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ON SIMPLE ALGEBRAS OBTAINED FROM
HOMOGENEOUS GENERAL LIE

TRIPLE SYSTEMS

ARTHUR A. SAGLE

We continue the investigation of the simple anti-commuta-
tive algebras obtained from a homogeneous general L.t.s. In
particular we consider the algebra which satisfies

(1) J(x, y, z)w = J(w, x, yz) + J(w, y, zx) + J(w, z, xy) .

The usual process of analyzing a nonassociative algebra is to
decompose it relative to elements whose right and left multi-
plications are diagonalizable linear transformations e.g.
idempotents or Cartan subalgebras. In this paper we show
that such a process yields only Lie algebras and indicates the
difficulty in finding any non-Lie multiplication table for a
simple anticommutative algebra satisfying (1).

A general Lie triple system [2] is an extension of a Lie triple
system used in differential geometry and Jordan algebras. A general
L.t.s. may be regarded as an anti-commutative algebra A with a
trilinear operation [x, y, z] so that the mappings D(x, y) : z—+ [x, y, z]
are derivations of A which generate a Lie algebra, I{A), under com-
mutation satisfying certain natural identities. A homogeneous general
L.t.s. is a general L.t.s. for which the operation [x, y, z] is a homo-
geneous expression in the products of x, y and z\ that is, using anti-
commutativity, [x, y, z] — axy z + βyz x + ΊZX y for some fixed
a, β, Ί in the base field. From [1] we see that if A is a homogeneous
general L.t.s. over a field of characteristic zero which is either an
irreducible general L.t.s. or /(A)-irreducible or a simple algebra, then
A is a Lie or Malcev algebra or satisfies

(1) J(x, y, z)w = J(w, x, yz) + J(w, y, zx) + J(w, z, xy)

where J(x, y, z) = xy z + yz- x + zx- y. The main result of this paper
is the following theorem.

THEOREM. If A is a simple finite dimensional anti-commutative
algebra over a field F of characteristic zero which satisfies (1) and
if A contains a nonzero element u so that right multiplication by
uy Ru, is a diagonalizable linear transformation, then A is a Lie
algebra.
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2* Proof of theorem* For any anti-commutative algebra we
have the identity

wJ(x, y, z) — xJ{y, z, w) + yJ{z, w, x) — zJ(w, x, y)

= J(w, x, yz) + J(w, y, zx) + J(w, z, xy)

+ J(wx, y, z) + J(wy, z, x) + J(wz, x, y) .

But using (1) we also have

wJ(x, y, z) — xJ(y, z, w) + yJ(z, w, x) — zJ(w, x, y)

= —2[J(w, x, yz) + J(w, y, zx) + J(w, z, xy)

+ J(wx, y, z) + J(wy, z, x) + J(wz, x, y)] .

Thus using the two preceding identities we have

J(w, xy, z) + J{w, yz, x) + J{w, zx, y)

— J(wx, y9 z) + J(wy, z, x) + J(wz, x, y) .

Now let u Φ 0 be an element of A so that Ru: x —> xu is a diagonali-
zable linear transformation. Then Ru Φ 0, for this implies that the
one dimensional subspace uF is an ideal of A and therefore equals A.
Thus A2 = 0, a contradiction to the simplicity of A. Since Ru acts
diagonally in A we may write

where

Aλ = {x e A : a?(ββ - XI) = 0} .

We shall now prove

( 3 ) AaAβ c Aα +β .

For let xe Aa,ye Aβ, then from (1)

J(u, x, y)Ru = J(w, w, »2/) + J(w, », yu)
= βJ(u, x, y) — aJ{u, y, x)

= (a + β)J(u, x, y) .

Thus J{u, x, y) e Aa+β and therefore

xy(Ru — (a + β)I) — xy u + yu* x + ux ye Aa+β .

From this xy(Ru — (cc + /5)/)2 = 0 and setting xy = ^ e i o 0 Σ«^o Aβ

we see by the diagonal action of Ru that xy e Aa+β. In particular (3)
shows AQ is a subalgebra of A.

Next we shall show



ON SIMPLE ALGEBRAS OBTAINED 1399

(4) J(Aa, Aβ, Ay) = 0 or a + β + 7 = 0

for any characteristic roots a,β,y of Ru. Let xe Aa, ye Aβ, ze Ay,
then from (3) J(x, y, z) e Aa+β+y and therefore

(a + β + 7)c7(a?, y, 2) = «7"(α, V, z)Ru

= J(u, x, yz) + J(u, y, zx) + J(u, z, xy)

= —αx #2 + (α + /S + 7)ίc 2/2 + (β + 7)2/2 x

— βy-zx + (a + β + j)y-zx + (a -]- y)zx 2/

— yz xy + (a + β + 7)2 #2/ + ( α + Z 5 ) ^ «

= 0 .

and this equation proves (4).
from (1) and (3) we have

J (Λ.Q, A.Q, J±Q)J±Q d J (A.Q, J±Qf Λ.Q)

and for a Φ 0 we have from (1), (3) and (4),

J(AQ, AQ, AQ)Aa c J(Aa9 Ao, AQ)

- 0 .

Thus J(A0, Ao, A0)A c J(A0, Ao, AQ) and therefore J(A0, Ao, Ao) is an
ideal of A whicn is contained in Ao Φ A. Since A is a simple algebra
this yields

( 5 ) J(A0, A , Ao) = 0 .

Next we shall prove that if a is a nonzero characteristic root so that
— a is also a characteristic root, then

( 6 ) J(Aβ > A_β> Ao) = 0 .

For using (1), (3) and (5) we obtain

and for any β Φ 0 we also obtain

C I ( β ,

+ J(Aβ, A_α, AoAα)

+ J(Aβ, Ao, AαA_α)

c J(Aβ, Aα, A_α) + J(Aβ, Ao, Ao)

= 0 ,

also using (4). Thus as in the proof of (5), J(Aa, A_a, Ao) is an ideal of
A which must be zero. Adopting the usual convention that if a is a
characteristic root but — a is not, then A_a = 0 we see that (6) holds
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for any characteristic root a.
Next let

then if β Φ 0 we see from (3) that BAβ czB. If β = 0, then from
(6) we obtain (AaA_a)A0 c .AαA_α and therefore BA0 c 5 . Thus B is
an ideal of A and therefore £ = 0 or B = A. If B = 0, then i?u = 0,
a contradiction. Therefore we have

(7) A = Σ AβA_β Θ Σ Λ,.

Now from (4) and (6) we have for any characteristic roots β and a Φ 0,
J(Aaf A_a, Aβ) — 0 and therefore

(8) J ( A a , A _ a 9 A ) = 0 ( a Φ O ) .

We shall use (7) and (8) together with the following lemma to prove
A is a Lie algebra.

LEMMA. Let N = {xeA: J(x, A, A) = 0}, then
(i) J(a, b, A) — 0 implies ah e N;
(ii) JV is α^ icίeαi of A which is a Lie algebra.

Proof. Clearly (ii) follows from (i). So let α, be A be such that
J(a, b, A) — 0 and let w, ^G ̂ 4. Then from (1) and (2) we have

0 = wJ(a, b, z)

( 9 ) = J(w, ah, z) + J(w, bz, a) + J(wf za, b)

= J(wα, 6, z) + J(w&, «, α), using (2) .

Now interchanging z and w in this last equation we obtain 0 —
J(za, b, w) + J(zb, w, a) = J(w, bz, a) + J(w, za, b) and using this in
(9) yields J(ab9 w, z) = 0; that is, ah e N.

To show that A is a Lie algebra, suppose it is not. Then from
the lemma N = 0 and from (8) AaA_a c N = 0. Thus from (7) A =
Σα^o Aa and therefore Ao = 0; this contradicts 0 ^ % G i 0 .
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