1} \sum_{c=0}^{p-1}|S(a, b, c)|^{4}=|S(0,0,0)|^{4}+3 \sum_{a=1}^{p-1} \sum_{b=1}^{p-1}|S(a, b, 0)|^{4} \\
& \quad+3 \sum_{a=1}^{p-1}|S(a, 0,0)|^{4}+\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} \sum_{c=1}^{p-1}|S(a, b, c)|^{4} \\
& \quad=(p-1)^{8}+(p-1)^{2}+3(p-1)^{5}+(p-1)^{2} \sum_{c=1}^{p-1}|S(c)|^{4}
\end{aligned}
$$

so that (17) reduces to

$$
\begin{equation*}
\sum_{c=1}^{p-1}|S(c)|^{4}=O\left(p^{11 / 2}\right) \tag{18}
\end{equation*}
$$

Clearly (18) implies (13).
4. If an exact formula for

$$
\sum_{c=0}^{p-1}|S(c)|^{4}
$$

were available we should presumably be able to prove

$$
\begin{equation*}
S(c)=O\left(p^{5 / 4}\right) . \tag{19}
\end{equation*}
$$

In this connection it may be of interest to remark that the sum

$$
\begin{equation*}
\sum_{c=0}^{p-1} S^{3}(c) \tag{20}
\end{equation*}
$$

can be evaluated. Indeed if we put

$$
S(a, b, c)=\sum_{x, y} e\left(a x+b y+c x^{\prime} y^{\prime}\right)
$$

then

$$
\begin{equation*}
\sum_{a=0}^{p-1} \sum_{b=0}^{p-1} \sum_{c=0}^{p-1}(S(a, b, c))^{3}=p^{3} N \tag{21}
\end{equation*}
$$

where N denotes the number of solutions of the system

$$
\left\{\begin{align*}
x_{1}+x_{2}+x_{3} & \equiv 0 \tag{22}\\
y_{1}+y_{2}+y_{3} & \equiv 0 \\
x_{1}^{\prime} y_{1}^{\prime}+x_{2}^{\prime} y_{2}^{\prime}+x_{3}^{\prime} y_{3}^{\prime} & \equiv 0 \\
x_{1} x_{2} x_{3} y_{1} y_{2} y_{3} & \equiv 0
\end{align*}\right.
$$

Eliminating x_{3}, y_{3}, we find that (22) reduces to

$$
\begin{equation*}
x_{1}\left(x_{1}+x_{2}\right) y_{1}^{2}+\left(x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}\right) y_{1} y_{2}+x_{2}\left(x_{1}+x_{2}\right) y_{2}^{2} \equiv 0 \tag{23}
\end{equation*}
$$

together with

$$
\begin{equation*}
x_{1} x_{2} y_{1} y_{2}\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right) \not \equiv 0 . \tag{24}
\end{equation*}
$$

We may replace (23) by

$$
\begin{equation*}
\left[\left(x_{1}+x_{2}\right) y_{1}+x_{2} y_{2}\right]\left[x_{1} y_{1}+\left(x_{1}+x_{2}\right) y_{2}\right]=0 \tag{25}
\end{equation*}
$$

If $x_{1} x_{2}\left(x_{1}+x_{2}\right) y_{1} \not \equiv 0$, it is clear from (25) that $y_{2} \not \equiv 0$ and $y_{1}-y_{2} \not \equiv 0$. The two factors in (25) may vanish simultaneously. This will happen when

$$
\begin{equation*}
x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} \equiv 0 \tag{26}
\end{equation*}
$$

that is when -3 is a quadratic residue of p; moreover if x_{1}, x_{2} satisfy (26) with $x_{1} x_{2} \not \equiv 0$ then $x_{1}+x_{2} \not \equiv 0$. Thus the number of solutions of (26) is equal to

$$
\left\{1+\left(\frac{-3}{p}\right)\right\} \frac{p-1}{2}
$$

If -3 is a nonresidue we find that

$$
\begin{equation*}
N=2(p-1)^{2}(p-2) \tag{27}
\end{equation*}
$$

while, if -3 is a residue,

$$
\begin{equation*}
N=2(p-1)^{2}(p-2)-(p-1)^{2} \tag{28}
\end{equation*}
$$

For $p=3$ we have

$$
\begin{equation*}
N=4 \tag{29}
\end{equation*}
$$

for it is evident from (22) that $x_{1} \equiv x_{2} \equiv x_{3}, y_{1} \equiv y_{2} \equiv y_{3}$.
Combining (27) and (28) we have

$$
\begin{equation*}
N=2(p-1)^{2}(p-2)-\left\{1+\left(\frac{-3}{p}\right)\right\} \frac{(p-1)^{2}}{2} \quad(p>3) \tag{30}
\end{equation*}
$$

On the other hand, since

$$
\begin{aligned}
S(0,0,0)=(p-1)^{2} S(a, 0,0) & =-(p-1) & (a \not \equiv 0), \\
S(a, b, 0) & =1 & (a b \not \equiv 0),
\end{aligned}
$$

we have

$$
\begin{gathered}
\sum_{a=0}^{p-1} \sum_{b=0}^{p-1} \sum_{c=0}^{p-1}(S(a, b, c))^{3}=(p-1)^{6}-3(p-1)^{4}+3(p-1)^{2} \\
\quad+\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} \sum_{c=1}^{p-1}(S(a, b, c))^{3} \\
=(p-1)^{6}-3(p-1)^{4}+3(p-1)^{2}+(p-1)^{2} \sum_{c=1}^{p-1}(S(c))^{3}
\end{gathered}
$$

Therefore, using (21) and (30), we get

$$
\begin{align*}
\sum_{c=1}^{p-1}(S(c))^{3} & =2 p^{3}(p-2)-(p-1)^{4} \tag{31}\\
& +3(p-1)^{2}-3-\frac{1}{2}\left\{1+\left(\frac{-3}{p}\right)\right\}
\end{align*}
$$

5. We shall now show that

$$
\begin{equation*}
S(c)=O\left(p^{5 / 4}\right) \tag{32}
\end{equation*}
$$

With the notation of $\S 3$ we have, as above,

$$
\begin{equation*}
\sum_{a=0}^{p-1} \sum_{b=0}^{p-1} \sum_{c=0}^{p-1}|S(a, b, c)|^{4}=p^{3} N \tag{33}
\end{equation*}
$$

where N is the number of solutions of the system

$$
\left\{\begin{align*}
\left(x_{1}+x_{2}\right) x_{3} x_{4} & \equiv x_{1} x_{2}\left(x_{3}+x_{4}\right) \tag{34}\\
\left(y_{1}+y_{2}\right) y_{3} y_{4} & \equiv y_{1} y_{2}\left(y_{3}+y_{4}\right) \\
x_{1} y_{1}+x_{2} y_{2} & \equiv x_{3} y_{3}+x_{4} y_{4} \\
x_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{3} y_{4} & \not \equiv 0
\end{align*}\right.
$$

Note that we have replaced each x_{j}, y_{j} by its reciprocal $(\bmod p)$.
If we put

$$
x_{3}=x_{1} u_{1}, \quad x_{4}=x_{2} u_{2}, \quad y_{3}=y_{1} v_{1}, \quad y_{4}=y_{2} v_{2},
$$

(34) becomes

$$
\left\{\begin{align*}
\left(x_{1}+x_{2}\right) u_{1} u_{2} & \equiv x_{1} u_{1}+x_{2} u_{2} \tag{35}\\
\left(y_{1}+y_{2}\right) v_{1} v_{2} & \equiv y_{1} v_{1}+y_{2} v_{2} \\
x_{1} y_{1}+x_{2} y_{2} & \equiv x_{1} y_{1} u_{1} v_{1}+x_{2} y_{2} u_{2} v_{2} \\
x_{1} x_{2} y_{1} y_{2} u_{1} u_{2} v_{1} v_{2} & \not \equiv 0
\end{align*}\right.
$$

Now put $x_{2}=x_{1} x, y_{2}=y_{1} y$ and (35) reduces to

$$
\left\{\begin{align*}
(1+x) u_{1} u_{2} & \equiv u_{1}+x u_{2} \tag{36}\\
(1+y) v_{1} v_{2} & \equiv v_{1}+y v_{2} \\
1+x y & \equiv u_{1} v_{1}+x y u_{2} v_{2} \\
x y x_{1} y_{1} u_{1} v_{1} u_{2} v_{2} & \equiv 0
\end{align*}\right.
$$

Finally, eliminating x, y we get the single equation

$$
\begin{equation*}
\frac{\left(1-u_{1}\right)\left(1-v_{1}\right)\left(1-u_{1} v_{1}\right)}{u_{1} v_{1}}+\frac{\left(1-u_{2}\right)\left(1-v_{2}\right)\left(1-u_{2} v_{2}\right)}{u_{2} v_{2}} \equiv 0 \tag{37}
\end{equation*}
$$

subject to

$$
\begin{equation*}
x_{1} y_{1} u_{1} v_{1} u_{2} v_{2} \not \equiv 0 \tag{38}
\end{equation*}
$$

It should be noted that for fixed $u_{1}, v_{1}, u_{2}, v_{2}$ satisfying (37), x, y are uniquely determined by (36) unless $u_{1} \equiv u_{2} \equiv v_{1} \equiv v_{2} \equiv 1$; also we find that the forbidden cases $x y \equiv 0$ or $x y$ "infinite" contribute $O\left(p^{2}\right)$.

Let $N^{\prime}(k)$ denote the number of solutions $u, v \not \equiv 0$ of

$$
\begin{equation*}
(1-u)(1-v)(1-u v) \equiv k u v \tag{39}
\end{equation*}
$$

and let $N(k)$ denote the total number of solutions of (39), so that

$$
N(k)=N^{\prime}(k)+O(1) .
$$

Then clearly the number of nonzero solutions of (37) is equal to

$$
\begin{equation*}
\sum_{k=0}^{p-1} N(k) N(-k)+O\left(p^{2}\right) \tag{40}
\end{equation*}
$$

Let $\psi(\alpha)$ denote the Legendre symbol (a / p). Then for fixed u and k, the number of solutions of (39) is equal to

$$
1+\psi\left\{\left(1+k u-u^{2}\right)^{2}-4 u(1-u)^{2}\right\}
$$

so that

$$
N(k)=p+\sum_{u=0}^{p-1} \psi(f(k, u)),
$$

where

$$
\begin{equation*}
f(k, u)=\left(1+k u-u^{2}\right)^{2}-4 u(1-u)^{2} . \tag{41}
\end{equation*}
$$

Thus (40) becomes

$$
\begin{align*}
p^{3} & +2 p \sum_{k=0}^{p-1} \sum_{u=0}^{p-1} \psi(f(k, u)) \tag{42}\\
& +\sum_{k=0}^{p-1} \sum_{u=0}^{p-1} \sum_{v=0}^{p-1} \psi(f(k, u)) \psi(f(-k, v))+O\left(p^{2}\right) .
\end{align*}
$$

Since $f(k, u)$ is a quadratic in k we have

$$
\sum_{k=0}^{p-1} \psi(f(k, u))=-1
$$

unless $u(1-u) \equiv 0$. It follows that

$$
\begin{equation*}
\sum_{k=0}^{p-1} \sum_{u=0}^{p-1} \psi(f(k, u))=O\left(p^{2}\right) . \tag{43}
\end{equation*}
$$

Consider next the sum

$$
\sum_{u=0}^{p-1} \psi(f(k, u)) .
$$

It is easily seen from (41) that for fixed $k, f(k, u)$ is the square of a polynomial in u only when $k \equiv 0$. We therefore have the estimate

$$
\begin{equation*}
\sum_{u=0}^{p-1} \psi(f(k, u))=O\left(p^{1 / 2}\right), \tag{44}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sum_{k=0}^{p-1} \sum_{u=0}^{p-1} \sum_{v=0}^{p-1} \psi(f(k, u)) \psi(f(-k, u))=O\left(p^{2}\right) . \tag{45}
\end{equation*}
$$

Substituting from (43) and (45) in (42) we see that the number of nonzero solutions (37) is

$$
p^{3}+O\left(p^{2}\right) .
$$

Therefore N, the number of solutions of (34) is

$$
p^{5}+O\left(p^{4}\right)
$$

and (33) becomes

$$
\sum_{a=0}^{p-1} \sum_{b=0}^{p-1} \sum_{c=0}^{p-1}|S(a, b, c)|^{4}=p^{8}+O\left(p^{7}\right) ;
$$

since $S(0,0,0)=p^{2}$,

$$
S(a, b, c)=S(1,1, a b c) \quad(a b c \not \equiv 0)
$$

and there are $(p-1)^{2}$ terms $S(a, b, c)$ in the sum that give the same $S(1,1, c)$, (32) now follows immediately.

Note that, except for (44), the proof is elementary.

References

1. L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J. 24 (1957), 37-41.
2. Serge Lang and Ander Weil, Number of points of varieties in finite fields, Amer.
J. Math. 76 (1953), 819-827.
3. L.J. Mordell, On a special polynomial congruence and exponential sum, Calcutta Mathematical Society Golden Jubilee Commemoration Volume (1958/59), Part I, pp. 29-32.
4. A. Weil, Some exponential sums, Proc. Nat. Acad. Sci. 34 (1949), 204-207.
