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I ε(z) I -CLOSENESS OF APPROXIMATION

ANNETTE SINCLAIR

For a given function F(Q) defined for QeS, the connec-
tion between these questions is investigated: (1) For arbitrary
ε > 0 (or possibly {©»}, where ε* corresponds to a compoment Si
of S), does there exist a function / of a specified class J ^
such that mvqes \ F(Q) - f(Q) | < e on S (or e< on S<)?5 (2)
Given an admissible function ε(Q), does there exist a function
fe ^r such that | F(Q) - f(Q) | g | ε(Q) | on S? A continuous
function ε(Q) defined on S is admissible if for each zero Qβ
there is a positive integer Wβ such that e(Q)KQ — Qβ)nβ is
bounded from zero in a deleted neighborhood of Qβ. A typical
result is: Corresponding to any F(z) analytic on a closed
bounded set S and to any admissible ε(z)9 there exists a ra-
tional function r(z) with its poles on a certain preassigned
set such that | F(z) - r(z) | g | ε(z) | on S.

When the sup-topology is used in approximating a given function
F defined on a set S by a function / in a certain class t_^r, it is re-
quired that, for arbitrary ε > 0, there exists f£J^" such that

sup I F(X) - f(X) | < ε for Xe S .

In this paper the connection is investigated between existence of such
an approximating function and existence of an approximating g e j ^ ~ when
for any admissible function ε(X) it is required | F(X) — g(X) \ ̂  | e(X) \
when Xe S.

The latter formulation has the advantage of automatically specify-
ing that, at any zero Xo of ε(X) on S, g(X0) — F{XQ) and at multiple
zeros corresponding derivatives of F and g agree, provided F has
derivatives at these points. One interesting application, in case F is
continuous and is well-behaved near zeros, is that in which

\F(X)-f(X)\^p\F(X)\

is required, where p denotes a preassigned per cent.
Approximation in the real case in which a neighborhood Nξvς2 of

F consists of those / such that ξt(x) ^ F(x) — fix) ^ ξ2{x) has been
suggested by P.C. Hammer.1 If [ | 2(B) — !i(&)]/2 is an "admissible"
ε(x), the problem reduces to the | ε(x) \ -closeness of approximation
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considered in this paper. For ξx(x) ^ F(x) — f(x) g ξ2(x) if and only if

^ F(x) - Mx) + ξ2(x)]/2

This paper is perhaps of most interest in connection with approxima-
tion in the complex plane. However, as the Weierstrass-factor Theorem,
Mittag-Leffler Theorem, and Runge Theorem [2] upon which the results
depend, hold also on the open Riemann surface, the theorems are stated
in abstract form for the open Riemann surface: then certain specializa-
tions to the complex plane are given in the corollaries.

As is customary, "open" Riemann surface denotes a noncompact
Riemann surface [1]. A point on a Riemann surface is denoted by Q,
a point in the complex plane, in particular, by z, and a point on the
real axis by x. For the sake of clarity the notation f(Q) is frequently
used to denote the function / .

When it is specified a function has poles coinciding with those
of another function, it is to be understood that they have identical
principal parts; likewise, if a function has zeros coinciding with those
of a second function, the order of the respective zeros is the same.

For reference we state:

HYPOTHESIS H. Suppose that S is a closed set on the open Rie-
mann surface ΪR, Let JB* consist of precisely one point of each of
those components of 9ΐ — S whose closure is compact.

Theorem 1 includes the case that S is compact with no interior points.
For example, if 3ΐ is the finite complex plane, S may be a bounded
closed interval on the real axis; in fact, S may be any closed bounded
set with or without interior points.

THEOREM 1. Assume Hypothesis H and suppose a function e(Q)
(^0) defined on S. Let R be an open set (which may be 9ΐ) such
that SaR(z?fϊ and suppose <9* is a collection of functions mero-
morphic on R, analytic on R — B*. Then these approximation re-
quirements (1) and (2) are equivalent.

(1) Corresponding to any function M(Q) analytic on S° (the
interior of S) and continuous on S, there exists keS^ such that

M(Q) - k(Q) I ̂  I e(Q) | when QeS.
(2) Corresponding to any function m(Q) meromorphic on S° and

continuous on S except at poles, there exists f—h + k, where k e &* and
h is meromorphic on 3ΐ with its only poles coinciding with those of m
on S, such that \ m(Q) — f(Q) \ ̂  | e(Q) \ on S.

Proof. Clearly, (2) includes (1). We proceed to prove (1) implies (2).
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The set of points at which m has poles on S is an isolated set
on 9ΐ. Hence, according to the Mittag-Leffler partial fractions theorem
[2, p. 591; 7] there exists a function h meromorphic on 3ΐ whose only
poles coincide with those of m on S and have the same principal
parts. (We note that, if m has only a finite number of poles on S
and if 9ΐ is the finite complex plane, then h may be required to be a
rational function.)

The function m — h is analytic on S° and continuous on S. Hence,
by the conclusion in (1), there is a function keS^9 such that

I [m(Q) - h(Q)] - k(Q) \ ^ \ ε(Q) \

when Q e S, that is,

I m(Q) - [h(Q) + k(Q)] I ̂  I ε(Q) \

on S.
Thus, h -j- k, which is meromorphic on R and analytic on R — B*

except for poles on S coinciding with those of m, is a function / as
required.

COROLLARY 1.1. The theorem is true if in
(1) M(Q) is assumed analytic on S and in
(2) m(Q) is assumed meromorphic on S.

COROLLARY 1.2. For 3ΐ the finite complex plane and S a com-
pact set on 3ΐ, the theorem is true if in

(1) k is required to be a rational function and in
(2) / is required to he a rational function.

H. J. Landau [51 proved: If on the complex plane, S is a closed
bounded set with no interior and if there exist cutting sets of S whose
closures have arbitrarily small measure, then any function continuous
on S may be uniformly approximated on S by a rational function
whose poles lie in B* (j c o It follows from Corollary 1.2 that, if m
is continuous on such a set S except for a finite number of poles,
m(z) can be uniformly approximated by a rational function whose poles
lie in B* U °° and at the poles of m on S.

By the Carleman approximation theorem [3; 4] if w(x) is continuous
on the real axis, then corresponding to any {ε ,̂ there exists an entire
function / such that | w(x) — f(x) | < ei when i — 1 < \x\ ^ ί, i —
1, 2, •••. Hence, Theorem 1 implies that, if ιv(x) is continuous on the
finite real axis except for a finite or a denumerable number of poles

limit point at co? then w(x) can be approximated in the above
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sense by a meromorphic function / whose poles lie on the real axis
and coincide with those of w. According to an extension by the
author [8, Theorem 3] of the Carleman Theorem, if S consists
of the union of closed circular disks S{ tangent externally on the real
axis and extending to infinity and if w is analytic at interior points
of S, continuous on S, then, corresponding to any {εj, there exists
an entire function / such that | w(z) = f(z) | < ε̂  on Si9 i = 1, 2, .
By Theorem 1, w may be allowed poles on S° provided the approxima-
ting function / is allowed coincident poles.

An analogue of the type of generalization given in Theorem 1 for
a Q-set has previously been used by the author [8; 9].

A sequential limit point of a set S is a limit point of a set of
points chosen one from each component of S. A set S in the extended
complex plane whose components Su S29 , are compact and whose
set of sequential limit points Bc^(S) is called a Q-set [9]. We
require, in addition, that a Q-set on an open Riemann surface 3ΐ be
a closed set, that is, 9ΐ contains no sequential limit point of S. When
in the complex domain 9ΐ is chosen as the extended plane minus B,
the set of sequential limit points of S, a Q-set is closed.

A function ε(Q) defined for Q e S is admissible on S if
(1) It is continuous on S;
(2) Corresponding to each of its zeros Qβ on S, there is a positive

integer nβ such that e(Q)/(Q — Qβ)
m& is bounded from zero in a neigh-

borhood NQ (Z S. The smallest positive integer nβ satisfying the condi-
tion in (2) is called the order of the zero of ε(Q) at Qβ.

THEOREM 2. Assume Hypothesis H with S — U Sn9 where the Sn are
compact and disjoint. Let R be an open set such that Sci2c3ΐ. Suppose
M is any function which is analytic on S°, continuous on S. Then (1)
below implies (2); also, if S is a Q-set or a compact set, (2) implies (1), and
if K is any isolated interior subset of S, f(z)=M(z) can be required on K.

(1) Corresponding to any {ej (ε if S is compact), there exists
f analytic on R — B*, meromorphic on R, such that \ M(Q) — f(Q) \ ^εn

when QeSft,w = l,2, ••• (or ε when Qe S).
(2) Corresponding to any ε(Q) which is admissible on S, there

exists F analytic on R — B* and meromorphic on R such that

I M(Q) - F(Q) I ^ I ε(Q) 1

on S. Iff in (1) can be required to be a rational function and if S
is compact, then F can be required to be a rational fuction.

Proof. We first show (1) implies (2). Admissibility requirement
(2) for ε(Q) implies the zeros of ε on S are isolated. Hence, by the
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Weierstrass-factor Theorem [2, p. 591] there exists g analytic on 3ΐ
whose only zeros are the zeros Qβ of ε(Q) and are of the respective
orders nβ. Let εn = inf | ε(Q)/g(Q) | for Q on Sn (or ε = inf | ε(Q)/g(Q) \
for Q on S). Now, by Theorem 1 with ε(Q) = εn on Sn (or ε on S)
and (1) above, there exists a function k meromorphic on R, analytic
in R - 5* except at zeros of g on S, such that | M(Q)/g(Q) - A (Q) | ^ en

(or e o n S ) where defined. Then on each Sn (or S)

I M(Q) - g(Q)k(Q) I ^ | g(Q) \ en

(or I g(Q) \ ε). Now #•&, which has removable singularities at the Qβ,
satisfies the requirements for F.

Next we consider the converse, giving the proof for the case S is
a Q-set. Since {εn} defines an admissible ε(Q), (1) is a special case of
(2). We are to verify also that interpolation conditions can be assigned.
The Weierstrass-f actor theorem yields existence of a function g analy-
tic on 3ΐ such that g has zeros on K of the same orders as the inter-
polation conditions. For εn(Q) — εn[g(Q)J max | g{Q) |] when Q e Sn, and
ε(Q) defined by εn(Q) on Sn9 ε(Q) is admissible on S. By hypothesis
(2), there is F analytic on R — B*, meromorphic on R, such that

I M(Q) - F(Q) I ^ I ε(Q) |

on S. Since | ε(Q) \ ̂  εn on Sn and ε(Q) vanishes on K, F satisfies the
interpolation conditions, in addition to the requirements for / in the
conclusion of (1).

COROLLARY 2.1. If M is analytic on the closed bounded set S in
the finite complex plane, then, corresponding to any admissible ε(z),
there exists a rational function r having its poles on B* such that
I M(z) — r{z) I <Ξ I ε(z) \ when ze S.

Proof. This follows from the Walsh formulation of the Runge
Theorem [10, p. 15] and Theorem 2 with n — 1 and R — 3ΐ defined as
the finite complex plane.

The next corollary is obtained by applying a result of Mergelyan
[6; 10, p. 367].

COROLLARY 2.2. If in the complex plane M is continuous on the
closed bounded set S, analytic on S°, and if S does not separate the
plane, then, corresponding to any admissible ε(z), there exists a
polynomial p(z) such that \ M(z) — p(z) \ ̂  | ε(z) \ on S.

COROLLARY 2.3. Suppose S is a Q-set ( = U S J and ε(z) is admis-
sible on S c 3ΐ, the extended plane minus the set of sequential limit
points of S. Then, if M is analytic on S, there exists a function
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/ analytic on 3ΐ — £*, meromorphic on 3ΐ, such that \ M(z) —f(z) | ^ | e(z) |
everywhere M is defined on S.

If M is meromorphic on S, there exists f analytic on R — B*f

except at poles of M on S, and meromorphic on R such that
1 M{z) — f(z)\ S I ε(z) I everywhere M is defined on S.

Proof. The first part is an immediate consequence of Theorem 2
and a previous theorem of the author [9, Theorem 3], The latter part
then follows from Corollary 1.1.

For e(Q) continuous on S, in order that (2) of Theorem 2 hold,
the admissibility restriction (2) on ε is necessary at any interior zero*
of ε at which M is analytic. For, if | M{Q) - F(Q) \ S \ e(Q) | on S9

then, at a zero Qβ of ε, M(Qβ) = F(Qβ). If (as is the case if M is
analytic at Qβ and F(Q) Ξ£ M(Q)) M(Q) - F(Q) = (Q - Qβ)

nβg(Q), where,
in some neighborhood NQ a S, g is bounded from zero, then

I M(Q) - F(Q) I ^ I 6(Q) I

on S implies | (Q - Qβ)
nβj'e(Q) \ \ g(Q) | ^ 1 on NQβ, where defined. The

last inequality is possible only if the first factor is bounded on NQ ,
that is, ε(Q)/(Q — Qβ)

nβ is bounded from zero on NQ . At an interior
point of S, M is necessarily analytic if Hypothesis (1) of Theorem 2 is
satisfied; hence, if the conclusion of Theorem 2 is to hold, continuous
ε(Q) must satisfy admissibility requirement (2) at any interior zero of ε.

An example is next given to illustrate an application of Theorem
2 for the case n = 1. Let R = 3ΐ = {z/1 z \ < co}; M(z) = z sin 1/z for
z Φ 0, ΛΓ(0) = 0; e(z) = (z - lf(z - 3/4)(« - i)g(z), where g is any func-
tion continuous and nonvanishing on S; S = {x/0 S % S 1} U *=i7, where
the jj are nonintersecting closed disks with centers at the zeros of
ε(z). Now, by a Walsh approximation theorem [10, p. 47], M(z) can
be uniformly approximated by a polynomial, that is, (1) in Theorem 2
is satisfied with f(z) a polynomial in z. Hence, Theorem 2 implies
that for any admissible e(z), in particular as defined above, there is a
polynomial F(z) such that | M(z) — F(z) \ ̂  | ε(z) \ on S.

The next theorem yields degree of convergence in the O(ε%(Q))-sense
by setting S = S1 — S2= , also other special results as stated in
the corollaries.

Corresponding to given {εj, {en(Q)} with eΛ(Q), defined on Sn and
nonvanishing on dSn, n = l,2, , will be called εw-admissible on S = U Sn

if there exists g(Q) analytic on 3ΐ such that, for each n, εn(Q) — g(Q)Φn(Q)
and ε , ^ inf | φn(Q) |, n = 1,2, •••, for Q G S % .

THEOREM 3. Assume Hypothesis H, with S = UΓ=i Sn9 where the
Sn are compact, but not necessarily disjoint. Let &n be a collection
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of functions each meromorphic on an open set Rn and analytic on
Rn — B*, where SndRnc:<3t. {Rn may be 9ΐ.) Suppose a certain
sequence of positive constants {εj assigned. Then (1) below implies (2).

(1) Corresponding to any {mn}, with mn analytic on SI, continu-
ous on Sn, and such that mn(Q) — m5(Q) on Sn Π Sj (if this is not
the null set), there exists fn,fn£<9*n, and M (independent of n) such
that I mn(Q) - fn(Q) I < Mεn on Sn.

(2) Corresponding to any εn-admissible {sn(Q)}(en(Q) = g(Q)Φn(Q))
and to {mn} defined as in (1), there exists h meromorphic on 9ΐ whose
only poles lie on B* or coincide with those of mn(Q)/g(Q) on S and
there exists fn e S^n such that

I mn(Q) - g(Q)[h(Q) + fn(Q)] \^M,\ en(Q) \

on Sn, n — 1, 2, . If in (1) the fn can be chosen as the same func-
tion for all n, the same is true for the fn in (2)β If, in (1), M is
independent of {mn(Q)}, then, in (2), M1 = M.

Proof. By the Mittag-Leffler theorem there exists h meromorphic
on 3Ϊ whose only poles coincide with those of mjg on Sft, % = 1,2, .
Now (mn(z)lg(z)) — h(z) is analytic on SI, continuous on Sn. Hence,
by hypothesis (1), there exists fn e S^n such that on Sn

I [mn(Q)l9(Q) - HQ)] - fn(Q) I < Mxen ^ M, \ Φn(Q) \ .

This yields the required result.
If in both (1) and (2) the mn are assumed analytic on Sn, the

theorem remains true.

COROLLARY 3.1. Let m be analytic on the bounded closed set S
which does not separate the complex plane. Suppose {en} is a certain
sequence of positive constants such that there exist polynomials {pn(z)}
of respective degrees n and some M such that \ m(z) — pn(z) < Men

on S. Then, for en-admissible {en(z)} with en(z) — PN(z)φn(z), where
PN(z) is a polynomial of [degree N, there exist polynomials PN+n(z)
of degrees N + n such that \ m(z) — Pn+N(z) \ ̂  M1 \ en(z) | on S.

Proof. In the theorem set S — Sx = S2 = « and m(z) — mx(z) —
m2(z) = •••, and let 6^n denote the set of all polynomials of degree n.
Since, by the hypothesis, (1) is satisfied, the conclusion of the theorem
yields the result when it is noted that h can be chosen as an appro-
priate rational function.

EXAMPLE. If m(z) is analytic on S, \ z \ ̂  1, m is analytic in a
larger region Dp: \ z \ < p [10, p. 79]. Fix R, 1 < R < p, and set εn =
1/Rn. Let Φ be any function which is continuous and nonvanishing on
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S and let PN(z) be a polynomial of degree N, nonvanishing on dS.
Then K can be chosen so that, for εn(z) defined as KPN(z)Φ(z)/(zn + Rn),
and Φn(z) = Kφ(z)/(zn + Rn), {sn(z}} is ε^-admissible on S. There are
known to be polynomials pn of respective degrees n such that, for
some M, \ m(z) — pn(z) \ < M/Rn on S [10, p. 79], whence, by Corollary
3βl, there exist polynomials qn+N of degrees n + N such that

I m(z) - qn+N(z) I S M, \ en(z)

on S, for some Mx independent of n.
The polynomials pn+N in Corollary 3.1 cannot be required to be of

degree less than n + N. For m analytic on S defined as in the Ex-
ample, choose PN(z) as a polynomial whose only zeros coincide with
those of m(z) on S, and define en(z) = (K/Rn)PN(z), 1 < R < p. Sup-
pose there exist polynomials pk(z) of degree k such that

\m(z)-pk(z)\^M1K\Pn(z) I/R-

on S. Without loss of generality it can be supposed the zeros of pk

coincide with those of m on S [10, p. 310]. Now N = mjPN is analy-

tic on S, except for removable singularities, and

I N(z) - pκ(z)lpN(z) I S MJRn

on S. Since Pk(z)/pAz) is a polynomial of degree k — N, this would
yield a degree of convergence stronger than maximal convergence if
k - N <n [10, p. 79].

The result stated in Corollary 2.3, which is a direct consequence
of Theorem 2, is essentially that of Corollary 3.2.

COROLLARY 3.2. Suppose m(z) is analytic on S — U Snf a Q-set
with components Sn, and let B denote its set of sequential limit
points. Let 9t be the extended complex plane minus B and define
B* as in Hypothesis H. Then, corresponding to any ε{z) = g(z)Φ(z)
with g analytic on 3ΐ and φ bounded from zero on each Sn, there
exists f analytic on 3ΐ~B*, meromorphic on 3ΐ, such that

I m(z) - f(z) I <£ I e(z) I on S .

Proof. In the theorem, let Rn = 3ϊ, S? = &[ = S^ = be the
set of functions analytic on 3ΐ-i?*, meromorphic on 9ΐ, and define
mn(z) = m(z) on Snf εn(z) = ε(z) on SΛ, ̂ n(«) = Φ(z) on S n , επ = inf | φn(z) \

for z e Sn. We note {εn(z)} is ε^-admissible. By a theorem of the author
[9], M (1) of the theorem is satisfied, with n = 1 and /^z) = /2(z) = ,
whence the theorem implies (2), yielding the required result.
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COROLLARY 3.3. Let S = (J~=i Snf where the Sn are closed cir-
cular disks of radii one-half tangent externally along the positive
real axis and ordered by increasing distance from the origin. Sup-
pose m is analytic on each S°n, continuous on S. Then, for ε(z) =
g{z)Φ(z), where g is an entire function (nonvanishing on OS) and φ
is bounded from zero on each Sn, there exists an entire function F
such that I m(z) — F(z) | ^ | ε(z) | on S.

Proof. Let R — 3ΐ be the finite complex plane, B* the null set,
and Sf — &[ — SΊ — the class of entire functions. Define mn(z) =
m{z) on Sn, n = 1, 2, •••, and set en(z) = e(z) on Sn. Then define
ΦΛZ) ~ Φ(z) o n Sn and εn = inf | Φn{z) \ for ze Sn. By a previous result
[8, Theorem 3], corresponding to any {εn}, there exists f(z) — ft(z) —
f2(z) = . . , fe £f, such that | m(z) - f(z) \ < εn on Sn. Then (2) of
the theorem with F(z) = g(z)[h(z) + f(z)] yields the required result.
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