$|\varepsilon(z)|$ -CLOSENESS OF APPROXIMATION

ANNETTE SINCLAIR

For a given function F(Q) defined for $Q \in S$, the connection between these questions is investigated: (1) For arbitrary $\varepsilon > 0$ (or possibly $\{\varepsilon_i\}$, where ε_i corresponds to a component S_i of S), does there exist a function f of a specified class \mathscr{F} such that $\sup_{Q \in S} |F(Q) - f(Q)| < \varepsilon$ on S (or ε_i on S_i)?; (2) Given an admissible function $\varepsilon(Q)$, does there exist a function $f \in \mathscr{F}$ such that $|F(Q) - f(Q)| \le |\varepsilon(Q)|$ on S? A continuous function $\varepsilon(Q)$ defined on S is admissible if for each zero Q_β there is a positive integer n_β such that $\varepsilon(Q)/(Q - Q_\beta)^{n_\beta}$ is bounded from zero in a deleted neighborhood of Q_β . A typical result is: Corresponding to any F(z) analytic on a closed bounded set S and to any admissible $\varepsilon(z)$, there exists a rational function r(z) with its poles on a certain preassigned set such that $|F(z) - r(z)| \le |\varepsilon(z)|$ on S.

When the sup-topology is used in approximating a given function F defined on a set S by a function f in a certain class \mathcal{F} , it is required that, for arbitrary $\varepsilon > 0$, there exists $f \in \mathcal{F}$ such that

$$\sup |F(X) - f(X)| < \varepsilon$$
 for $X \in S$.

In this paper the connection is investigated between existence of such an approximating function and existence of an approximating $g \in \mathscr{F}$ when for any admissible function $\varepsilon(X)$ it is required $|F(X) - g(X)| \leq |\varepsilon(X)|$ when $X \in S$.

The latter formulation has the advantage of automatically specifying that, at any zero X_0 of $\varepsilon(X)$ on S, $g(X_0) = F(X_0)$ and at multiple zeros corresponding derivatives of F and g agree, provided F has derivatives at these points. One interesting application, in case F is continuous and is well-behaved near zeros, is that in which

$$|F(X) - f(X)| \le p |F(X)|$$

is required, where p denotes a preassigned per cent.

Approximation in the real case in which a neighborhood $N_{\varepsilon_1,\varepsilon_2}$ of F consists of those f such that $\xi_1(x) \leq F(x) - f(x) \leq \xi_2(x)$ has been suggested by P.C. Hammer.¹ If $[\xi_2(x) - \xi_1(x)]/2$ is an "admissible" $\varepsilon(x)$, the problem reduces to the $|\varepsilon(x)|$ -closeness of approximation

Received March 11, 1964 and in revised form August 10, 1964. This work was supported in part by a National Science Foundation Science Faculty Fellowship, 64016. This paper was written while the author was on sabbatical leave of absence at Stanford University.

¹ S.I.A.M. Conference on Approximation Theory, Gatlinburg, Tennessee, 1963.

considered in this paper. For $\xi_1(x) \leq F(x) - f(x) \leq \xi_2(x)$ if and only if

$$egin{aligned} &- [\xi_2(x) - \xi_1(x)]/2 \leq F(x) - [\xi_1(x) + \xi_2(x)]/2 \ &- f(x) \leq [\xi_2((x) - \xi_1(x)]/2 \end{aligned}$$

This paper is perhaps of most interest in connection with approximation in the complex plane. However, as the Weierstrass-factor Theorem, Mittag-Leffler Theorem, and Runge Theorem [2] upon which the results depend, hold also on the open Riemann surface, the theorems are stated in abstract form for the open Riemann surface: then certain specializations to the complex plane are given in the corollaries.

As is customary, "open" Riemann surface denotes a noncompact Riemann surface [1]. A point on a Riemann surface is denoted by Q, a point in the complex plane, in particular, by z, and a point on the real axis by x. For the sake of clarity the notation f(Q) is frequently used to denote the function f.

When it is specified a function has *poles coinciding with* those of another function, it is to be understood that they have identical principal parts; likewise, if a function has *zeros coinciding with* those of a second function, the order of the respective zeros is the same.

For reference we state:

HYPOTHESIS H. Suppose that S is a closed set on the open Riemann surface \Re , Let B^* consist of precisely one point of each of those components of $\Re - S$ whose closure is compact.

Theorem 1 includes the case that S is compact with no interior points. For example, if \Re is the finite complex plane, S may be a bounded closed interval on the real axis; in fact, S may be any closed bounded set with or without interior points.

THEOREM 1. Assume Hypothesis H and suppose a function $\varepsilon(Q)$ ($\equiv 0$) defined on S. Let R be an open set (which may be \Re) such that $S \subset R \subset \Re$ and suppose \mathscr{S} is a collection of functions meromorphic on R, analytic on $R - B^*$. Then these approximation requirements (1) and (2) are equivalent.

(1) Corresponding to any function M(Q) analytic on S° (the interior of S) and continuous on S, there exists $k \in \mathscr{S}$ such that $|M(Q) - k(Q)| \leq |\varepsilon(Q)|$ when $Q \in S$.

(2) Corresponding to any function m(Q) meromorphic on S° and continuous on S except at poles, there exists f = h + k, where $k \in S$ and h is meromorphic on \Re with its only poles coinciding with those of m on S, such that $|m(Q) - f(Q)| \leq |\varepsilon(Q)|$ on S.

Proof. Clearly, (2) includes (1). We proceed to prove (1) implies (2).

The set of points at which m has poles on S is an isolated set on \Re . Hence, according to the Mittag-Leffler partial fractions theorem [2, p. 591; 7] there exists a function h meromorphic on \Re whose only poles coincide with those of m on S and have the same principal parts. (We note that, if m has only a finite number of poles on Sand if \Re is the finite complex plane, then h may be required to be a rational function.)

The function m - h is analytic on S° and continuous on S. Hence, by the conclusion in (1), there is a function $k \in S$, such that

$$|[m(Q) - h(Q)] - k(Q)| \leq |\varepsilon(Q)|$$

when $Q \in S$, that is,

$$|m(Q) - [h(Q) + k(Q)]| \leq |\varepsilon(Q)|$$

on S.

Thus, h + k, which is meromorphic on R and analytic on $R - B^*$ except for poles on S coinciding with those of m, is a function f as required.

COROLLARY 1.1. The theorem is true if in (1) M(Q) is assumed analytic on S and in (2) m(Q) is assumed meromorphic on S.

COROLLARY 1.2. For \Re the finite complex plane and S a compact set on \Re , the theorem is true if in

(1) k is required to be a rational function and in

(2) f is required to be a rational function.

H.J. Landau [5] proved: If on the complex plane, S is a closed bounded set with no interior and if there exist cutting sets of S whose closures have arbitrarily small measure, then any function continuous on S may be uniformly approximated on S by a rational function whose poles lie in $B^* \cup \infty$. It follows from Corollary 1.2 that, if mis continuous on such a set S except for a finite number of poles, m(z) can be uniformly approximated by a rational function whose poles lie in $B^* \cup \infty$ and at the poles of m on S.

By the Carleman approximation theorem [3; 4] if w(x) is continuous on the real axis, then corresponding to any $\{\varepsilon_i\}$, there exists an entire function f such that $|w(x) - f(x)| < \varepsilon_i$ when $i - 1 < |x| \le i$, i =1, 2, \cdots . Hence, Theorem 1 implies that, if w(x) is continuous on the finite real axis except for a finite or a denumerable number of poles with limit point at ∞ , then w(x) can be approximated in the above sense by a meromorphic function f whose poles lie on the real axis and coincide with those of w. According to an extension by the author [8, Theorem 3] of the Carleman Theorem, if S consists of the union of closed circular disks S_i tangent externally on the real axis and extending to infinity and if w is analytic at interior points of S, continuous on S, then, corresponding to any $\{\varepsilon_i\}$, there exists an entire function f such that $|w(z) = f(z)| < \varepsilon_i$ on $S_i, i = 1, 2, \cdots$. By Theorem 1, w may be allowed poles on S^0 provided the approximating function f is allowed coincident poles.

An analogue of the type of generalization given in Theorem 1 for a Q-set has previously been used by the author [8; 9].

A sequential limit point of a set S is a limit point of a set of points chosen one from each component of S. A set S in the extended complex plane whose components S_1, S_2, \dots , are compact and whose set of sequential limit points $B \subset \mathscr{C}(S)$ is called a Q-set [9]. We require, in addition, that a Q-set on an open Riemann surface \Re be a closed set, that is, \Re contains no sequential limit point of S. When in the complex domain \Re is chosen as the extended plane minus B, the set of sequential limit points of S, a Q-set is closed.

A function $\varepsilon(Q)$ defined for $Q \in S$ is admissible on S if

(1) It is continuous on S;

(2) Corresponding to each of its zeros Q_{β} on S, there is a positive integer n_{β} such that $\varepsilon(Q)/(Q - Q_{\beta})^{m_{\beta}}$ is bounded from zero in a neighborhood $N_{q_{\beta}} \subset S$. The smallest positive integer n_{β} satisfying the condition in (2) is called the *order of* the zero of $\varepsilon(Q)$ at Q_{β} .

THEOREM 2. Assume Hypothesis H with $S = \bigcup S_n$, where the S_n are compact and disjoint. Let R be an open set such that $S \subseteq R \subseteq \Re$. Suppose M is any function which is analytic on S^0 , continuous on S. Then (1) below implies (2); also, if S is a Q-set or a compact set, (2) implies (1), and if K is any isolated interior subset of S, f(z) = M(z) can be required on K.

(1) Corresponding to any $\{\varepsilon_n\}$ (ε if S is compact), there exists f analytic on $R - B^*$, meromorphic on R, such that $|M(Q) - f(Q)| \leq \varepsilon_n$ when $Q \in S_n$, $n = 1, 2, \cdots$ (or ε when $Q \in S$).

(2) Corresponding to any $\varepsilon(Q)$ which is admissible on S, there exists F analytic on $R - B^*$ and meromorphic on R such that

$$|M(Q) - F(Q)| \leq |\varepsilon(Q)|$$

on S. If f in (1) can be required to be a rational function and if S is compact, then F can be required to be a rational fuction.

Proof. We first show (1) implies (2). Admissibility requirement (2) for $\varepsilon(Q)$ implies the zeros of ε on S are isolated. Hence, by the

Weierstrass-factor Theorem [2, p. 591] there exists g analytic on \Re whose only zeros are the zeros Q_{β} of $\varepsilon(Q)$ and are of the respective orders n_{β} . Let $\varepsilon_n = \inf |\varepsilon(Q)/g(Q)|$ for Q on S_n (or $\varepsilon = \inf |\varepsilon(Q)/g(Q)|$ for Q on S). Now, by Theorem 1 with $\varepsilon(Q) = \varepsilon_n$ on S_n (or ε on S) and (1) above, there exists a function k meromorphic on R, analytic in $R - B^*$ except at zeros of g on S, such that $|M(Q)/g(Q) - k(Q)| \le \varepsilon_n$ (or ε on S) where defined. Then on each S_n (or S)

$$\mid M(Q) - g(Q)k(Q) \mid \leq \mid g(Q) \mid \varepsilon_n$$

(or $|g(Q)|\varepsilon$). Now $g \cdot k$, which has removable singularities at the Q_{β} , satisfies the requirements for F.

Next we consider the converse, giving the proof for the case S is a Q-set. Since $\{\varepsilon_n\}$ defines an admissible $\varepsilon(Q)$, (1) is a special case of (2). We are to verify also that interpolation conditions can be assigned. The Weierstrass-factor theorem yields existence of a function g analytic on \Re such that g has zeros on K of the same orders as the interpolation conditions. For $\varepsilon_n(Q) = \varepsilon_n[g(Q)/\max | g(Q) |]$ when $Q \in S_n$, and $\varepsilon(Q)$ defined by $\varepsilon_n(Q)$ on S_n , $\varepsilon(Q)$ is admissible on S. By hypothesis (2), there is F analytic on $R - B^*$, meromorphic on R, such that

$$|M(Q) - F(Q)| \leq |\varepsilon(Q)|$$

on S. Since $|\varepsilon(Q)| \leq \varepsilon_n$ on S_n and $\varepsilon(Q)$ vanishes on K, F satisfies the interpolation conditions, in addition to the requirements for f in the conclusion of (1).

COROLLARY 2.1. If M is analytic on the closed bounded set S in the finite complex plane, then, corresponding to any admissible $\varepsilon(z)$, there exists a rational function r having its poles on B^* such that $|M(z) - r(z)| \leq |\varepsilon(z)|$ when $z \in S$.

Proof. This follows from the Walsh formulation of the Runge Theorem [10, p. 15] and Theorem 2 with n = 1 and $R = \Re$ defined as the finite complex plane.

The next corollary is obtained by applying a result of Mergelyan [6; 10, p. 367].

COROLLARY 2.2. If in the complex plane M is continuous on the closed bounded set S, analytic on S° , and if S does not separate the plane, then, corresponding to any admissible $\varepsilon(z)$, there exists a polynomial p(z) such that $|M(z) - p(z)| \leq |\varepsilon(z)|$ on S.

COROLLARY 2.3. Suppose S is a Q-set $(= \cup S_n)$ and $\varepsilon(z)$ is admissible on $S \subset \Re$, the extended plane minus the set of sequential limit points of S. Then, if M is analytic on S, there exists a function

f analytic on $\Re - B^*$, meromorphic on \Re , such that $|M(z) - f(z)| \leq |\varepsilon(z)|$ everywhere M is defined on S.

If M is meromorphic on S, there exists f analytic on $R - B^*$, except at poles of M on S, and meromorphic on R such that $|M(z) - f(z)| \leq |\varepsilon(z)|$ everywhere M is defined on S.

Proof. The first part is an immediate consequence of Theorem 2 and a previous theorem of the author [9, Theorem 3]. The latter part then follows from Corollary 1.1.

For $\varepsilon(Q)$ continuous on S, in order that (2) of Theorem 2 hold, the admissibility restriction (2) on ε is necessary at any interior zero of ε at which M is analytic. For, if $|M(Q) - F(Q)| \leq |\varepsilon(Q)|$ on S, then, at a zero Q_{β} of ε , $M(Q_{\beta}) = F(Q_{\beta})$. If (as is the case if M is analytic at Q_{β} and $F(Q) \neq M(Q)$) $M(Q) - F(Q) = (Q - Q_{\beta})^{n_{\beta}} g(Q)$, where, in some neighborhood $N_{Q_{\beta}} \subset S$, g is bounded from zero, then

$$|M(Q) - F(Q)| \leq |\varepsilon(Q)|$$

on S implies $|(Q - Q_{\beta})^{n_{\beta}} \varepsilon(Q)| |g(Q)| \leq 1$ on $N_{q_{\beta}}$, where defined. The last inequality is possible only if the first factor is bounded on $N_{q_{\beta}}$, that is, $\varepsilon(Q)/(Q - Q_{\beta})^{n_{\beta}}$ is bounded from zero on $N_{q_{\beta}}$. At an interior point of S, M is necessarily analytic if Hypothesis (1) of Theorem 2 is satisfied; hence, if the conclusion of Theorem 2 is to hold, continuous $\varepsilon(Q)$ must satisfy admissibility requirement (2) at any interior zero of ε .

An example is next given to illustrate an application of Theorem 2 for the case n = 1. Let $R = \Re = \{z \mid z \mid < \infty\}$; $M(z) = z \sin 1/z$ for $z \neq 0$, M(0) = 0; $\varepsilon(z) = (z-1)^5(z-3/4)(z-\frac{1}{2})g(z)$, where g is any function continuous and nonvanishing on S; $S = \{x/0 \leq x \leq 1\} \cup_{j=1}^3 \gamma_j$ where the γ_j are nonintersecting closed disks with centers at the zeros of $\varepsilon(z)$. Now, by a Walsh approximation theorem [10, p. 47], M(z) can be uniformly approximated by a polynomial, that is, (1) in Theorem 2 is satisfied with f(z) a polynomial in z. Hence, Theorem 2 implies that for any admissible $\varepsilon(z)$, in particular as defined above, there is a polynomial F(z) such that $|M(z) - F(z)| \leq |\varepsilon(z)|$ on S.

The next theorem yields degree of convergence in the $O(\varepsilon_n(Q))$ -sense by setting $S = S_1 = S_2 = \cdots$, also other special results as stated in the corollaries.

Corresponding to given $\{\varepsilon_n\}, \{\varepsilon_n(Q)\}\$ with $\varepsilon_n(Q)$, defined on S_n and nonvanishing on $\partial S_n, n = 1, 2, \cdots$, will be called ε_n -admissible on $S = \bigcup S_n$ if there exists g(Q) analytic on \Re such that, for each $n, \varepsilon_n(Q) = g(Q)\phi_n(Q)$ and $\varepsilon_n \leq \inf |\phi_n(Q)|, n = 1, 2, \cdots$, for $Q \in S_n$.

THEOREM 3. Assume Hypothesis H, with $S = \bigcup_{n=1}^{\infty} S_n$, where the S_n are compact, but not necessarily disjoint. Let \mathcal{S}_n be a collection

of functions each meromorphic on an open set R_n and analytic on $R_n - B^*$, where $S_n \subset R_n \subset \Re$. (R_n may be \Re .) Suppose a certain sequence of positive constants { ε_n } assigned. Then (1) below implies (2).

(1) Corresponding to any $\{m_n\}$, with m_n analytic on S_n^0 , continuous on S_n , and such that $m_n(Q) = m_j(Q)$ on $S_n \cap S_j$ (if this is not the null set), there exists $f_n, f_n \in \mathcal{S}_n$, and M (independent of n) such that $|m_n(Q) - f_n(Q)| < M\varepsilon_n$ on S_n .

(2) Corresponding to any ε_n -admissible $\{\varepsilon_n(Q)\}(\varepsilon_n(Q) = g(Q)\phi_n(Q))$ and to $\{m_n\}$ defined as in (1), there exists h meromorphic on \Re whose only poles lie on B^* or coincide with those of $m_n(Q)/g(Q)$ on S and there exists $f_n \in \mathcal{S}_n$ such that

$$|m_n(Q) - g(Q)[h(Q) + f_n(Q)]| \le M_1 |arepsilon_n(Q)|$$

on S_n , $n = 1, 2, \cdots$. If in (1) the f_n can be chosen as the same function for all n, the same is true for the f_n in (2). If, in (1), M is independent of $\{m_n(Q)\}$, then, in (2), $M_1 = M$.

Proof. By the Mittag-Leffler theorem there exists h meromorphic on \Re whose only poles coincide with those of m_n/g on S_n , $n = 1, 2, \cdots$. Now $(m_n(z)/g(z)) - h(z)$ is analytic on S_n° , continuous on S_n . Hence, by hypothesis (1), there exists $f_n \in \mathcal{S}_n$ such that on S_n

$$[m_n(Q)/g(Q) - h(Q)] - f_n(Q) \mid < M_1 \varepsilon_n \leq M_1 \mid \phi_n(Q) \mid$$
 .

This yields the required result.

If in both (1) and (2) the m_n are assumed analytic on S_n , the theorem remains true.

COROLLARY 3.1. Let *m* be analytic on the bounded closed set *S* which does not separate the complex plane. Suppose $\{\varepsilon_n\}$ is a certain sequence of positive constants such that there exist polynomials $\{p_n(z)\}$ of respective degrees *n* and some *M* such that $|m(z) - p_n(z) < M\varepsilon_n$ on *S*. Then, for ε_n -admissible $\{\varepsilon_n(z)\}$ with $\varepsilon_n(z) = P_N(z)\phi_n(z)$, where $P_N(z)$ is a polynomial of degree *N*, there exist polynomials $P_{N+n}(z)$ of degrees N + n such that $|m(z) - P_{n+N}(z)| \leq M_1 |\varepsilon_n(z)|$ on *S*.

Proof. In the theorem set $S = S_1 = S_2 = \cdots$ and $m(z) = m_1(z) = m_2(z) = \cdots$, and let \mathscr{S}_n denote the set of all polynomials of degree n. Since, by the hypothesis, (1) is satisfied, the conclusion of the theorem yields the result when it is noted that h can be chosen as an appropriate rational function.

EXAMPLE. If m(z) is analytic on S, $|z| \leq 1$, m is analytic in a larger region $D_{\rho}: |z| < \rho$ [10, p. 79]. Fix $R, 1 < R < \rho$, and set $\varepsilon_n = 1/R^n$. Let ϕ be any function which is continuous and nonvanishing on

ANNETTE SINCLAIR

S and let $P_N(z)$ be a polynomial of degree N, nonvanishing on ∂S . Then K can be chosen so that, for $\varepsilon_n(z)$ defined as $KP_N(z)\phi(z)/(z^n + R^n)$, and $\phi_n(z) = K\phi(z)/(z^n + R^n)$, $\{\varepsilon_n(z)\}$ is ε_n -admissible on S. There are known to be polynomials p_n of respective degrees n such that, for some M, $|m(z) - p_n(z)| < M/R^n$ on S [10, p. 79], whence, by Corollary 3.1, there exist polynomials q_{n+N} of degrees n + N such that

$$\mid m(z) - q_{_{n+N}}(z) \mid \leq M_{_1} \mid arepsilon_{_n}(z) \mid$$

on S, for some M_1 independent of n.

The polynomials p_{n+N} in Corollary 3.1 cannot be required to be of degree less than n + N. For m analytic on S defined as in the Example, choose $P_N(z)$ as a polynomial whose only zeros coincide with those of m(z) on S, and define $\varepsilon_n(z) = (K/R^n)P_N(z)$, $1 < R < \rho$. Suppose there exist polynomials $p_k(z)$ of degree k such that

$$\mid m(z) - p_{\scriptscriptstyle k}(z) \mid \leq M_{\scriptscriptstyle 1}K \mid P_{\scriptscriptstyle n}(z) \mid / R^{\scriptscriptstyle n}$$

on S. Without loss of generality it can be supposed the zeros of p_k coincide with those of m on S [10, p. 310]. Now $N = m/P_N$ is analytic on S, except for removable singularities, and

$$\mid N(z) - p_{\scriptscriptstyle K}(z)/p_{\scriptscriptstyle N}(z) \mid \leq M_2/R^n$$

on S. Since $p_k(z)/p_N(z)$ is a polynomial of degree k - N, this would yield a degree of convergence stronger than maximal convergence if k - N < n [10, p. 79].

The result stated in Corollary 2.3, which is a direct consequence of Theorem 2, is essentially that of Corollary 3.2.

COROLLARY 3.2. Suppose m(z) is analytic on $S = \bigcup S_n$, a Q-set with components S_n , and let B denote its set of sequential limit points. Let \Re be the extended complex plane minus B and define B^* as in Hypothesis H. Then, corresponding to any $\varepsilon(z) = g(z)\phi(z)$ with g analytic on \Re and ϕ bounded from zero on each S_n , there exists f analytic on \Re -B^{*}, meromorphic on \Re , such that

$$|m(z) - f(z)| \leq |\varepsilon(z)|$$
 on S .

Proof. In the theorem, let $R_n = \Re$, $\mathscr{S} = \mathscr{S}_1 = \mathscr{S}_2 = \cdots$ be the set of functions analytic on $\Re - B^*$, meromorphic on \Re , and define $m_n(z) = m(z)$ on S_n , $\varepsilon_n(z) = \varepsilon(z)$ on S_n , $\phi_n(z) = \phi(z)$ on S_n , $\varepsilon_n = \inf |\phi_n(z)|$ for $z \in S_n$. We note $\{\varepsilon_n(z)\}$ is ε_n -admissible. By a theorem of the author [9], M (1) of the theorem is satisfied, with n = 1 and $f_1(z) = f_2(z) = \cdots$, whence the theorem implies (2), yielding the required result.

1412

COROLLARY 3.3. Let $S = \bigcup_{n=1}^{\infty} S_n$, where the S_n are closed circular disks of radii one-half tangent externally along the positive real axis and ordered by increasing distance from the origin. Suppose m is analytic on each S_n^0 , continuous on S. Then, for $\varepsilon(z) = g(z)\phi(z)$, where g is an entire function (nonvanishing on ∂S) and ϕ is bounded from zero on each S_n , there exists an entire function F such that $|m(z) - F(z)| \leq |\varepsilon(z)|$ on S.

Proof. Let $R = \Re$ be the finite complex plane, B^* the null set, and $\mathscr{S} = \mathscr{S}_1 = \mathscr{S}_2 = \cdots$ the class of entire functions. Define $m_n(z) = m(z)$ on S_n , $n = 1, 2, \cdots$, and set $\varepsilon_n(z) = \varepsilon(z)$ on S_n . Then define $\phi_n(z) = \phi(z)$ on S_n and $\varepsilon_n = \inf |\phi_n(z)|$ for $z \in S_n$. By a previous result [8, Theorem 3], corresponding to any $\{\varepsilon_n\}$, there exists $f(z) = f_1(z) = f_2(z) = \cdots$, $f \in \mathscr{S}$, such that $|m(z) - f(z)| < \varepsilon_n$ on S_n . Then (2) of the theorem with F(z) = g(z)[h(z) + f(z)] yields the required result.

REFERENCES

1. L.V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, 1960.

2. H. Behnke und F. Sommer, Theorie der analytischen funktionen einer komplexen Veränderlichen, zweite veränderte Auflage, Springer-Verlag, (1962).

3. T. Carleman, Sur un théorème de Weierstrass, Ark. Mat. Astr. Fys, 20B, no. 4 (1927), 1-5.

4. W. Kaplan, Approximation by entire functions, Michigan Math. J. 3 (1955-6), 43-52.

5. H.J. Landau, On uniform approximation to continuous functions by rational functions with preassigned poles, Proc. Amer. Math. Soc. 5 (1954), 671-676.

6. S.N. Mergelyan, On the representation of functions by series of polynomials on closed sets, (Russian) Doklady Akademia Nauk S.S.S.R. **78** (1951), 405-408. Amer. Math. Soc. Translation, no. 85.

7. G. Mittag-Lefler, Sur la representation analytique des fonctions monogènes uniformes d'une variable indépendante, Acta Math. 3 (1884), 1-79.

8. A. Sinclair, A general solution for a class of approximation problems, Pacific J. Math. 8 (1958), 857-866.

9. _____, Generalization of Runge's theorem to approximation by analytic functions, Trans. Amer. Math. Soc. 72 (1952), 148-164.

10. J.L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ. vol. 20, Providence, R.I., 1956.

PURDUE UNIVERSITY