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EXTREME OPERATORS INTO C{K)

R. M. BLUMENTHAL, JORAM LINDENSTRAUSS1

AND R. Rβ PHELPS

If X and Y are real Banach spaces let S(X, Y) denote the
convex set of all linear operators from X into Y having norm
less than or equal to 1. The main theorem is this: If JKΊ and
K2 are compact Hausdorff spaces with Kι metrizable and if T
is an extreme point of S(C(ULI), C(K2)), then there are continuous
functions φ: K2 -> Kγ and λ in C(K2) with \λ \ = 1 such that
(Tf)(k) = Kk)f{φ{k)) for all k in K2 and / in C^). There
are several additional theorems which discuss the possibility
of replacing C(KX) in this theorem by an arbitrary Banach
space.

Suppose that i ζ is a compact Hausdorff space and that C{KX) is the
Banach space of real-valued continuous functions on Ku with supremum
norm. Denote by S* the unit ball of C(i£i)*; then S* is a weak* com-
pact convex set and therefore the set ext S* of its extreme points is
nonempty, by the Krein-Milman theorem. Arens and Kelley [1] (cf.
[4, p. 441]) showed that these extreme points are precisely those func-
tionals of the form /—» λ/(&)(/e C(iQ)? where keKx and λ = l or
λ = — 1. [We denote the functional "evaluation at k" by φk, so the
extreme points of S* are the functionals Xφk9 | λ | = lβ] If we restrict
our attention to the "positive face" of S* (those functionals φ such
that φ(l) — 1)? then this is a weak* compact convex subset of S* and
its extreme points are those obtained from ext S* by taking λ = 1.
Now, the members of C{K^)* can be regarded as continuous linear
operators from C{K^) into C(K2)9 where K2 consists of a single point.
Thus, it is natural to consider the possible extension of the above
results to the more general situation when K2 is an arbitrary compact
Hausdorff space, and S* is replaced by the unit ball S = S(C(ULi),C(ίΓ2))
of the Banach space B — B{C{K^), C(K2)) of all bounded linear oper-
ators from C{K^} into C(K2), with the usual operator norm. Corre-
sponding to the positive face of S* we have the convex subset £Ί of
S, consisting of those T in S such that Tl = 1. It was shown by
A. and Co Ionescu Tulcea [5] (and generalized in [8]) that ext S1 con-
sists of the "composition operators", i.e., those of the form (Tf)(k) =
f(ψ(k)) (f e CiKJ, k e K2) where f is a continuous function from K2

into KlΦ It is easily seen that these operators are also extreme in S;
more generally, if ψ: K2—>KX is continuous and λ e C(K2) with |λ | = 1,
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then every operator T of the form

is an extreme point of S. Indeed, if & is a point of K2, then the func-
tional on C(1Q defined by f-^(Tf)(k) = X(k)f(ψ(k)) is the extreme
point \{k)φψ{k) of S* c C{K^. The above assertion follows easily from
this remark. The main result of the present paper is the converse of
this assertion (Theorem 1), under the additional hypothesis that Kx be
metrizable. The proof is not elementary, in sharp contrast to the
simplicity of the proofs for the corresponding statement for S±. The
metrizability hypothesis may be unnecessary; we use it only to enable
us to apply one of Michael's selection theorems [6, 7]. If we consider
the case of complex-γaλueά continuous functions on Kx and K2, then
the obvious analogues of the Arens-Kelley and Ionescu Tulcea results
are valid ([4, p. 441] and [8]), and it is still true that every operator
of the form (*) is extreme. We do not know whether the converse
is true, however, even with the metrizability hypothesis.

It is possible to formulate our characterization of the extreme
operators in S in another way: An operator T in SiCiE^), C(K2)) (Kγ

metrizable) is extreme in S if and only if the functional Fτ(k):f-+
(Tf)(k) (feC(KJ) is extreme in S* c C(K^ for a dense set of k's in
K2. (Simply use the fact that extS* is weak* compact and that k—>
Fτ{k) is continuous.) In this form, the statement makes sense for
operators T from an aribtrary Banach space X into C(K), so that it
is conceivable that the following is true: Suppose that X is a Banach
space, that K is a compact Hausdorίf space and that T is an operator
in S = S(X, C(K)), the unit ball of bounded operators from X to C(K).
Then:
(A) If T is extreme in S, then the functional Fτ{k) is extreme in

the unit ball S* of X* for a dense set of points k in K.
The converse of this assertion is clearly true. The assertion itself,
however, is false; Theorem 2 shows that (in particular) if K has no
isolated points, then there exists a space X and an extreme operator
T in S(X, C(K)) such that for each k in K, Fτ{k) is not extreme in
S*. The hypothesis concerning isolated points is unavoidable, since it
is easily verified that if T is extreme in S(X, C(K)) and k is an iso-
lated point of K9 then Fτ(k) is extreme in S*. (Thus, if K has a
dense set of isolated points, then assertion (A) is true. This obser-
vation let Arterburn and Whitley [2] to conjecture that it is generally
true.) Assertion (A) is true if some strong restrictions are made on
X; as noted in [2], (A) holds if every point in the boundary of S* is
extreme (i.e. if X* strictly convex). Assertion (A) is also true if X
is three-dimensional (cf. Theorem 3). An example shows that (A) is
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no longer true for all four-dimensional spaces.
In order to prove Theorem 1 we make the usual identification be-

tween C(i£i)* and the space of finite signed Borel measures μ on Kx.
For / in C{K^), μ(f) denotes the integral of / with respect to μ.
Recall that μ — μ+ — μ~ where μ+, μ~ are nonnegative and have dis-
joint Borel supports; furthermore, (| μ || = μ+(l) + £*"~(1). Now, to each
operator T in B(C{K^, C{K2)) there corresponds a unique function
k—>μk from K2 into C(Kty such that

(Tf)(k) = μk(f) (ft eK29fe

and

\\T\\=auτ>{\\μk\\:keK2}.

This function is continuous from K2 into CiK^* in its weak* topology
(briefly: ft—> μk is weak* continuous). Any weak* continuous function
k~^vk for which \\vk\\ is bounded defines an operator in B (by means
of the above equation) with norm equal to sup 11 vk \ |. This corre-
spondence between norm bounded weak* continuous functions and oper-
ators in B is linear; in particular, we have the following useful fact.

If k—>μk is related to T as above, then T is extreme in
S(C(K^),C(K2)) if and only if the following is true: Whenever k—>vk

is weak* continuous and || μk ± vk || ^ 1 for each ft in K2, then vk — 0
for all ft.

We can now prove our main result.

THEOREM 1. Suppose that Kλ and K2 are compact Hausdorff spaces,
that Kλ is metrizable, and that T is an operator in 5(0(7^), C(K2)).
Then T is an extreme point of this set if and only if there exist
continuous functions ψ: K2~^ Kx and λ in C(K2), | λ | = 1, such that

(Γ/)(ft) = λ(ft)/(t)) (ft in K2,f in C(^)) .

Proof. We have already noted that any operator of the above
form is extreme, so suppose T is extreme in SiCiKJ, C{K2)) and let
ft —> fa be the corresponding weak* continuous map from K2 into the
weak* compact unit ball S* of C{KX)*. We distinguish two cases:

Case I. For each ft in K29 either μk ^ 0 or μk ^ 0.

Case II. For some ft in K2, the decomposition μk — μi — μk is
nontrivial.

We take care of Case I with the help of the Ionescu Tulcea
theorem. Note that in this case, | | μ A | | = \μk(l)\. Furthermore, the



750 R. M. BLUMENTHAL, JORAM LINDENSTRAUSS AND R. R. PHELPS

real valued function k —> | μk(ΐ)! is continuous on K2, hence if μ is any
nontrivial measure in S*, then the function k—> (1 — \\μk\\)μ is weak*
continuous from K2 into S*. Since

|| μk ± (1 - || μk l|) μ \\ ̂  \\ μk || + (1 - || μk ||) || JK || ^ 1 ,

we see that for each k, \μk{l)\ — \\μk\\ — l. Thus, if we let X(k) =
μk(l), then λ e C ( i Q and | λ | = 1. Consider the operator £7: C(iQ —>
C(K2) defined by (Uf)(k) = λ(&)-1(7y)(A;)β It is easily verified that U
is extreme in S and that Ul — 1. It follows from the Ionescu Tulcea
theorem [5; 8, Theorem 1] that there exists a continuous function
ψ: K2—* Kλ such that Uf — foψf and hence T has the required form.

We next show that if Case II holds, then T can not be extreme.
Assume, then, that there exists a point k0 in K2 such that μkQ —
Mi0 - t*k0 and μiQ Φ 0, μkQ Φ 0. For each k in K2, let

This is a nonempty convex weak* closed subset of S*9 hence is weak*
compact. We shall prove that the map k —> Σ(k) from K2 into the set
of all subsets of C{K^* is lower semicontinuous in the sense of Michael
[6] (where we take the weak* topology in C{K?)*). Thus, we must
show the following: Given a point kx in K2, a measure μ1 in Σ{kx)
and a weak* neighborhood V of μu then there is a neighborhood U of
&! such that V D ̂ (Λ) is nonempty for each & in £7. We can assume
that V = {μ : μ e C ^ ) * , I j"(Λ) - μάfd I ̂  1, /* e C(Xi), * = 1, 2, , n}.
Suppose that there is a net ka converging to kλ such that V ίΊ Σ(ka)
is empty for each a. Since μ^ 6 S* for each α we may assume (by
taking a subnet if necessary) that μtΛ—»μ* for some μ2^0 in S*;
similarly μ^->μ 3 ^ 0. Since μk(3ύ^μh we have μkl = μ2-μ3 = μ+± - μkχ

and it follows from the definition of the Hahn decomposition that
μ2 ^ μlχ. Now, μkl ^ μx ^ 0, so by the Radon-Nikodym theorem we can
write dμx — gγdμ2, where gx is a Borel function on Kx with 0 ^ ^ ^ 1.
We can choose a continuous function g on iΓx such that 0 ^ g ^ 1 and

( I 0 - & I dft ^ (2 max {11/, || : 1 ^ ΐ ^ ^J)"1 .

If we define μα by cί^α = gdμia then /̂ α e Σ(ka) for each α. Furthermore,
for each i we have

and hence

lim sup I μa(fi) - /*i(/<) | ^ I \fiQ - / ^ i I dμ2 ^ 1/2 ,
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so that μa is eventually in 7 n Σ(ka), a contradiction.
Thus, the set-valued map k—>Σ(k) is lower semicontinuous and

since C(K^) is separable—this is the only place where we use the
metrizability of Kλ—we may apply a selection theorem of Michael
([6, Th. 3.2*], [6, Ex. 1.3*] and [7]) to conclude the existence of a
continuous selection for this map taking at k0 the preassigned value
μt0, that is, there exists σ: K2 —» C(Kλ)* which is weak* continuous such
that σkQ = μt0 and σk e Σ(k) for each k9 i.e. 0 g σk ^ μΐ. Similarly,
there exists a continuous map τ: K2—>C{K^)* such that τkQ — μko and
0 ^ τk ^ μk for each fc. We define the map v: K2—> C(K^)* by

»k = ^ IKAII + Tk 11 CΓΛ 11

Since || σfc || = 0^(1), the function fc—> || σk || is continuous (similarly for
τ) and hence k—+vk is weak* continuous. Furthermore, i^0 Φ 0. (This
last assertion is the reason we needed two cases; in case /, vk = 0.)
Finally, || μk ± vk || <Ξ 1 for each k. Indeed,

μk + vk || = || (μi + σ, || τk \\) \\ + || (μk - τk \\ σk

similarly for 11^ — ^11. It follows that T is not extreme, a con-
tradiction which completes the proof.

It is clear that the above proof would be valid without the hypo-
thesis that Kx be metrizable if there were a selection theorem for the
more general situation. Unfortunately, however, it is known (see e.g.
[3]) that there exist compact Hausdorff space K± and K2 (Kλ not
metrizable, K2 metrizable) and a weak* lower semicontinuous map
from K2 into the weak* compact convex subsets of the unit ball of
C{Kxγ which does not have a continuous selection.

It is worth noting that we can eliminate the metrizability hypo-
thesis in Theorem 1 if we put an additional hypothesis on the operator
T. Namely, if T is extreme in SiCiK^), C(K2)) and if the function
~̂~~> II t*k II i>s continuous, then T is of the form (*). We will sketch

a proof of this fact. Since the proof of Theorem 1 used metrizability
only in Case II, we will show that this case cannot occur. First, note
that the continuity of k-^\\μk\\ implies the weak* continuity of the
functions k—*μi and k —* μk. (This may be proved by contradiction,
using the weak* compactness of S*, the weak* continuity of fc—> μk

and the fact that if μk — μλ — μ29 μ19 μ2 ^ 0, then μ1 ^ μi, μ2 ^ μk.)
It follows that k —> vk — μk(l)μk + μz(X)μi is weak* continuous, and
|| μk ± vk || ^ 1 for each k. Since T is extreme, vk = 0; in particular,
0 = vk(l) = 2μi(l)μk(l) for each h, which implies that Case I holds.

The above hypothesis on T is fulfilled in case T is a compact
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operator; indeed, T is compact if and only if k —* μk is norm con-
tinuous [4, p. 490]. (Examination of the above proof and that in [8,
Theorem 1] shows that in this case it suffices to assume only that T
is extreme in the unit ball of compact operators.)

Suppose, now, that X is a Banach space and that T is an extreme
point of S(X, C{K)) (K compact Hausdorff). As noted in the intro-
duction, the functional Fτ(k) is extreme in the unit ball S* of X*
whenever k is an isolated point of K. The next result shows that
for any K there exists a space X such that these are the only such
functionals which are extreme.

THEOREM 2. Suppose that K is a compact Hausdorff space. Then
there exists a Banach space X and an extreme operator T in S(X, C(K))
such that Fτ(k) e ext S* (if and) only if k is an isolated point of K.

Proof. Let M be the compact set of all points in K which are
not isolated and let 12(M) be the Banach space of all real-valued func-
tions y on M such that || y ||2 = ΣkeMV2(k) < °°. Let Xo = C(K) 0 k(M),
with norm || (/, y) \\ = max ( | |/ | | , || y ||) (/ e C(K), ye 12(M)). As is well
known, the conjugate space X* of such a product space is linearly iso-
metric to C(Ky 0 h(M)*9 with || (μ, y*) \\ = || μ || + || y* | |. Since 12(M)
is a Hubert space, we may identify h(M)* and 12(M). The space Xo*
in its weak* topology is linearly homeomorphic with the product space
C{K)* x 12(M)* (where we take the weak* topologies in each of these
spaces). Let S1 — S0{κ)* x {0} and S2 — {0} x Stjί{M)*; these sets are weak*
compact and convex, and the set conv (S1 U S2) is identical with the unit
ball of Xo*. (Consider (μ, y*) = || μ || (μ/\\ μ\\, 0) + || y* \\ (0, y*/\\ y*\\).)
For k in M, let ek e 12(M) be the function which is 1 at k> 0 elsewhere.
L e t Q = {±(φk, ±ek) :keM}{J {±(φk, 0):ke M) (as u s u a l , φke C{K)*

is evaluation at k). Note that Q is weak* compact. Indeed, it follows
from the definition of 12(M) that any y in 12(M) gets arbitrarily small
outside finite sets, so if {ka} is a net in M with infinite range, then
the set {ekj has a subnet which converges to 0 in the weak* topology.
This fact (together with compactness of M and weak* continuity of
k —+ φk) makes it possible to show that Q is weak* compact. Let A
be the weak* closed convex hull of Q; then A is norm bounded, hence
weak* compact, and the set S' = conv (Si U S2 U A) is weak* compact
and convex. Furthermore, S' is symmetric with respect to 0 and con-
tains the unit ball conv (S1 U S2) of Xo* From standard results on
duality, then, S' is the polar of a convex body in Xo which defines a
norm || |Γ on X09 equivalent to the original norm. Furthermore, if
we let X denote Xo in the norm || ||', then S' is the unit ball of
the space X*. We have defined our space X; to define the operator
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T, let Fτ(k) = (φk9 0), ke K. I t is clear t h a t Fτ is weak* continuous;

our next task is to show t h a t T has the required properties.

Suppose, first, t h a t k e K and t h a t (φk9 0) ± (μ, y*) e S'. I t follows

immediately t h a t \\φk ± μ\\ tί 1, so t h a t μ — 0 and hence (<£>*., ±y*) e S\

We will show t h a t if keK ~ M, then #* = 0, while if ke M, then

1/* = Xek for some | λ | ^ 1. To this end, let Φk = {f:fe C(K), f(k) =

I - ll/ll}. If / e Φk, let Hf = {(v, z*): (v, z*) e Xo*, * ( / ) = 1}; this is a

weak* closed hyperplane and, since (v,z*)eSf implies \\v\\ ^ 1 (hence

v(f) ^1), Hf is a supporting hyperplane to S'. In particular, Hf Π S'

is an extremal subset of S'. Since the intersection of extremal sets

is an extremal set, the set Jk — Γ\fβΦk Hf is an extremal subset of £ ' ;

furthermore, it is elear t h a t (φk, y*) e Sf Π Jk. Now, since Jk is ex-

tremal, ext (Jfc Π S') c J ^ ί l ext S', and from the definition of S' we see

t h a t ext S' c ext Sx (j ext S 2 U ext A. Also, since Q is compact, the

Milman theorem implies t h a t e x t i c Q . Since JkΓ\S2 is empty, we

have ext (Jk Π S') c (JΛ Π ext S^ U (Q Π Λ ) . Recall t h a t if (v, z*) e Jk,

II v II ^ 1, then v(/) = 1 for all feΦk, so v = <pk. Thus, J , Π S, =

{(<pk, 0)}, and Q n e/fc = {(^, ± β A ) , ( ^ , 0)} if fee Λf; otherwise Q n Λ is

empty. Now, (φk9 y*) e Jk Π S' and the latter is the closed convex hull

of its extreme points. From what we have just shown, (φk9 y*) =

(<pk, 0) if ke K ~ M, while (φk, y*) is a convex combination of (φk9 0)

and (φk9 ±ek) if keM; these remarks show t h a t y* has the form in-

dicated earlier. I t is clear that (φk9 0) e ext S' if and only if k e K ~ M.

I t remains to show that if there exists a weak* continuous map G:

K-* Xo* such t h a t Fτ(k) ± G(k) e S' for each k, then G = 0. Such a

map would have the form G(k) = (μk9 yk)9 where k —> jWfe, ^ -^ 2/* are

weak* continuous in the appropriate spaces, and we would have

(φk9 0) ± (μk9 y*) e S'. From what we have shown above, μk — 0 for

all k9 yt = 0 for ke K ~ M, and yk = λ(fc)βfc for some | λ(fc) | ^ 1 if

keM. Since k—+y* is continuous, /̂J = 0 for & in the closure of

K ~ M. Suppose t h a t k is an interior point of M and choose an in-

finite net of distinct points ka in M with ka —> Λ. We know t h a t

e^^—^0 in the weak* topology, so τ/*&« = X{ka)ekoύ —>0 and hence #J = 0.

Thus, /̂* = 0 for all Λ in K and the proof is complete.

Our next result shows t h a t the conjecture of Arterburn and Whitley

is t rue for two or three dimensional spaces X, as well as for certain

other finite dimensional spaces.

THEOREM 3. Suppose that X is a finite dimensional normed
linear space such that

(i) d i m X ^ 3
or

(ii) the unit ball of X is a polyhedron.
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If K is a compact Hausdorff space and T is an extreme operator in
S(X, C(K)), then {k:keK and Fτ{k) e ext S*} is dense in K.

Proof. We shall give the proof for the case dim X = 3, since the
proof for the remaining cases is similar but much simpler. The idea of
the proof (in any of the three cases) is this: We show that for each
k, Fτ(k) must lie on the surface of the unit ball S* of X*. We then
show that Fτ(k) cannot be in the (relative) interior of any face of S*.
In the two dimensional case, this completes the proof, while in the
polyhedral case we can apply the same argument to faces of one less
dimension, and the proof proceeds by induction. (Recall that in case
(ii), the dual ball S* is also a polyhedron.) In the three dimensional
case we need a special argument, since the interior of a one dimen-
sional face need not be isolated from other one dimensional faces.
Suppose, then, that dim X = 3 and that Te ext S(X, C(K)). Let y*Φθ
be a fixed element of S*. The map k —» (1 — || Fτ{k) \\)y* is continuous,
and || Fτ(k) ± (1 - || Fτ(k) ||) y* || ^ || Fτ{k) || + (1 - || Fτ(k) \\) \\ y* \\ £ 1;

since T is extreme, this implies that || Fτ(k) \\ = 1 for each k, i.e.,
Fτ(k) is on the boundary of S* for each k. We next show that Fτ{k)
cannot be an interior point of a two dimensional face of S*, for any
k in K. Indeed, if Fτ(k0) were an interior point of such a face, the
same would be true for all points of k in some neighborhood of k0*
We could then easily find a continuous real valued function g on K,
not identically zero, and x* e X*, $* Φ 0, such the \\Fτ{k) ± g{k)x* || ^ 1
for each fc, contradicting the fact that T is extreme. Suppose, finally,
that there exists nonempty open set Ua K such that Fτ(k) £ ext S* for
each k in U. From what we have shown it follows that for each x*
in FT(U) there exists a vector, u(x*) in X*, unique up to sign, such
that || u(x)* || = 1 and || x* ± εu(x*) || = 1 for some ε > 0. For every
x* in FT(U)9 let X(x*) = sup{ε : || x* ± eu(x*) \\ = 1}. Suppose that
#ί, x* are in FT(U) and that x£-^x*. The sequence u(xt) has a
subsequence converging to some y* in S*. If Mχί) = ^ ί ° r some
δ > 0 and all n we see that || E* ± δy* || = 1 and hence #* = ±u(ίc*)
and X(x*) ̂  δ. This shows that λ and therefore XoFτ are upper semi-
continuous; in particular, XoFτ has points of continuity and hence
there exist a nonempty open subset M of U and an ε > 0 such that
X(x*) ̂  ε for x* in FT{M). We may assume that for some x in X,
I (U(OJ*), x) I > 0 for all B* in FT(M) (otherwise replace M by

where α; is chosen so that this intersection is nonempty). For x* in
FT{M) let e(x*) be the sign (i.e. 1 or -1) such that e(x*)(u(x*), x) > 0.
The compactness argument used above shows that the map x**
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e(x*)u(x*) is continuous on FT(M). Choose a real valued continuous
function g on K such that g Φ ft, 0 ̂  g ^ ε and g(k) = 0 if k£M.
Then for all fc,

II FΓ(fc) ± g(k)e(Fτ(k))u(Fτ(k)) || g 1 .

(We define g(k)e(Fτ(k))u(Fτ(k)) to be zero for fc e ikf.) Since Γ is ex-
treme, we conclude that the set U must have been empty and the
proof is complete.

Our final result is an example which shows that the above theorem
fails for a certain four dimensional space X.

EXAMPLE. There exists a four dimensional normed linear space X
and an extreme operator T in S(X, C[0, 1]) such that Fτ{t) ί ext S* for
each t in [0,1].

Proof. Let g be a monotonic increasing function on [0, 1] such
that g is discontinuous at every rational point t and continuous else-
where. Let Σ be the subset of RA consisting of the points

±(cos ί, sin ί, cos g(t + 0), sin g(t + 0))

±(cos ί, sin ί, —cos g(t + 0), —sin g(t + 0))

±(cos £, sin t, cos #(£ — 0), sin g(t — 0))

±(cos t, sin £, —cos g(t — 0), —sin #(£ — 0)) ,

where 0 ̂  t t=k 1. The set 2 is symmetric with respect to the origin
and it is also compact: If {tn} is a sequence in [0, 1] there is a sub-
sequence {tnk} such that either ίΛfc | £ or tnjc {t for some t in [0, 1],

Let S' be the convex hull of Σ; then S' is a compact, convex,
symmetric subset of iϋ4 having nonempty interior, and hence is the
unit ball of X*, where X is the four-dimensional Banach space which
has the polar *S° of S' as its unit ball. Suppose that t is an irrational
number in [0, 1]. The point x = (cos t, sin t, 0, 0) is in S°; indeed, for
each (u,vfw,z) in Σ9 u cos t + v sin t ^ 1 and equality occurs only if
u = cos t, v = sin ί and (w, «) = ±(cos g(t)9 sin flf(ί)). It follows that if
(cos t, sin ί, 0, 0) ± (u, v, w, z) e S', then (since the inner product of these
two points with x — (cos t, sin t, 0, 0) equals 1) u = v — 0 and the point
(cos t, sin ί, ̂ ,«) is in the convex hull of the subset of Σ whose inner
product with x equals 1, i.e. w = λ cos g{t), z = λ sin g(t), \ λ | ^ 1.

Let Γ be the operator from X into C[0, 1] defined by Fτ(t) —
(cos ί, sin ί, 0, 0), t G [0,1]. For each t, Fτ(t) ± (0, 0, cos g(t), sin βf(ί)) e 2',
and hence Fτ(t) e S' but FΓ(ί) ί ext S'. Suppose, however, that there
exists G: [0,1]—>X* which is continuous and satisfies JFΓ(£) ± G(t)e S'
for every t. Then, as we have seen, for every irrational t, G(t) =
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(0, 0, X(t) cos g(t), λ(t) sin g(t)) with | λ(t) | ^ 1. Let t0 be a rational
point in (0,1). Since G is continuous, limt Uo G(t) — YιmtίtQG(t) and
since g is discontinuous at t0 it follows that if tn —•* ί0 with ίw irra-
tional, then X(tn) —•> 0. Thus G(t0) — 0, and therefore G vanishes on
the rationale in (0, 1) and hence identically on [0, 1]. It follows that
T is extreme and the proof is complete.
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