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ON SMALL MAPS OF MANIFOLDS

HANS SAMELSON

A result announced by R. F. Brown in 1963, and completed
by Brown and Fadell, generalizing classical results of H. Hopf
for differentiate manifolds, is the following:

THEOREM: Let M be a compact connected topological
manifold; then

(a) M admits arbitrarily small maps with a single fixed
point;

(b) If the Euler characteristic χM of M is zero, then M
admits arbitrarily small maps without fixed points (and
conversely). Here a map is small if it is close to the identity
map. We propose to give a short proof of this theorem.

We will use the recent result of Jβ Kister (also Mazur and Stallings)
that any microbundle over a complex is a bundle [4] We note that
according to [2] the result (b) holds also for manifolds with boundary.

2* Characteristic class* We consider the tangent microbundle

τM:M >M x M >; here d is the diagonal map, and p1 the first
projection (cf. [5]). Attached to τM is the Thorn class u, a well-defined
element of Hn(M x M, M x M - d(M)) (here n = dim M); the coef-
ficients used are the integers Z, if M is orientable, and twisted integers,
determined by the orientations of the horizontal factor M at the points
of M x M, in the nonorientable case. (Cf. [6] for details in the
orientable case.) We write u for the image of u in the absolute group
Hn(M x M); the Euler class eM is the image of u in Hn(M) under
the diagonal mapd* (twisted coefficients in the nonorientable case).
Furthermore, M has a fundamental cycle μ (again twisted coefficients
for nonorientable Af)β It is a well-known fact that the value ζeM, μ}
of eM on μ equals the Euler-Poincare characteristic χM of M.

[Since this is not easy to find in the literature, we sketch a proof:
First assume M orientable. Let {x^ be a basis for H*(M) modulo
torsion, and let {a%} be the basis of H*(M) modulo torsion, dual to {x{}
under < , >; put r{ = dim aim Define {%]} by bx[ = ai9 where b is the
Poincare duality operator bx = x Π μ; then {α J} is again a basis for
H*(M) modulo torsion. Finally let {af^ be dual to {xrj} under < , >.
One verifies that d*μ — Σai x α modulo torsion (use (x x y, d*μy —
ζx U yf μy)* Now u satisfies the relation (x, α> = ( — l)n~r(u, bx x α>
for xeHr(M) (cf. [6]). Therefore we have (eMj μ> = <u, d*μ} =
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ζu, Σa, x αj> = Σ{-l)%x'u α{> = Σ(-l)r* = χM. For nonorientable M
let Af be the orientable double covering, and use the facts that the
Thorn class is preserved under the covering map, that the fundamental
cycle of M maps onto twice the (twisted) fundamental cycle of M,
and that %£ = 2χM (as one can see, e.g., from the Smith sequence).]

In particular, if χM = 0, then also the Euler class eM vanishes.
Furthermore, in all this discussion we may, by Kister's result, replace
the tangent microbundle by an actual bundle (in the local product
sense) whose fibre is Rn with a well-defined origin and which therefore
has a well-defined 0-section. We denote this bundle by τM.

3* Proof of theorem* We begin with part (b); thus assume
χM = 0. Embed M in a number space Rfc with k^2n + l, and let
V be a (closed) polyhedral neighborhood of M that retracts onto M,
via the map r. We consider the bundle r*τM, induced from the bundle
fM (see end of §2) by r. By naturality the Euler class of r*τM

vanishes. Therefore, if K is any polyhedron of dimension ^ n contained
in V, the restriction of r*τM to K admits a nonvanishing section (i.e.,
one that does not meet the 0-section of r*τM); to prove this one uses
the interpretation of the Euler class as obstruction. Let S^ be a
finite, open covering of M9 of dimension n, such that (a) the nerve
N^ can be realized in V and (b) an associated barycentric map
/: M-^N^ (cf. [3], p. 69) is homotopic to the identity 1* of M in
V; this exists of course. Let s be a non vanishing section of r*τM \ N^
Applying the covering homotopy theorem to the map so/ of M into
the bundle formed by the complement of the 0-section of r*τM and to
the homotopy between / and 1 ,̂ one gets a nonvanishing section of
r*τu I M, i.e. of τM. This section amounts of course to a fixed-point-
free map of M into itself. Again according to Kister, τM can be
assumed to lie in any preassigned neighborhood of the diagonal of
M x M, which means that the map can be constructed as close to the
identity as one pleases.

The converse is classical (Lefschetz fixed point theorem).

4* Proof of theorem continued* We come to part (a). As
before we imbed M in a Euclidean space Rfc, and r is a retraction of
some neighborhood of M onto M. Let A be a coordinate system in
M (i.e., an open subset homeomorphic to Rn), and let B, respectively
C, be the subsets of A corresponding to the set of points in Rn of
norm <1, respectively <J. There exists a polyhedral neighborhood
W of M - B in R\ whose r-image lies in M ~ C. Since Hn(M - C)
(twisted coefficients if needed) vanishes (M — C being a manifold with
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nonempty boundary), the characteristic class of r * τ M | W is zero. By
the same argument as before, the bundle τM \ M — B has a nonvanishing
section, which can be interpreted as a map / of M — B into M,
without fixed points. We may assume that the /-image of the bounday
of M — B lies in A (by taking τM small enough), and it is then clear,
using A ρ& Rn, how to extend / to a map of M into itself whose only
fixed point is the point of A corresponding to the origin of Rn.

If / is homotopic to the identity map of M (as it will be if it is
small enough: apply r to the linear homotopy in Rk), then the index
of the fixed point is χM: the index equals ± the intersection number
of the graph of / in M x M and the diagonal, and it is well known
that this is χM under the present circumstances. In fact, this last
remark yields another version of the proof of (a): if χM — 0, one can
extend / over B without any fixed point.
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