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RING-LOGICS AND RESIDUE CLASS RINGS

A D I L YAQUB

Let (R, X, +) be a commutative ring with unit 1, and let
K = {plt p2, •} be a transformation group in R. (R, x , +)
is called a ring-logic, mod K essentially if the " + " of R is
equationally definable in terms of the "K-logic" (R, X, />i, /?2, )•
The Boolean theory results by choosing K to be the group
generated by x* = 1 — x (order 2, x** = x). The following
result is proved: Let n = pi pt be square-free, and let Rn

be the residue class ring, mod n. Let, ~, be any transitive
0 —> 1 permutation of RPi(i = 1, , t). Let, ~, be the induced
permutation of Rn defined by (xlt , cc*)~ = (ccf, , xΓ),
Xi e RPi{i — 1, •••,£), and let iΓ be the transformation group
in J?w generated by, ~. Then (i?w, X, +) is a ring-logic, mod
K. An extension of this theorem to the case where n is
arbitrary is also considered. The present proofs use the
Fermat-Euler Theorem as well as a generalized form of the
Chinese Residue Theorem.

The motivation for the study of ring-logics stems from the familiar
equational interdefinability of Boolean rings (R, x , + ) and Boolean
logics (^Boolean algebras) (R, | Ί , *) [5]. In a series of recent publi-
cations ([1]~[4]), Foster raised this equational interdefinability, as well
as the entire Boolean theory, to a more general level. In particular,
Foster showed [2; 3] that any p-ring with unit (and more generally,
any pk-τing with unit) is a ring-logic, modulo certain suitably chosen
groups. Furthermore, the author proved [6] that Rn, the residue class
ring, mod n, is a ring-logic, modulo the "natural group" (generated by
x~ — 1 + x). Our present object is to further extend these results
by considering certain transformation groups in Rn of rather general
nature, and with respect to which (Rn, x , + ) is a ring-logic (see
Theorem 5).

1* The ring of residues mod pk+ Let (Rpk, X, + ) be the residue
class ring, modpfe, where p is prime and k 2̂  1. Let G denote the
group of units in Rpk. Then, as is well known, the order of G is
φ(pk) — pk — pk-\ where φ(n) is the familiar Euler φ-ίunction ( = number
of positive integers which do not exceed n and which are relatively
prime to n). Let, ~, be a permutation of Rpk. We call, ~, a transitive
0—* 1 permutation if (i) (Γ = 1, and (ii) for any elements a, β in Rpk,
there exists an integer r such that oΓ* — β, where αΓr = ( -((αθ~)~ )~
(r-iterations).
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We recall from [4] the characteristic function δ^x), defined as
follows: for any given μe Rpk, δμ(x) = 1 if x — μ and δβ(x) = 0 if
x Φ μ. Following [4], we also define: α x j ~^(pΓ x δ~)~, where,
~, is the inverse of the 0 —• 1 permutation, ~. One readily verifies
that α χ _ 0 = 0 x _ α = α. Hence, we have the following "normal
expansion formula" [4]:

(1.1) f(x,y, . . . ) =

In (1.1), α, /S, range independently over all the elements of Rpk
while x, y, are indeterminates over i2p&. Also, ^ω^κai denotes
ai x _ ̂ 2 x _ > where α ,̂ α2, are all the elements of R.

We now have the following

LEMMA 1. Let, ~, be any transitive permutation of Rpk, and let
K be the transformation group in Rpk generated by, ~. Then all the
elements of Rpk are equationally definable in terms of the K-Ίogic

(Rpk, x , 1 .

Proof. Since, ~, is a transitive permutation of Rpk, therefore,
Rpk = {0, (Γ, (Γ2, , (Γ**-1}. Similarly, we have, xx~x~2 aΓ^" 1 = 0,
for all x in Rpk. The last equation shows that 0 (and with it
0~, 0^2, , (Γ^"1) is expressible in terms of the iΓ-logic, and the lemma
is proved.

LEMMA 2. Let G = {1, ζ2, ζ8, , ζφ) be the group of units in the
residue class ring (Rpk, x , + ) . Let, ~, be a transitive 0 —• 1 permu-
tation of Rpk satisfying 1~ = ζ2, CΓ = ζ3, , ζ^-i = ζ^, δ^ί otherwise,
~, is entirely arbitrary. Let K be the transformation group in Rpk
generated by, ~. Tfce^ βαcfc characteristic function δμ,(x), μ e Rpk, is
equationally definable in terms of the K-logic (Rpk, x , ~).

Proof. Since, ~, is transitive, therefore, there exists an integer
r such that μ~r — 0. Now, one readily verifies that

~r+2x~r+3Sμ{x) = (x~r+1x

since, by the Fermat-Euler Theorem, apk-pk~ι = 1 for all a in G. This
proves the lemma.

T H E O R E M 3. Let K,~, be as in Lemma 2. Then the residue
class ring (Rpk, x , + ) is a ring-logic, mod K.

Proof. By (1.1), x + y = Σι2$eRpk if* + ί ) ( W Λ ) ) . By Lemma
1 and Lemma 2, each of a + β, δa(x), and δβ(y), is expressible in terms
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of the Z-logic. Hence, the " + " of Rpk is equationally definable in
terms of the i£-logic. Next, we show that (Rpk, x , + ) is fixed by
its if-logic. Suppose that (Rpk, x , +') is another ring with the same
class of elements Rpk and the same " x " as (Rpk, x , + ) and which
has the same logic as (Rpk, x , + ) . To prove that + ' = + . But this
follows, since, up to isomorphism, there is only one cyclic group of
order ph.

2. The general case* In attempting to generalize Theorem 3 to
the residue class ring (Rn, x , + ) , n arbitrary, we need the following
concept of independence, introduced by Foster [4].

DEFINITION. Let {U19 •••, Ut} be a finite set of algebras of the
same species S. We say that the algebras U19 , Ut are independent
or satisfy the Chinese Residue Theorem, if, corresponding to each set
{Ψi} of expressions of species S, there exists a single expression X such
that Ψi — X (mod £/*) (i — 1, , t). By an expression we mean some
composition of one or more indeterminate-symbols x, is terms of
the primitive operations of U19 •••, Ut; Ψi = X(mod Ui) means that
this is an identity of the algebra Uim

As usual, we shall use the same symbols to denote the operation
symbols of the algebras U19 , Ut when these algebras are of the
same species. We now have the following

LEMMA 4. Let p19

m ,pt be distinct primes. Let, ~, be any
transitive 0 —> 1 permutation of RpHy and let Kt be the transformation
group in Rvn generated by, ~, (i = 1, , *). Then the Eulogies
(RpH, x , ~)(i = 1, m

 9t) are independent.

Proof. Let n = pi1 pfr and let E = xx~x~2 x~n-\ Let
pfrrii = n. Since (pfr, n{) — 1, therefore, there exist integers ri9 s{

such that ViΠi — s^1 = 1. Now, one readily verifies that

fl(mod Rpki) ,

(0(mod Rpkj)

To prove the independence of the logics {RPH9 X , Λ ), let {Ψ^ be a set
of t expressions of species x , ~; i.e., primitive composition of indeter-
minate-symbols in terms of the operations x , ~. Define

X = ψl(ύl x ^ . . . x ^ ψtωt .

I t is r e a d i l y verified t h a t Ψi = X ( m o d RvH)(i — 1, . . . , t), s ince α x j =
0 x _ α = α. T h i s p r o v e s t h e l e m m a .
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We are now in a position to consider (Rn, x , + ) in regard to the
concept of ring-logic. Indeed, let n = pϊ1 ••• pft, where the Pi are
distinct primes (i — 1, , t), and let G{ = {1, ζ ί2, ζ<s, , ζ^J be the
group of units in the residue class ring {Rp*i, x , + ) . For each i,
define, ~, to be a transitive 0 —> 1 permutation of RPH satisfying 1~ =
ζ*2f CtΓ2 = ζi s, , (Ci.Pi-iΓ = Ci^, but otherwise, ~, is entirely arbitrary,
and let K{ be the transformation group in RPH generated by, ~. Now,
it is well known that the residue class ring Rn is isomorphic to the
direct product of RPH, , Rpkt\

Rn ^ RPii x x jβpji (direct product), w = pfi pt

feί .

Furthermore, it is easily seen that by defining (xί9 , xt)~ = (a?Γ, *» #Γ)>
(a?!, , xt) e Rn, we obtain a transitive 0 —•> 1 permutation of Rn. Let
i£ be the transformation group in Rn generated by the above permu-
tation, ~. We now have the following

THEOREM 5. The residue class ring (Rn, x, +), n arbitrary, is
a ring-logic, mod K, where K is the transformation group in Rn

above.

Proof. Let n — pi1 p**, where the Pi are distinct primes (i —
1, •••,*). By Theorem 3, each {RPH, x , + ) is a ring-logic, modίQ,
where K{ is as defined above (i — 1, •••, t). Hence, for each i, there
exists an expression Ψ{ such that

%i + Vi = Ψi(%i> VC, x , ~), fo r all xi9 Vi in RPH .

But, by Lemma 4, the i^-logics (RP

JH, X , Λ ) are independent (i — 1, , t),
and hence there exists a single expression X such that X ~Ψ i (mod Λpfc<)
(i = 1, , t). Now, let x = (α ,̂ , a?t), 7/ = (ylf , yt) be any elements
of Rn(=RpH x ••• x i?p^) Since the operations are component-wise
in this direct product, therefore,

X(x, y; x , ~) = X((^, , a?,), (^, , yt); x , ~)

= (Xfe, y±; x , 1 , , X(a?t, ^ x , 1 )

= (^1(^1, Vύ X , ^), , ^ t^t , I/*; X , ~))

= («i + ί/i, , a?t + I/O

— x + y .

Hence, the " + " of Rn is equationally definable in terms of the jK-logic
(jβn, x , ~). The proof that (JBn, x , + ) is fixed by its if-logic follows
as in the "fixed" part of the proof of Theorem 3, since again, up to
isomorphism, there is only one cyclic group of order n. This completes
the proof of the theorem.
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We shall now take a closer look at the case where n = ^ • pt is
square-free. In this case the group Gi of units in RPi{ — field) is
precisely the set of all nonzero elements of RPi(i = 1, •••,£), and the,
~, described above (see paragraph preceding Theorem 5) for Rp. is now
simply any transitive 0 —> 1 permutation of Rv.. Hence, we have the
following

COROLLARY 6. Let n = p1 pt be square-free, and let, ~, be
any transitive 0—>1 permutation of RPi(i = 1, •••, t). Let, ~ be the
induced permutation of Rn defined by (xlf , xt)~ = (a?Γ, , %ΐ),
x^RPi(i — 1, •••,*), and let K be the transformation group in Rn

generated by, ~. Then (Rn, x , + ) is a ring-logic, mod K.

Thus, if, in particular, we choose αΓ = 1 + x in the above Corollary,
we obtain the following (compare with [6]).

COROLLARY 7. Let n be square-free, and let N be the ''natural
group", generated by αΓ = 1 + x. Then (Rn, x , + ) is a ring-logic,
mod N.

Upon choosing, ~, in Theorem 5 in all of the various available
ways, we obtain the corresponding transformation groups K with
respect to which (Rn, x , + ) is a ring-logic.
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