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INVARIANT SPLITTING IN JORDAN AND
ALTERNATIVE ALGEBRAS

EARL J. TAFT

Let A be a finite-dimensional Jordan or alternative algebra
over a field F of characteristic 0. Let N denote the radical
of A. Then A possesses maximal semisimple subalgebras
isomorphic to A/N, [5], [6], any two of which are strictly
conjugate, [2], [9]. If G is a finite group of automorphisms
and antiautomorphisms of A9 then A possesses G-invariant
maximal semisimple subalgebras, [10], We investigate here
the uniqueness question for such G-invariant maximal semi-
simple subalgebras. The result is that the strict conjugacy
can be chosen to commute pointwise with G and to be in the
enveloping associative algebra generated by the right and left
multiplications in A.

Similar results have been obtained for associative algebras, [11],
and Lie algebras, [12]. However, in the associative case, the conjugacy
can be obtained in terms of ad joints of G-symmetric elements, i.e.,
elements left fixed by the automorphisms in G and sent into their
negatives by the antiautomorphisms in G. In the Lie algebra case,
one needs only to consider automorphisms, and the conjugacy is obtained
in terms of adjoints of fixed points of G. In each case, the conjugacy
is in the enveloping associative algebra of A. In both the Jordan and
alternative cases, the automorphisms which occur would commute
pointwise with G if the elements of A which occur in their formulation
in terms of right and left multiplications were to be fixed points of G.
However, we have not obtained the conjugacies in this form, and it
seems to be an open question whether or not it is always possible to
do so.

If G is assumed fully reducible, instead of finite, then A will also
possess G-invariant maximal semisimple subalgebras. This is noted in
the Jordan case in [4] when G contains only automorphisms, and the
same proof can be extended to cover the alternative case, even if G
also contains antiautomorphisms. We have answered the uniqueness
question for the similar situation in the associative and Lie cases, [13].
For the Jordan and alternative case, the problem seems more complicated.
We note here that it is easily answered if N2 = 0, with the strict
conjugacy commuting pointwise with G. However, the general question
remains open.
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2Φ Preliminaries* If ae A, we let Ra and La stand for right
and left multiplication by a, i.e., xRa — xa, xLa = ax. The following
two lemmas are easily proved by straightforward calculation.

LEMMA 1. Let g be an automorphism of A. Then g~xRag — Rag

and g~xLag = Lag.

LEMMA 2. Let g be an antiautomorphism of A. Then g~λRag=
Lag, Q^LaQ = Rag.

A derivation of A will be called inner if it is in the enveloping
Lie algebra generated by the right and left multiplications in A, [7].
We will have occasion to use the following types of inner derivations.
If A is Jordan, and x, se A, then [Rx, R$] — RXRS — RSRX is an inner
derivation of A which, for x e N, will be a nilpotent element of the
radical of the enveloping associative algebra generated by multiplications
in A by elements of A, [1], [2], [8]. If A is alternative, and s, xe A,
then Ds>x = [Rs, Rx] + [Ls, Rx] + [Ls, Lx] is an inner derivation of A
which, for xe N, will be a nilpotent element of the radical of the
enveloping associative algebra generated by the left and right multi-
plications of A, [7], [9].

LEMMA 3. // A is alternative, a, be A, then [Ra, Lb] — [La, Rb],
and Dafb = -Db,a.

Proof. x[Ra, Lb] = b(xa) — (bx)a — —(6, x, a), where (6, x, a) —
(bx)a — b(xa) is the associator of δ, x, and a. Also x[La, Rb] = (ax)b —
a(xb) — (α, x, 6). The first part of Lemma 3 follows from the skew-
symmetry of the associator function. Hence

Dbta = [Rb, Ra] + [Lb, Ra] + [Lb, La]

= —[Ra, Rb] — [Ra, Lb] — [La, Lb]

= — [Ra, Rb] — [La, Rb] — [La, Lb] = —Da>b .

LEMMA 4. Let A be Jordan, and g an automorphism of A. Then

g~\Ra, Rb]g = [Rag, Rbg\.

This is immediate from Lemma 1.

LEMMA 5. Let A be alternative, and g an automorphism or
antiautomorphism of A. Then g^D^g = Dag,bg.

Proof. This is clear from Lemma 1 if g is an automorphism. Let
g be an antiautomorphism. Then, using Lemma 2, g^D^g — [Lag, Lbg] +
[Rag, Lbg] + [Rag, Rbg] = Dag>bg by Lemma 3.
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If D is a nilpotent derivation of A, then exp D = I + D +
(D2/2l) + is an automorphism of A. We assume familiarity with
the Campbell-Hausdorff formula, [3], (exp A) (exp A) = exp A> where
D3 is in the Lie algebra generated by A and D2.

3* The Jordan case*

THEOREM 1. Let A be a finite-dimensional Jordan algebra over
a field F of characteristic 0. Let G be a finite group of automor-
phisms of A. Let S be a G-invariant maximal semisimple subalgebra
of A. Let T be a G-invariant semisimple subalgebra of A. Then
there exists an automorphism U — exp D of A such that

(1) U maps T into S,
(2) D {and hence U) commutes pointwise with G,
(3) D is a nilpotent inner derivation of A ivhich is in the

radical of the enveloping associative algebra of A.

Proof. Let N denote the radical of A. Let s and n denote the
projections of the vector space A — S 0 N onto S and N respectively.
Then s and n are linear mappings such that

( i i) n(tίb2) = s{tλ)n{U) + n(tλ)s{t2) + n{tx)n{U)

(iii) s(tg) = s(t)g, n{tg) = n{t)g

for t19 t29teT,ge G.

(i) and (ii) follow since N is an ideal, (iii) follows from the in-
var iance of T, S and N under G.

Now set N, = N, AT, = NU + ANl,. By [5], the N{ form a
nonincreasing sequence of ideals terminating in 0. Now Tλ— T S A —
S + Nx. Suppose that we have found automorphisms Uo = exp 0,
U1 — exp A , , C7"*_i = exp(A-i) of A satisfying (2) and (3) of Theorem
1 such that T, = TUOUX U^ fi S + N{. Then we will show that
there exists an automorphism Ui of A satisfying (2) and (3) of Theorem
1 such that T.U, £ S + Ni+1. Hence if Nk = 0, then U= U.U^" U^
will be the desired automorphism by the Campbell-Hausdorff formula.

Now T{ is a G-invariant semisimple subalgebra of A, so that (i),
(ii), (iii) hold for t19 t2, t e Tί9 Consider the space Ni \ Ni+1. We consider
this as a TVmodule by defining t*n — n t = ns(t) for ne Nif te T{.
Then by (ii), we have

(iv) n(tίb2) = nit,) t2 + t1 n{t2).
(iv) says that the map t —> n{t) is a derivation of T{ into the module
Ni I Ni+1. Hence, by [2], there exist elements x19 , xp in Ni9119 , ίp e T4

such that

(v) w(ί) = £ ((£,- ί) tj - ^ (ίί,-)) for t e T, i.e.,
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n(t) =

Using (i), we have

(vi) n(t) = β(t) Σ [Λ.,, β.(«-)] (mod JVi+1) for teT,
j=ι J J

Let g e G. Then

by Lemma 4. Hence

β(ί) Σ lR.Jβ, Rs«j)g\

( ) ^ = n(ί) (mod JV4+1) .

It follows that if we set A = -
where m is the order of G, then

(vii) w(fc) = -s(t)Di(moάNi+1) for ί e Γ<.
Now Di clearly satisfies (3) of the Theorem, since the x3g e N»

To see that Dt satisfies (2) of the Theorem, we fix a value of j . Then
Σ,e* [R*jβf R,(t3)a\ = Σ f fe^ ί/"1^^, R.it3)]g clearly commutes pointwise
with G. Hence so does Di9 which is a linear combination of such
mappings.

Finally, set [/< = exp A If t e Ti9 then tU{ = t + W{ + (t/2)D? +
. . . = s(t) + w(t) + β(t)A + w(t)A + (^/2)JD,2 + .

Now w(ί) G iVί, so that n(t)Di e Ni+1. Also, since the xl9 , xp e Nir

we have that (ί/2)A2 + e iV<+1. Therefore

t Ϊ7* Ξ s(t) + n{t) + s(ί)A (mod Ni+1)

ΞEs(t)(modNi+1) by (vii).

Hence TtUiS S + JV<+1 This completes the proof of the Theorem.

COROLLARY 1. Let A be a finite-dimensional Jordan algebra
over a field of characteristic 0. Let G be a finite group of automor-
phisms of A. Let S and T be G-invariant maximal semisimple
subalgebras of A. Then S and T are strictly conjugate via an
automorphism of A of the type described in Theorem 1.

COROLLARY 2. Let A and G be as in Corollary 1. Let T be any
G-invariant semisimple subalgebra of A. Then T is contained in a
G-invariant maximal semisimple subalgebra of A.

Corollary 1 is an immediate consequence of Theorem 1. Corollary
2 follows from the existence of a G-invariant maximal semisimple
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-subalgebra S of A. For then if U is an automorphism of A which
maps T into S, and which commutes with G pointwise, it follows that
SU"1 is a Gr-invariant maximal semisimple subalgebra of A which
contains T.

4* The alternative case*

THEOREM 2. Let A be a finite-dimensional alternative algebra
over a field F of characteristic 0. Let G be a finite group of auto-
morphisms and antiautomorphism of A. Let S be a G-invariant
maximal semisimple subalgebra of A. Let T be a semisimple
•subalgebra of A. Then there exists an automorphism U — exp D of
A such that

(1) U maps T into S,
(2) D (and hence U) commutes pointwise with G,
(3) D is a nilpotent inner derivation of A which is in the

radical of the enveloping associative algebra of A.

Proof. The proof is similar to Theorem 1. We define s and n as
in Theorem 1, but use Nt — Nι instead. We consider N* I Ni+1 as a
two-sided TΓmodule by t n = s(t)n and n t — ns(t). Then (i), (ii),
(iii) and (iv) are valid. Hence, by [9], there exist elements xlf , xp e Nι

and t19 , tp 6 Tt such that

(v) n(t) = ί Σ A ^ for t e T,

where A ^ is the inner derivation [Rtj, RXj] + [LtjJ RXj] + [L^, L-Xj] of
T* into its two-sided module Nι \ Ni+1. As in Theorem 1, we obtain

(vi) n(t) = s(ί) ΣIλ (ψ> β J(mod2V ί + 1) for *e Γ* ,

where A u ^ is the inner derivation [JKSU ,,>, RXj] + [Lβ(f ,,„ JB l̂ + [L s ( ί j ), LXj]
of A.

Now let geG. Then by Lemma 5, we have g~\Ds{tj)tX)g = Aίψ*,*^.
Hence, for any geG, s(t) Σ5=iD s i t j ) g,X j g = s(t)g-\^UDs{tj),Xj)g =
β(ίflf"1)(Σ?=i A(^),βJ)flf

 Ξ ^(ί)(modiVί+1) by (iii) and (v).
Now set A = — (1/m) Σses(Σ?=i DaUj)gtXjg)9 where m is the order

of G. Then we have
(vii) n{t) = -s(ί)A(modiV ί + 1) for t e Tt.
D{ satisfies (3) of the Theorem since the x& e N. To see that Ό{

satisfies (2) of the Theorem, we fix a value of j . Then Σ^e^ Ds{tj)g,Xjg =
Σige&Q^Dsu^.xjQ commutes pointwise with G. Hence so does Dίf which
is a linear combination of such mappings.

Now we set i7, = expA, and get that T.U, S S + Nt+1 as in
Theorem 1. Finally, we put U = U0Ur Uk__u where iSΓfc = 0, and
use the Campbell-Hausdorff formula to complete the proof of the
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Theorem.
As in the Jordan case, we have the following two corollaries of

Theorem 2.

COROLLARY 1. Let A be a finite-dimensional alternative algebra
over a field of characteristic 0. Let G be a finite group of automor-
phisms and antiautomorphisms of A. Let S and T be G-invariant
maximal semisimple subalgebras of A. Then S and T are strictly
conjugate via an automorphism of A of the type described in Theorem 2.

COROLLARY 2. Let A and G be an in Corollary 1. Let T be any
G-invariant semisimple subalgebra of A. Then T is contained in a
G-invariant maximal semisimple subalgebra of A.

5* The fully reducible case* Let A be a finite-dimensional
Jordan or alternative algebra over a field of characteristic zero. If G
is a fully reducible group of automorphisms and antiautomorphisms of
A, then it follows from [4] that G will leave invariant a maximal
semisimple subalgebra of A. The analogue of Corollaries 1 has not
been answered as yet for this case. However, if N2 — 0, then any
automorphism of the form described in the proofs of Theorems 1 and
2 which carries a G-invariant maximal semisimple subalgebra T onto
another one, S, is unique, and hence will commute pointwise with G.

For let Ux — exp D19 U2 = exp A be of this form and both map T
onto S. Then A2 = A2 = 0, so that U1 = I + Dlf U2 = I + D2. If
teT, then t^ = t + tDxe S and tU2 = t + tD2e S. Hence their
difference tD1 — tD2e Sf]N = 0, since A and A have range in N.
Hence A — A on T. Also A and A are both 0 on N since N2 — 0.
Hence A = A since A == T + N.

Now let ge G. Then g^Uβ = I + g-'D.g will map T onto S and
g^DiQ is a derivation of square zero having range in N. Hence, by
the above, g^Ό^g — Du that is, Du and hence Uu commutes pointwise
with G.
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