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|e(z) |-CLOSENESS OF APPROXIMATION

ANNETTE SINCLAIR

For a given function F'(Q) defined for @ <S, the connec-
tion between these questions is investigated: (1) For arbitrary
e > 0 (or possibly {¢;}, where ¢; corresponds to a compoment S;
of S), does there exist a function f of a specified class &
such that supges| F(Q) — f(Q)]| <e on S (or & om S)?; (2)
Given an admissible function ¢(Q), does there exist a function
fe & such that | F(Q) — f(Q) ]| = | Q)| on S? A continuous
function Q) defined on S is admissible if for each zero Qg
there is a positive integer 7z such that «Q)/(Q — Qg)"8 is
bounded from zero in a deleted neighborhood of Qg. A typical
result is: Corresponding to any F(z) analytic on a closed
bounded set S and to any admissible ¢(2), there exists a ra-
tional function 7(z) with its poles on a certain preassigned
set such that | F(z) — r(2)| =< |e() | on S.

When the sup-topology is used in approximating a given function
F' defined on a set S by a function f in a certain class &, it is re-
quired that, for arbitrary ¢ > 0, there exists fe & such that

sup | F(X) — f(X)] < e for Xe S.

In this paper the connection is investigated between existence of such
an approximating function and existence of an approximating g € % when
for any admissible function &(X) it is required | F(X) — g(X) | = | &(X) |
when Xe S.

The latter formulation has the advantage of automatically specify-
ing that, at any zero X, of &(X) on S, ¢g(X,) = F(X,) and at multiple
zeros corresponding derivatives of F and g agree, provided F' has
derivatives at these points. One interesting application, in case F' is
continuous and is well-behaved near zeros, is that in which

| F(X) - f(X) | = p| F(X)|

is requirqd, where p denotes a preassigned per cent.

Approximation in the real case in which a neighborhood N . of
F consists of those f such that &(x) < F(z) — f(x) = &(x) has been
suggested by P.C. Hammer.! If [E(z) — &(x)]/2 is an ‘‘admissible ”’
e(x), the problem reduces to the |e(w)|-closeness of approximation
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considered in this paper. For £(x) < F(x) — f(x) < &(x) if and only if

- lgz(m) - gl(xﬂ/z = F(OG) - [5’1(95) + Sz(x)]/z
— f(@) = [&(() — &(@)]/2

This paper is perhaps of most interest in connection with approxima-
tion in the complex plane. However, as the Weierstrass-factor Theorem,
Mittag-Leffler Theorem, and Runge Theorem [2] upon which the results
depend, hold also on the open Riemann surface, the theorems are stated
in abstract form for the open Riemann surface: then certain specializa-
tions to the complex plane are given in the corollaries.

As is customary, ‘‘open’’ Riemann surface denotes a noncompact
Riemann surface [1]. A point on a Riemann surface is denoted by @Q,
a point in the complex plane, in particular, by 2, and a point on the
real axis by x. For the sake of clarity the notation f(Q) is frequently
used to denote the funetion f.

When it is specified a function has poles coinciding with those
of another function, it is to be understood that they have identical
principal parts; likewise, if a function has zeros coinciding with those
of a second function, the order of the respective zeros is the same.

For reference we state:

HypotuEsis H. Suppose that S is a closed set on the open Rie-
mann surface R, Let B* consist of precisely one point of each of
those components of R — S whose closure is compact.

Theorem 1 includes the case that S is compact with no interior points.
For example, if R is the finite complex plane, S may be a bounded
closed interval on the real axis; in fact, S may be any closed bounded
set with or without interior points.

THEOREM 1. Assume Hypothesis H and suppose a function &(Q)
(£0) defined on S. Let R be an open set (which may be R) such
that SC RC R and suppose .5 is a collection of functions mero-
morphic on R, analytic on R — B*. Then these approximation re-
quirements (1) and (2) are equivalent.

(1) Corresponding to any function M(Q) analytic on S° (the
interior of S) and continuous on S, there exists ke S such that
| M(Q) — k(@) ] =1&(Q) | when Qe S.

(2) Corresponding to any function m{Q) meromorphic on S° and
continuous on S except at poles, there exists f = h + k, where ke & and
h s meromorphic on R with its only poles coinciding with those of m

on S, such that | m(Q) — Q)] = |e(Q)] on S.

Proof. Clearly, (2) includes (1). We proceed to prove (1) implies (2).
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The set of points at which m has poles on S is an isolated set
on R. Hence, according to the Mittag-Leffler partial fractions theorem
[2, p. 591; 7] there exists a function % meromorphic on R whose only
poles coincide with those of m on S and have the same principal
parts. (We note that, if m has only a finite number of poles on S
and if N is the finite complex plane, then % may be required to be a
rational function.)

The function m — h is analytic on S° and continuous on S. Hence,
by the conclusion in (1), there is a function ke &7, such that

Hm(Q) — Q)] — k(@) | = | Q) |
when Q¢ S, that is,
| m(Q) — [h(Q) + E@)]| = @) |

on S.

Thus, & + k, which is meromorphic on R and analytic on K — B*
except for poles on S coinciding with those of m, is a function f as
required.

COROLLARY 1.1. The theorem 1s true tf in
1) M(Q) s assumed analytic on S and in
(2) m(Q) s assumed meromorphic on S.

COROLLARY 1.2. For R the finite complex plane and S a com-
pact set om R, the theorem 1is true if in

(1) k is required to be a rational function and in

(2) f 1s required to be a rational function.

H.J. Landau [5] proved: If on the complex plane, S is a closed
bounded set with no interior and if there exist cutting sets of S whose
closures have arbitrarily small measure, then any function continuous
on S may be uniformly approximated on S by a rational function
whose poles lie in B* U co. It follows from Corollary 1.2 that, if m
is continuous on such a set S except for a finite number of poles,
m(z) can be uniformly approximated by a rational function whose poles
lie in B* U = and at the poles of m on S.

By the Carleman approximation theorem [3; 4] if w(«) is continuous
-on the real axis, then corresponding to any {¢;), there exists an entire
function f such that |w(x) — f(w)]| <e when 7 — 1< |z| =4, ¢ =
1,2, ---. Hence, Theorem 1 implies that, if w{2) is continuous on the
finite real axis except for a finite or a denumerable number of poles
‘with limit point at oo, then w(x) can be approximated in the above
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sense by a meromorphic function f whose poles lie on the real axis
and coincide with those of w. According to an extension by the
author [8, Theorem 3] of the Carleman Theorem, if S consists
of the union of closed circular disks S; tangent externally on the real
axis and extending to infinity and if w is analytic at interior points
of S, continuous on S, then, corresponding to any {¢;}, there exists
an entire function f such that |w(z) = f(z)| <& on S;,,1=1,2,---.
By Theorem 1, w may be allowed poles on S° provided the approxima-
ting function f is allowed coincident poles.

An analogue of the type of generalization given in Theorem 1 for
a @-set has previously been used by the author [8; 9].

A sequential ltmit point of a set S is a limit point of a set of
points chosen one from each component of S. A set S in the extended
complex plane whose components S, S,, ---, are compact and whose
set of sequential limit points B & (S) is called a Q-set [9]. We
require, in addition, that a Q-set on an open Riemann surface R be
a closed set, that is, R contains no sequential limit point of S. When
in the complex domain R is chosen as the extended plane minus B,
the set of sequential limit points of S, a @-set is closed.

A function &(Q) defined for Qe S is admissible on S if

(1) It is continuous on S;

(2) Corresponding to each of its zeros Qg on S, there is a positive
integer mg such that €(Q)/(Q — Qp)™s is bounded from zero in a neigh-
borhood NQIB c S. The smallest positive integer n, satisfying the condi-
tion in (2) is called the order of the zero of £(Q) at Q.

THEOREM 2. Assume Hypothesis H with S= U S,, where the S, are
compact and disjoint. Let R be an open set such that SC RCR. Suppose
M is any function which is analytic on S°, continuous on S. Then (1)
below implies (2); also, if S is a Q-set or a compact set, (2) implies (1), and
if K is any isolated interior subset of S, f(z)=M(z) can be required on K.

1) Corresponding to any {e,) (¢ ©f S is compact), there exists
f analytic on R — B*, meromorphic on R, such that | M(Q) — f(Q)| =Ze,
when Qe S,,n =1,2,--- (or ¢ when Qe S).

2) Corresponding to any Q) which 1s admissible on S, there
exists F analytic on R — B* and meromorphic on R such that

I M@Q) — F@)] = [e@Q)]

on S. If f in (1) can be required to be a rational function and if S
is compact, then F can be required to be a rational fuction.

Proof. We first show (1) implies (2). Admissibility requirement
(2) for &(Q) implies the zeros of ¢ on S are isolated. Hence, by the
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Weierstrass-factor Theorem [2, p. 591] there exists ¢ analytic on R
whose only zeros are the zeros Qg of ¢(Q) and are of the respective
orders ng. Let ¢, =inf|e(Q)/g(Q)| for @ on S, (or ¢ = inf|e(Q)/g(Q) |
for @ on S). Now, by Theorem 1 with ¢(@) =¢, on S, (or ¢ on S)
and (1) above, there exists a function & meromorphic on R, analytic
in R — B* except at zeros of ¢ on S, such that | M(Q)/¢9(Q) — k(Q)| = ¢,
(or ¢ on S) where defined. Then on each S, (or S)

| M(Q) — g(@KkQ) | = 9(Q) | e,

(or | g(Q)|¢e). Now g-k, which has removable singularities at the Qp,
satisfles the requirements for F.

Next we consider the converse, giving the proof for the case S is
a Q-set. Since {¢,} defines an admissible &(Q), (1) is a special case of
(2). We are to verify also that interpolation conditions can be assigned.
The Weierstrass-factor theorem yields existence of a function g analy-
tic on R such that g has zeros on K of the same orders as the inter-
polation conditions. For ¢,(Q) = ¢,[9(Q)/ max | g(Q)|] when Qe S,, and
£(Q) defined by ¢,(Q) on S,, &(Q) is admissible on S. By hypothesis
(2), there is F' analytic on R — B*, meromorphic on R, such that

| M@Q) — F@) | =|e@)]

on S. Since |¢(Q)] = ¢, on S, and &(®Q) vanishes on K, F' satisfies the
interpolation conditions, in addition to the requirements for f in the
conclusion of (1).

COROLLARY 2.1. If M s analytic on the closed bounded set S in
the finite complex plane, then, corresponding to any admissible &(z),
there extists a rational function r having its poles on B* such that
| M(z) — r(2) | < |e(z)| when ze S.

Proof. This follows from the Walsh formulation of the Runge
Theorem [10, p. 15] and Theorem 2 with # =1 and R = R defined as
the finite complex plane.

The next corollary is obtained by applying a result of Mergelyan
|6; 10, p. 36T].

COROLLARY 2.2. If inm the complex plane M is continuous on the
closed bounded set S, analytic on S° and tf S does not separate the
plane, then, corresponding to any admissible &(z), there exists a
polynomial p(z) such that | M(z) — p(z)| < | e(z) | on S.

COROLLARY 2.3. Suppose S is a Q-set (= U S,) and &(z) is admis-
sitble on S C R, the extended plane minus the set of sequential limit
points of S. Then, if M 1s analytic .on S, there exists a function
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S analytic on R — B*, meromorphic on R, such that | M(z) — f(2)| = |e(2)}
everywhere M is defined on S.

If M is meromorphic on S, there exists f analytic on R — B*,
except at poles of M on S, and meromorphic on R such that
| M(z) — f(2)| < | e(2)| everywhere M is defined on S.

Proof. The first part is an immediate consequence of Theorem 2
and a previous theorem of the author |9, Theorem 3]. The latter part
then follows from Corollary 1.1.

For &(Q) continuous on S, in order that (2) of Theorem 2 hold,
the admissibility restriction (2) on ¢ is necessary at any interior zero
of ¢ at which M is analytic. For, if | M(Q) — F(Q)| = |&(@)]| on S,
then, at a zero Qs of ¢, M(Qp) = F(Qg). If (as is the case if M is
analytic at Qg and F(Q) = M(Q)) M(Q) — F(Q) = (@ — Qs)"e 9(Q), where,
in some neighborhood NQBCS, g 18 bounded from zero, then

| M@Q) — F@) | = |e@)]

on S implies | (@ — Qp)"e/6(Q) || 9(Q)| =1 on NQﬂ, where defined. The
last inequality is possible only if the first factor is bounded on NQB,
that is, &(Q)/(Q — Qp)"s is bounded from zero on NQﬁ. At an interior
point of S, M is necessarily analytic if Hypothesis (1) of Theorem 2 is
satisfied; hence, if the conclusion of Theorem 2 is to hold, continuous
e(@) must satisfy admissibility requirement (2) at any interior zero of .

An example is next given to illustrate an application of Theorem
2 for the case n = 1. Let R=R = {2/]2| < «}; M(2z) = zsin1/z for
2 # 0, M(0) = 0; &(z) = (z — 1)°(z — 3/4)(z — £)g(?), where ¢ is any func-
tion continuous and nonvanishing on S; S = {¢/0 < = 1} U ’_,7; where
the v; are nonintersecting closed disks with centers at the zeros of
e(z). Now, by a Walsh approximation theorem [10, p. 47], M(z) can
be uniformly approximated by a polynomial, that is, (1) in Theorem 2
is satisfied with f(2) a polynomial in 2. Hence, Theorem 2 implies
that for any admissible &(z), in particular as defined above, there is a
polynomial F'(z) such that | M(z) — F(z)| =< |¢(z)| on S.

The next theorem yields degree of convergence in the O(e,(Q))-sense
by setting S=S,=S,= .-, also other special results as stated in
the corollaries.

Corresponding to given {e,}, {€.(Q)} with ¢,(Q), defined on S, and
nonvanishing on8S,,n =1, 2, ---, will be called ¢,-admissibleon S = U S,
if there exists g(Q) analytic on R such that, for each 7, ¢,(Q) = 9(Q)%.(Q)
and ¢, < inf|¢,@Q)|,n =1,2, -+, for Qe S,.

THEOREM 3. Assume Hypothesis H, with S = U, S,, where the
S, are compact, but not necessarily disjoint. Let &, be a collection
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of functions each meromorphic on an open set R, and analytic on
R, — B*, where S,C R, CcR. (B, may be R.) Suppose a certain
sequence of positive constants {e,} assigned. Then (1) below tmplies (2).

1) Corresponding to any {m,}, with m, analytic on S, continu-
ous on S,, and such that m,(Q) = m;(Q) on S,NS; (if this is mot
the null set), there exists f,, f.€ ., and M (independent of wm) such
that | m,(Q) — f.(Q) | < Me, on S,.

(2) Corresponding to any e,-admisstble {¢,(Q)}(.(Q) = g(Q)%,.(Q))
and to {m,} defined as in (1), there exists h meromorphic on RN whose
only poles lie on B* or coincide with those of m,(Q)/g(Q) on S and
there exisis f,€ .~ such that

| m,(Q) — g( @@ + [(@] | = M, |, Q)|

on S,,n=12---. If in (1) the f, can be chosen as the same func-
tion for all m, the same is true for the f, in (2). If, in (1), M 1s
independent of {m,(Q)}, then, in (2), M, = M.

Proof. By the Mittag-Leffler theorem there exists & meromorphic
on R whose only poles coincide with those of m,/g on S,, n =1, 2,-..,
Now (m,(2)/g(z)) — h(z) is analytic on S¢, continuous on S,. Hence,
by hypothesis (1), there exists f, €., such that on S,

[ M, (@)/9(Q) — M@)] — F(@) | < Me, = M, [$,(Q) | .

This yields the required result.
If in both (1) and (2) the m, are assumed analytic on S,, the
theorem remains true.

COROLLARY 3.1. Let m be analytic on the bounded closed set S
which does not separate the complex plane. Suppose {€,} is a certain
sequence of positive constants such that there exist polynomials {p,(2)}
of respective degrees n and some M such that |m(z) — p,(z) < Me,
on S. Then, for ¢,admissible {¢,(z)} with €,(2) = Py(2)¢,(2), where
Py(z) is a polynomial of degree N, there exist polynomials Py, ,(2)
of degrees N + n such that | m(z) — P,.x()| < M, |€,(2)| on S.

Proof. In the theorem set S =S, =S, = -+ and m(z) = m,(2) =
my(z) = ---, and let &, denote the set of all polynomials of degree .
Since, by the hypothesis, (1) is satisfied, the conclusion of the theorem
yields the result when it is noted that % can be chosen as an appro-
priate rational function.

ExAMPLE. If m(z) is analytic on S, |z| =1, m is analytic in a
larger region D,: | 2| < p [10, p. 79]. Fix R, 1 < R < 0, and set ¢, =
1/R*. Let ¢ be any function which is continuous and nonvanighing on
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S and let Py(z) be a polynomial of degree N, nonvanishing on 8S.
Then K can be chosen so that, for ¢,(2) defined as KP,(2)6(z)/(z* + RE"),
and ¢,(z) = Ké(2)/(z" + R"), {¢,(2)} is &,-admissible on S. There are
known to be polynomials p, of respective degrees n such that, for
some M, | m(2) — p.(2) | < M/R" on S [10, p. 79], whence, by Corollary
3.1, there exist polynomials ¢,., of degrees n + N such that

| 1M(2) — Quin(2) | = M| en(2) |

on S, for some M, independent of n.

The polynomials p,.» in Corollary 3.1 cannot be required to be of
degree less than # + N. For m analytic on S defined as in the Ex-
ample, choose Py(z) as a polynomial whose only zeros coincide with
those of m(z) on S, and define ¢,(2) = (K/R")Py(z), 1 < R < p. Sup-
pose there exist polynomials p,(z) of degree k such that

| m(z) — pu(2) | = M.K| P,(2) |/ R

on S. Without loss of generality it can be supposed the zeros of p,
coincide with those of m on S [10, p. 310]. Now N = m/P, is analy-
tic on S, except for removable singularities, and

| N(2) — px(2)/pn(2) | = Mo/R"

on S. Since p,(2)/py(2) is8 a polynomial of degree k¥ — N, this would
yield a degree of convergence stronger than maximal convergence if
k— N < n[10, p. 79].

The result stated in Corollary 2.3, which is a direct consequence
of Theorem 2, is essentially that of Corollary 3.2.

COROLLARY 3.2. Suppose m(z) is analytic on S = U S,, o Q-set
with components S,, and let B denote its set of sequential limit
points. Let R be the extended complexr plane minus B and define
B* as in Hypothesis H. Then, corresponding to any &(z) = g(2)¢(2)
with g analytic on N and ¢ bounded from zero on each S,, there
extsts f analytic on R-B*, meromorphic on R, such that

|m@E) — f()| = |e(z)] on S.

Proof. In the theorem, let R, =R, &¥ =¥ =5 = .-+ be the
set of functions analytic on R-B*, meromorphic on R, and define
m,(z) =m(z) on S,, &,(2) = ¢&(z) on S,, ¢,(2) = ¢(z) on S,, &, = inf|¢,(2) |
for ze S,. We note {¢,(2)} is ¢,-admissible. By a theorem of the author
[9], M (1) of the theorem is satisfied, with n = 1 and fi(z) = fo(z) = -+ -,
whence the theorem implies (2), yielding the required result.
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COROLLARY 3.3. Let S = U S,, where the S, are closed cir-
cular disks of radit ome-half tangent externally along the positive
real axis and ordered by increasing distance from the origin. Sup-
pose m 1is analytic on each S°, continuous on S. Then, for &(z) =
g(2)6(z), where g ts an entire function (nonvawnishing on 0S) and ¢
18 bounded from zero on each S,, there exists an entire function F
such that | m(z) — F(z)| < |e(z) ] on S.

Proof. Let R =R be the finite complex plane, B* the null set,
and & = &4 = % = --- the clags of entire functions. Define m,(2) =
miz) on S,, n=1,2, ---, and set &,(z) =& on S,. Then define
$,(2) = ¢(z) on S, and ¢, = inf | ¢,(z) | for ze S,. By a previous result
[8, Theorem 3], corresponding to any {e,}, there exists f(z) = fi(z) =
fu) = +++, fe &, such that | m(z) — f(z)| <&, on S,. Then (2) of
the theorem with F(z) = g(2)[h(z) + f(2)] yields the required result.
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