ON SUB-ALGEBRAS OF A C*-ALGEBRA

J. R. RINGROSE

The following noncommutative extension of the Stone-Weierstrass approximation theorem has been obtained by Glimm.

Theorem. Let \mathscr{A} be a C^* -algebra with identity I, and let \mathscr{B} be a C^* -sub-algebra containing I. Suppose that \mathscr{B} separates the pure state space of \mathscr{A} . Then $\mathscr{B} = \mathscr{A}$.

In the present paper, we apply Glimm's theorem to obtain the following noncommutative generalisation of another result of Stone.

Let \mathscr{A} be a C^* -algebra with identity I and pure state space \mathscr{P} . Let \mathscr{B} be a C^* -sub-algebra of \mathscr{A} , and defne $\mathscr{N} = \{f: f \text{ is a pure state of } \mathscr{A} \text{ and } f(B) = 0 \ (B \in \mathscr{B})\},\$ $\mathscr{E} = \{(g, h): g, h \in \mathscr{P} \text{ and } g(B) = h(B) \ (B \in \mathscr{B})\},\$ $\mathscr{H}_{\mathscr{B}} = \{A: A \in \mathscr{A}, f(A) = 0 \ (f \in \mathscr{N}) \text{ and } g(A) = h(A) \ ((g, h) \in \mathscr{E})\}.$ Then $\mathscr{B} = \mathscr{H}_{\mathscr{B}}$.

We will refer to this as Theorem 2 in the sequel. Glimm's theorem is to be found in [1]; Stone's, in [3].

Once it is known that $\mathscr{H}_{\mathscr{A}}$ is a C*-sub-algebra of \mathscr{A} , Theorem 2 is an almost immediate consequence of Glimm's theorem (see § 4). It is clear that $\mathscr{H}_{\mathscr{A}}$ is a closed self-adjoint linear subspace of \mathscr{A} ; accordingly, most of this paper is devoted to proving that $\mathscr{H}_{\mathscr{A}}$ is closed under multiplication (see § 3).

We remark that, if \mathscr{A} is commutative, then \mathscr{P} consists exactly of all homomorphism from \mathscr{A} on to the complex plane C; so in this case, it is immediate from its definition that $\mathscr{H}_{\mathscr{A}}$ is a C^* -sub-algebra. However, this seems not to be obvious in the general case. Indeed, for a general set \mathscr{N} of pure states of \mathscr{A} and a general subset \mathscr{C} of $\mathscr{P} \times \mathscr{P}$, the class

$$\{A: A \in \mathcal{A}, f(A) = 0 \ (f \in \mathcal{N}) \text{ and } g(A) = h(A) \ ((g, h) \in \mathcal{C})\}$$

need not be a sub-algebra of \mathscr{A} ; for example, let \mathscr{A} consist of all bounded linear operators on a Hilbert space H, let \mathscr{N} be void, and let \mathscr{C} consist of a single pair of vector states arising from orthogonal unit vectors.

2. Notation. Throughout, \mathscr{A} is a C*-algebra-by which we shall mean a uniformly closed self-adjoint algebra of operators acting on a (complex) Hilbert space H. We shall always assume that \mathscr{A} contains

Received September 30, 1964.

J. R. RINGROSE

the identity operator I on H. A state of \mathscr{A} is a linear functional f on \mathscr{A} such that $f(A^*A) \geq 0$ $(A \in \mathscr{A})$ and f(I) = 1. The set of all states is convex and weak * compact; the Krein-Milman theorem ensures the existence of extreme points, and these are called *pure states*. The *pure state space* of \mathscr{A} , denoted by \mathscr{P} (or $\mathscr{P}(\mathscr{A})$ if \mathscr{A} has to be specified), is the weak * closure of the set of all pure states.

Given a state f of \mathscr{A} , there is a *-representation ϕ_f of \mathscr{A} on a Hilbert space H_f , and a unit vector x_f in H_f , such that $\phi_f(\mathscr{A})x_f$ is dense in H_f , and

$$f(A) = \langle \phi_f(A) x_f, x_f \rangle \quad (A \in \mathscr{M})$$
.

To within unitary equivalence, ϕ_f is unique. Furthermore, ϕ_f is irreducible if and only if f is a pure state (see, for example, [2] 245, 265, 266). We shall always use the symbols ϕ_f , H_f , x_f in the sense just described.

3. Some lemmas. Throughout this section we shall assume that \mathscr{B} is a C^* -sub-algebra of \mathscr{A} , and that $I \in \mathscr{B}$. We use the notations introduced in the statement of Theorem 2; note that, since $I \in \mathscr{B}$, \mathscr{N} is empty and

$$\mathscr{H}_{\mathscr{B}} = \{A: A \in \mathscr{A} ext{ and } g(A) = h(A) \ ((g, h) \in \mathscr{C})\}$$
.

For completeness, we give a proof of the following simple result.

LEMMA 1. (i) Let $f \in \mathcal{P}$, $S \in \mathcal{A}$ and suppose that $f(S^*S) = 1$. Define $g(A) = f(S^*AS)$ $(A \in \mathcal{A})$. Then $g \in \mathcal{P}$.

(ii) Let $f \in \mathscr{P}$, $x \in H_f$, ||x|| = 1, and define $g(A) = \langle \phi_f(A)x, x \rangle$ $(A \in \mathscr{A})$. Then $g \in \mathscr{P}$.

Proof. (i) Clearly g is a state. Suppose first that f is a pure state, and let $x = \phi_f(S)x_f$. Then for each $A \in \mathcal{A}$,

(1)
$$\langle \phi_f(A)x, x \rangle = \langle \phi_f(S^*AS)x_f, x_f \rangle = f(S^*AS) = g(A)$$
.

With A = I we obtain ||x|| = 1; and since f is a pure state, ϕ_f is irreducible, so $\phi_f(\mathscr{M})x$ is dense in H_f . This, with (1), implies that ϕ_f and ϕ_g are unitarily equivalent. Thus ϕ_g is irreducible, so g is pure.

Now suppose only that $f \in \mathscr{P}$. There is a net (f_i) of pure states which converges to f in the weak * topology. Since $f_i(S^*S) \to f(S^*S) =$ 1, we may suppose that $f_i(S^*S) > 0$ for each i. Let $k_i = [f_i(S^*S)]^{-1/2}$, $S_i = k_i S$, and define $g_i(A) = f_i(S_i^*AS_i)$ $(A \in \mathscr{A})$. Then $f_i(S_i^*S_i) = 1$, and the argument of the preceding paragraph shows that g_i is a pure state. For each $A \in \mathscr{A}$,

1378

$$g_i(A) = rac{f_i(S^*AS)}{f_i(S^*S)}
ightarrow f(S^*AS) = g(A) \; .$$

Hence (g_i) is a net of pure states which converges to g in the weak * topology, so $g \in \mathscr{P}$.

(ii) Since $\phi_f(\mathscr{A})x_f$ is dense in H_f , we may choose $S_n \in \mathscr{A}$ $(n = 1, 2, \cdots)$ such that

$$|| \phi_f(S_n) x_f || = 1$$
, $|| \phi_f(S_n) x_f - x ||
ightarrow 0$.

Thus $f(S_n^*S_n) = 1$, and by part (i) of this lemma, we may define g_n in \mathscr{P} by $g_n(A) = f(S_n^*AS_n)$ $(A \in \mathscr{A})$. Then for each $A \in \mathscr{A}$,

$$g_n(A) = \langle \phi_f(A) \phi_f(S_n) x_f, \phi_f(S_n) x_f
angle
ightarrow \langle \phi_f(A) x, x
angle = g(A)$$
 .

Thus $g \in \mathscr{P}$.

LEMMA 2. Let
$$T \in \mathcal{H}_{\mathscr{R}}$$
, $S \in \mathcal{B}$. Then $S^*TS \in \mathcal{H}_{\mathscr{R}}$.

Proof. Let $(f_1, f_2) \in \mathscr{C}$. We have to show that $f_1(S^*TS) = f_2(S^*TS)$. Since $S^*S \in \mathscr{B}$, we have $f_1(S^*S) = f_2(S^*S)$; and after multiplying S by a suitable scalar, we may clearly suppose that $f_1(S^*S)$ is either 0 or 1.

If $f_i(S^*S) = 0$, then S is in the left kernel of f_i (i = 1, 2), and $f_1(S^*TS) = f_2(S^*TS) = 0$.

If $f_i(S^*S) = 1$, define $g_i(A) = f_i(S^*AS)$ $(A \in \mathscr{A})$. By Lemma 1 (i), $g_i \in \mathscr{P}$. If $B \in \mathscr{B}$, then $S^*BS \in \mathscr{B}$, so $f_1(S^*BS) = f_2(S^*BS)$; that is, $g_1(B) = g_2(B)$. Hence $(g_1, g_2) \in \mathscr{C}$, and since $T \in \mathscr{H}_{\mathscr{A}}$, it follows that $g_1(T) = g_2(T)$; that is, $f_1(S^*TS) = f_2(S^*TS)$. This completes the proof.

LEMMA 3. Let $T \in \mathcal{H}_{\mathscr{B}}$ and $R, S \in \mathcal{B}$. Then $R^*TS \in \mathcal{H}_{\mathscr{B}}$.

Proof. This follows from Lemma 2 since

LEMMA 4. Let $f \in \mathscr{P}$ and let M be a closed subspace of H_f which is invariant under $\phi_f(\mathscr{B})$. Then M is a invariant under $\phi_f(\mathscr{H}_{\mathscr{B}})$.

Proof. Suppose that the lemma is false. Then we may choose $T \in \mathscr{H}_{\mathscr{A}}$ and $x \in M$ such that $\phi_f(T)x \notin M$. Let $y = (I - E)\phi_f(T)x$, where E is the projection from H_f on to M. Given t in $[0, 2\pi)$, define $y_t = x + \exp(it)y$, $z_t = ky_t$, where

$$k = [||\,x\,||^2 + ||\,y\,||^2]^{-1/2} = ||\,y_t\,||^{-1}$$
 .

Thus $z_t \in H_f$, $||z_t|| = 1$, and by Lemma 1 (ii) we may define $g_t \in \mathscr{P}$ by $g_t(A) = \langle \phi_f(A)z_t, z_t \rangle \ (A \in \mathscr{N})$. Since $\phi_f(\mathscr{B})$ leaves both M and $H_f \ominus M$ invariant, it follows that for each $B \in \mathscr{B}$,

$$egin{aligned} g_t(B) &= k^2 \langle \phi_f(B)(x+e^{it}y), \; x+e^{it}y
angle \ &= k^2 [\langle \phi_f(B)x, \, x
angle + \langle \phi_f(B)y, \, y
angle] \;, \end{aligned}$$

which is independent of t. Hence, for each s, t in $[0, 2\pi)$, we have $(g_s, g_t) \in \mathscr{C}$. Since $T \in \mathscr{H}_{\mathscr{R}}$, it follows that $g_s(T) = g_t(T)$; so $g_t(T)$ is independent of $t \in [0, 2\pi)$. However,

$$egin{aligned} g_t(T) &= k^2 ig\langle \phi_f(T)(x+e^{it}y), \; x+e^{it}y ig
angle \ &= p + q e^{it} + r e^{-it} \;, \end{aligned}$$

where p, q, r are independent of t and

$$r=k^{2}\!ig\langle \phi_{\scriptscriptstyle f}(T)x,\,yig
angle=k^{2}\,||\,y\,||^{2}
eq 0$$
 .

Thus $g_t(T)$ is not independent of $t \in [0, 2\pi)$, and we have obtained a contradiction. This proves the lemma.

LEMMA 5. $\mathcal{H}_{\mathcal{R}}$ is a C*-sub-algebra of \mathcal{A} .

Proof. Suppose that $(g, h) \in \mathscr{C}$. Let M_g be the closed subspace of H_g which is generated by $\phi_g(\mathscr{B})x_g$. It follows from Lemma 4 that M_g is invariant under $\phi_g(\mathscr{H}_{\mathscr{B}})$. When $T \in \mathscr{H}_{\mathscr{B}}$, we shall write $\phi_g(T) \mid M_g$ for the operator (from M_g into M_g) obtained by restricting $\phi_g(T)$ to M_g . Similar notations will be used with h in place of g.

Given $T \in \mathscr{H}_{\mathscr{B}}$ and $R, S \in \mathscr{B}$, we have (Lemma 3) $R^*TS \in \mathscr{H}_{\mathscr{B}}$. Since $(g, h) \in \mathscr{C}$, it follows that $g(R^*TS) = h(R^*TS)$, or equivalently that

$$(2) \qquad \langle \phi_g(T)\phi_g(S)x_g, \phi_g(R)x_g \rangle = \langle \phi_h(T)\phi_h(S)x_h, \phi_h(R)x_h \rangle.$$

By taking T = I, we deduce the existence of a unitary operator U from M_g on to M_h such that

$$(3) U\phi_g(S)x_g = \phi_h(S)x_h (S \in \mathscr{B}) .$$

Equation (2) then implies that

$$\langle \phi_g(T)v, w \rangle = \langle \phi_h(T)Uv, Uw \rangle \quad (T \in \mathscr{H}_{\mathscr{B}})$$

for all $v, w \in \phi_g(\mathscr{B})x_g$, hence for all $v, w \in M_g$. The last equation is equivalent to

$$(4) \qquad \qquad \phi_g(T) \mid M_g = U^*[\phi_h(T) \mid M_h]U \qquad (T \in \mathscr{H}_{\mathscr{B}}) .$$

Now suppose that $T_1, T_2 \in \mathscr{H}_{\mathscr{B}}$. Given $(g, h) \in \mathscr{C}$, construct U as

above. Since $\phi_g(T_i)$ leaves M_g invariant (i = 1, 2), so does $\phi_g(T_1T_2)$, and

$$\phi_g(T_{_1}T_{_2}) \mid M_g = [\phi_g(T_{_1}) \mid M_g] [\phi_g(T_{_2}) \mid M_g] \; ;$$

similar considerations apply with h in place of g. From (4), with $T = T_1, T_2$, we deduce that

$$\phi_g(T_{_1}T_{_2}) \mid M_g = U^*[\phi_h(T_{_1}T_{_2}) M_h]U$$
 .

Since $x_g \in M_g$ and $Ux_g = x_h$, the last equation implies that

$$\left<\phi_g(T_{\scriptscriptstyle 1}T_{\scriptscriptstyle 2})x_g,\;x_g\right>=\left<\phi_h(T_{\scriptscriptstyle 1}T_{\scriptscriptstyle 2})x_h,\;x_h\right>;$$

that is, $g(T_1T_2) = h(T_1T_2)$. This holds whenever $(g, h) \in \mathcal{C}$, so $T_1T_2 \in \mathcal{H}_{\mathscr{R}}$.

We have now shown that $\mathcal{H}_{\mathscr{A}}$ admits multiplication; since $\mathcal{H}_{\mathscr{A}}$ is clearly a closed self-adjoint linear subspace of \mathcal{A} , the lemma is proved.

4. Proof of Theorem 2. We shall use the notations introduced in the statement of Theorem 2. It is immediate from the definition of $\mathcal{H}_{\mathscr{B}}$ that $\mathcal{B} \subseteq \mathcal{H}_{\mathscr{B}}$.

We first consider the case in which $I \in \mathscr{B}$, so that the theory developed in § 3 applies to show that $\mathscr{H}_{\mathscr{A}}$ is a C^* -algebra. We remark that each element f of the pure state space $\mathscr{P}(\mathscr{H}_{\mathscr{A}})$ can be extended to an element \overline{f} of $\mathscr{P}(\mathscr{A})$. For there is a net (f_i) of pure states of $\mathscr{H}_{\mathscr{A}}$, converging to f in the weak * topology. Each f_i can be extended to a pure state \overline{f}_i of \mathscr{A} (see, for example, [2] 304). Since $\mathscr{P}(\mathscr{A})$ is compact, the net (\overline{f}_i) has at least one weak * limit point $\overline{f} \in \mathscr{P}(\mathscr{A})$, and \overline{f} is an extension of f.

Suppose that $\mathscr{B} \neq \mathscr{H}_{\mathscr{B}}$. Then by Glimm's theorem there exist distinct $g, h \in \mathscr{P}(\mathscr{H}_{\mathscr{B}})$ such that $g(B) = h(B) \ (B \in \mathscr{B})$. We may extend g, h to elements, $\overline{g}, \overline{h}$ respectively of $\mathscr{P}(\mathscr{A})$. Clearly $(\overline{g}, \overline{h}) \in \mathscr{C}$. Thus, by the definition of $\mathscr{H}_{\mathscr{A}}, \ \overline{g}(T) = \overline{h}(T)$ whenever $T \in \mathscr{H}_{\mathscr{A}}$; that is, g = h, contrary to hypothesis. This proves Theorem 2 for the case in which $I \in \mathscr{B}$.

If $I \notin \mathscr{B}$, let $\mathscr{B}_1 = \mathscr{B} + CI$ be the C*-algebra generated by I, \mathscr{B} (C denotes the complex field). With an obvious modification of the notation introduced in Theorem 2, it is clear that $\mathscr{N}(\mathscr{B}_1)$ is empty and that $\mathscr{C}(\mathscr{B}_1) = \mathscr{C}(\mathscr{B})$. Thus $\mathscr{H}_{\mathscr{A}} \subseteq \mathscr{H}_{\mathscr{B}_1}$; since $I \in \mathscr{B}_1$, the first part of this proof shows that $\mathscr{B}_1 = \mathscr{H}_{\mathscr{B}_1}$, so $\mathscr{H}_{\mathscr{A}} \subseteq \mathscr{B}_1$.

Now let f be the pure state of \mathscr{B}_1 defined by $f(\lambda I + B) = \lambda$ ($\lambda \in C, B \in \mathscr{B}$), and let g be any extension of f to a pure state of \mathscr{A} . Clearly $g \in \mathscr{N}(\mathscr{B})$. Hence $g(\mathscr{H}_{\mathscr{B}}) = (0)$, and

$$\mathscr{H}_{\mathscr{R}}\subseteq \mathscr{B}_{\scriptscriptstyle 1}\cap g^{\scriptscriptstyle -1}(0)=f^{\scriptscriptstyle -1}(0)$$
 ;

that is, $\mathcal{H}_{\mathscr{B}} \subseteq \mathscr{B}$. The reverse inclusion has already been noted, so $\mathscr{B} = \mathcal{H}_{\mathscr{B}}$.

Reffrences

1. J. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. 72 (1960), 216-244.

M. A. Naimark, Normed rings (English translation), Noordhoff, Groningen, 1959.
 M. H. Stone, The generalised Weierstrass approximation theorem, Math. Mag. 21 (1947), 167-184; (1948), 237-254.

UNIVERSITY OF NEWCASTLE UPON TYNE, ENGLAND