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A NOTE ON MULTIPLE EXPONENTIAL SUMS

L. CARLITZ

Put
Se) = pz_:ll e(x +y+ cx'y’),
z,y=

Where e(x) = ¢*¥/? and zx’' = yy’ =1 (med p), Mordell has
conjectured that S(¢) = O(p). The writer shows first, by an
elementary argument that S(c) = O(p*?). Next he proves,
using a theorem of Lang and Weil that S(c) = O(p'/¢). Finally
he proves that S(c) = O(p*/*); the proof makes use of the
estimate

S o(f @) = 0,

where ¢(a) is the Legendre symbol and f(x) is a polynomial
of the fourth degree.

If we put
K(a, b) = Ee(ax + bx') ,

where ab = 0 (mod p), it is known that
(2) | K(a, b)| = 2p'*.

For proof of (2) see [1], [4].
Since

S = ge(ax) ge(by + ea'y’)
= ge(ax)K(b, cx’) ,
it follows that
|51 = 2 | K(b, ca’)| = 2(p — 1)p*"

by (2). Thus, assuming (2), we get
(3) S = 0’ .

However it is not difficult to prove (3) directly without making
use of (2). Put
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~1
(4) S(c) = 17216(90 +y+exy).
z,Y=
There is evidently no loss in generality in taking a =b = 1.
we have
p—l p—1 p—1 p=1
g(‘) l S(C) IZ - cZ:(‘J %,y=1 u%le{w TY—uv+ C(x’y, - ’M"v’)}
=p > e@+y—u—v).
zy=uv(mod p)
But
e(x +y —u —v) = pz—l e(x + y — u — xyu')

zy=uv(mod p) z,Y,u=1

=5\ oy — w) S elol — yu)}

Y U=

Y,u=1

== S ew—u+ 3 e~ efall — yw)}

=—1+py§11=p2-p—1,

so that

p—1

(5) IS =p —p—p.
It follows at once from (5) that

(6) [S(e) | < p**,

so that we have proved (3).

2. Generalizing (4) we define

(7) Sue)= S, elw et a,+eal )

.
We shall show that
(8) S.(c) = O(p**™+v) |

Exactly as above we have

Then

(9)  lS@F=p X 3 6@t oty — W),

where the summation iz over all x;, y; such that

xlx2'..xn5yly2”°yn7 xj:t'_éoy yJSEO(mOdp).
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Let T, denote the sum on the right of (9). Then we have

To=23e@ 4 sor + @ — Y — 0 = Yooy =T BY] o0 Yo)
= 2 e@ At e+ T — Y — Yus)

Tyt Ty 1
Y Yp—1

P el =y w e Y]
The inner sum is equal to

p—1 @y oo By = Yy o0 Yp)
-1 (xl"'xn—l—fi—_y1"'yn—1)r

so that
To=pTon— 2 @t s T B — Y= o = Yd)
Sl
Hence
10) T,=pT,,—1.
Now

Lhi=Xew—y=p—1, T=pp-D-1=p'-p-1
and generally
(11) T,=p"—p" "' — e —1,
Thus (9) becomes

(12) Ecllsn(c)lzzp”“—p”—----—p

and (8) follows at once.
It follows from (12) that

S,.(c) = o(p™?)

cannot hold for all c.

3. Returning to (4) we shall now show that
(13) S(e) = O(@"") .
It is convenient to put

S(a, b, ¢c) = X, e(ax + by + cx'y’) .
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Then
(14) SE518@ b0 =N,

where N denotes the number of solutions of the system

T+ 2, =2+ @,
Y+ Y= Ys + Y,
Ty + Ty = TeYs + XY
,05%50,Y, Y YsYs % O.

Eliminating «,, ¥, it follows that N is the number of solutions of

(15) (xlyl + xzyz)xays(xx + x, — xﬂ)(yl + Y, — y)

= YT (@) + By — T)Ys + Yo — Ys) + TYs)
such that
(16) L0 0Y YoYs(B1 + Ty — T) (Y + Yy — Yo) O

Now by a theorem of Lang and Weil [2] we have
N=7p + 0@,
so that (14) becomes
an S5 S8, b, o) = 7 + 0w .

On the other hand

S5 518@ b0 =180,0,0 1 + 35 S [S@b, 0

p—=1p—1p—1

+35186, 0,0+ 5 5 5 150,00

=@ -+ -V +30 -1+ 0 SISO,
80 that (17) reduces to
18) S18@ 1= 00 .
Clearly (18) implies (13).

4, If an exact formula for

SIS@
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were available we should presumably be able to prove
(19) S(e) = O(@™) .
In this connection it may be of interest to remark that the sum

p—1
(20) 2. S%e)

c=0
can be evaluated. Indeed if we put

S(a, b, ¢) = >, e(ax + by + ¢’ y') ,
then |

1

4

@1 S S (8@, b, ) = »'N,

o~

IMT

1
a=0

where N denotes the number of solutions of the system

o+, +x,=0
(22) Yh+Y+y=0
xiy + vy + vy = 0

B02Y YsYs F O .

Eliminating x,, ¥,, we find that (22) reduces to
(23) T, + 2)y! + (@ + 3@, + B)YY, + Bu(@ + B)Y: = 0
together with
(24) 2 Yo% + ) (Y + Yo) £ O .
We may replace (23) by
(25) [(@ + @)y + Cyplley: + (@ + 2)y] = 0.

If za(x, + x)y, = 0, it is clear from (25) that %, = 0 and y, — ¥, = 0.
The two factors in (25) may vanish simultaneously. This will happen
when

(26) i+ aw, +a; =0,

that is when — 3 is a quadratic residue of p ; moreover if z,, x, satisfy
(26) with xx, = 0 then «, + 2, = 0. Thus the number of solutions of

(26) is equal to
—3\lp—1
{1+ (77>}T* °
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If — 3 is a nonresidue we find that
(27) N=2>p—-1@®-2),
while, if — 3 is a residue,
(28) N=20p—1(p-2-@-1.
For »p =3 we have
(29) N=4,

for it is evident from (22) that x, = 2, = @, ¥, = ¥, = ¥s.
Combining (27) and (28) we have

6  N=20-0-2-{1+(2)NEFE e>9.

On the other hand, since

5(0,0,0) = (» — 18(e,0,0) = —(p—1) (2%0),

S(a/, b, 0) =1 (ab = O) ,
we have
p—1 p—1 p—1
5 5 5 (S@ b0y = (@ — 1° = 3 — 1)* + 3(p — 1y
+ 55 5 (S(a, b, o)y

=@—-1"—-30@—-1)"'+30p—1+(— 1y 21 Sy’ .
Therefore, using (21) and (30), we get
(31) S (8(@) = 20'(p — 2) — (p — 1)’
2 __ 9 l -3
ctp- -3 Loe (52)
5. We shall now show that
(32) S(e) = O™ .
With the notation of §3 we have, as above,
p—1 p—1 p—1
(33) 5 3 3S@b o = 2N,

where N is the number of solutions of the system
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(Y + ¥)YYs = YYa(Ys + Yo)
Y+ T Y = TYs + TY,
DL 2% Y Yo YW, E O .

(@, + @2, = 0,2,(%5 + )
(34) j

Note that we have replaced each x;, y; by its reciprocal (mod p).
If we put

Ly = T, U, , Xy = LUy , Ys = YV Yis = Y30,
(34) becomes
(@, + L) Uy Uy = T,Uy + Ty Uy
(35) (Y, + YV, = Yvy + Yo,

TY: + XY, T Y UV; + LYo Ugy
ALY Yy Uy U010y E O

Il

Now put z, = z2, ¥, = ¥,y and (35) reduces to

1 + 2)uu, = u, + U,
(36) 1 + yvw, = v, + Yo,
1+ 2y = uw, + TYu,,
TYL YUV UVy ZE O

Finally, eliminating x, ¥y we get the single equation

(87) (1 — ) —v)A — uw) + (1 — u)d Tﬁ?iz)(l — Ugy) =0
Uy, UsV,y

subject to
(38) LY, UV UV, * 0.

It should be noted that for fixed u,, v,, u,, v, satisfying (37), x, y are

uniquely determined by (36) unless u, = u, = v, = v, = 1; also we find

that the forbidden cases xy = 0 or zy “infinite” contribute O(p?).
Let N'(k) denote the number of solutions u, v = 0 of

(39) 1A —w@ —v)A — uwv) = kuv
and let N(k) denote the total number of solutions of (39), so that
N(k) = N'(k) + 0Q1) .

Then clearly the number of nonzero solutions of (37) is equal to

(40) :z;,:N(k)N(— k) + O .
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Let +(a) denote the Legendre symbol (a/p). Then for fixed » and
k, the number of solutions of (39) is equal to :

1+ {1+ ku — w?) — du(l — )y,

80 that
NGy = p + S (/b w)
where
(41) S, u) =1 + bu — w?)* — du(l — w)*.

Thus (40) becomes

(42) »’+

: M‘f AM‘

p S S v (s, w)
z:: S (e, WAk, 0) + 0@ -
Since f(k,u) is a quadratic in k we have

Sk, w) = —
unless u(1 — w) = 0. It follows that
(43) S S v (s, w) = 00 .
Consider next the sum

S, w) .

It is easily seen from (41) that for fixed k, f(k, u) is the square of a
polynomial in % only when £ = 0. We therefore have the estimate

() V(S w) = 0™ ,
so that
(45) 50 S S (e, Wy (A= b, w) = 0 .

Substituting from (43) and (45) in (42) we see that the number of
nonzero solutions (37) is

p* + O(p®) .

Therefore N, the number of solutions of (34) is
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p° + O(p)
and (33) becomes

SSS 8, b, o) f = p° + O) ;

a=0 b=0 ¢=0
since S(0, 0, 0) = p*,
S(a, b, ¢) = S(1, 1, abc) (abe = 0)

and there are (p — 1)’ terms S(a, b, ¢) in the sum that give the same
S(1, 1, ¢), (32) now follows immediately.
Note that, except for (44), the proof is elementary.
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