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SOME CONSIDERATIONS ON CONVERGENCE IN
ABELIAN LATTICE-GROUPS

FREDOS PAPANGELOU

We define ^-convergence in an abelian ί-group as follows:
The net (ccOΐei α-converges to x if x is the only element such
that x = y^^iQ (Xi Ax) = Λ ^ o (Xi V x) for every i0 e I. In an
Archimedean £-group (xi) α-converges to x if and only if for
every a and b the net (aWXi)Ab order-converges (in the ordinary
sense) to (α v x) Λ b. In general α-convergence is weaker than
this latter condition and is considerably more natural in the
non-Archimedean case. The algebraic operations of an arbitrary
abelian ί-group G are continuous relative to α-convergence. If
G is completely distributive its α-convergence derives from a
Hausdorff group-topology. Three sufficient conditions are given
for the preservation of the α-convergence of an ί-group G
when it is embedded in another ί-group E. In an appendix,
we formulate a necessary and sufficient condition in order that
an abstract sequential convergence derive from a topology.

The present paper is supplementary to [9] and concludes the investi-
gation begun there. We note here that α-convergence is weaker than
the concepts of convergence studied in that paper. In the next few
paragraphs we review briefly some of the basic definitions and recall
some of the results of [9] which will be needed below. The elementary
theory of lattice groups is assumed known; we refer the reader to [2,
Chap. XIV] or [4]. We shall employ the additive notation and use the
standard abbreviation "£-group" for "lattice-group."

If A is a subset of an i-group G and if A has a least upper bound
in G, we shall denote this l.u.b. by \f{

a

GiAa or sup(ί?) A; dually the g.l.b.
is denoted by Λie^α o r inf(Gί) A. In the case of a family (xa)aei the
notation is V2e/ χ« o r sup(ί?) {xa : oce 1} and dually for greatest lower
bounds. We shall omit subscripts and superscripts whenever confusion
is unlikely. The term "positive" will be used for " ^ 0 . " Throughout
the present paper R will denote the real line, RΣ (where X is an
arbitrary set) the i-group of all real functions on X. M will be reserved
for the Z-group of all hounded real functions on [0, 1].

In [9] we investigated several types of order-convergence, the main
ones being o-convergence, natural convergence and L-convergence. We
repeat here the definitions of the latter two. Let G be an abelian
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Z-group and let (Xi)iei be a directed net in G (in the sense of [6]). An
element u e G is said to be a super element of (xt) if xt ^ u eventually;
a subelement is defined dually. The net (x{) is said to be eventually
bounded in G if it has a super element and a subelement. For ordinary
sequences "bounded" and "eventually bounded" are equivalent.

We say that an eventually bounded net (&<) converges naturally to
xeG relative to G (denoted: v-lim^ α?< = x) if irdm U = sup(Gί)F = x,
where U is the set of superelements and V the set of subelements of
(x^ in G. The operations + , V, Λ, etc., of the Z-group G are continuous
with respect to this convergence.

If M is the Z-group of all bounded real functions on [0,1] and if
we define σn(x) = n*x(l — xψ, x e [0,1]9 n = 1, 2, then the sequence
(<7Λ) is pointwise convergent to 0 but is not eventually bounded in M.
It is therefore natural to extend our definition of convergence so as to
obtain non-eventually-bounded convergent nets, and one way to do this
(discussed in § 7 and § 8 of [9]) is the following:

1.1. DEFINITION. The net (Xi)iel L-converges to x relative to G
(denoted: L-limjfV x{ — x) if and only if for each pair α, b e G
v-limllV (a V xt) A b = (a V x) A b.

1.2. PROPOSITION. ([9, Prop. 7.2]). L-limiG) x{ = x if and only if
for every b ^ 0 in G v-lim{G) | x{ — x | Λ b — 0.

Our L-convergence is not related to Rennie's L-topology ([10]).

The following lemma, which will be needed later, is contained in
Lemma 6.3 of [9].

1.3. LEMMA. Let G be an Archimedean l-growp, a an element of
G and (Xi)iei a net in G which is eventually bounded. Then the
following statements are equivalent:

( i ) y (xt A a) = a for every iQ e I.

(ii) a ^ u for every superelement u of (a^).

2* The ^-convergence in an abelian lattice-group* The sequence
(σn) defined above L-converges to 0 in M and in this respect Definition
1.1 is effective. Suppose however that we embed M in the non-Archi-
medean i-group J o M (where J denotes the ordered group of integers
and o denotes lexicographic product) by means of the "canonical"
mapping /—>(0,/). The sequence (0, σn) is now bounded in JoM and
our trick fails: (0, σn) is not L-convergent in JoM.
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There is however another, more intrinsic, way of describing the
pointwise convergence of (σn) in M which remedies the defect in this
particular case. This is achieved by means of Def. 2.1 below; this
definition may seem a little sophisticated at first but is in fact very
natural, as a closer examination will show.

2.1. D E F I N I T I O N . T h e n e t (Xi)iei oc-converges to xeG relative to
G (denoted: aAimfe\ x{ — x) if x is the only element of G satisfying:

( 1 ) x = V{G) (a* Λ x) = A{G) (Xi V x) for every iQe I.

Compare Def. 2.1 with Lowig's Thmβ 42 in [7]; see also Lemma
1.3 above. It will be convenient to call an element x satisfying (1) a
central element of (x{) relative to Go The definition then reads:
a-lim{G) Xi — x if and only if x is the only central element of (α )̂
relative to G.

Before studying α-convergence and its connection to L-convergence,
we introduce another concept of convergence for purposes of comparison
only and as an auxiliary tool. In fact, it proves to be very defective
in the case of abelian i-groups, despite the fact that it arises from a
close imitation of the method so successfully employed by H. Lowig
in the case of Boolean rings. If a net (xι) is eventually bounded in
G, then an element x e G is said to be an inter element of (x{) relative
to G if υ S x ^ u for every subelement υ and every superelement u
of (x^ in G. If (x^ is not eventually bounded, then x is said to be
an interelement of (a?,-) relative to G if and only if for every α, b
(a V x) Λ b is an interelement of (a V Xi) Λ b in the preceding sense.

DEFINITION. The net (x{) L*-converges to x relative to G (denoted:
Z/*-lim(ί?) Xi = x) if x is the only interelement of (x^ relative to G.

If (Xi) is eventually bounded then v-lim xt — x, L-lim x{ = x and
L*-\imXi — x are of course equivalent.

2.2. LEMMA. / / x is an interelement of (x{) and if yeG and
ioe I are such that x{ A x ^ y ^ x for all i ^ i0, then y too is an
interelement of (Xt) and dually.

Proof. If (xι) is eventually bounded, if u is a superelement and
υ & subelement of (a?*), then there is some i ^ i0 such that υ ^ Xι/\x ^
y ^ x <; u, hence υ ^ y <; u. Suppose now that (xt) is not eventually
bounded and fix α, b. If υ ^ (a V Xι) Λ b ^ u for all i ^ & say, then
t> ^ (α V x) Λ & ̂  u by the definition of interelement. We therefore
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have on one hand (a V y) A b ^ (a V x) A b ^ u and on the other hand
υ ^ [(a V xd Ab] A [(a V x) A b] = [a V (&< Λ x)] A b for all i ^ k; if
ΐ is chosen to be 2n0, fc, then ^ ^ [α V (xt A x)] A b ^ (a V ί/) Λ b.
Thus u ^ (α V y) A b g u\ we infer that (α V y) A b is an interelement
of (a V Xi) A b, ie I.

2.3. LEMMA. If x is a central element of (α?*) £/&6% α? is an
interelement of (xi). If moreover (#*) is ^oί eventually bounded, then
the converse is also true.

ProofΌ Let x be a central element of (#<). If (»<) is eventually
bounded, it is immediately seen that x is also an interelement of (a?€)
If (aSf) is not eventually bounded we show, using the infinite distributive
laws, that for every a, b e G (a V x) A b is a central element (and hence
also an interelement) of (α V xt) A b, i e I.

Assume now that (&<) is not eventually bounded and let x be an
interelement of (xt). Fix ΐ o e /. Obviously x ^ ^ V x for all i ^ i0.
If 1/ ̂  Xi V 8 for all i ^ i0, then (x V xj Λ y = y eventually. Since
(x V a;) Λ y — x A y is, by the definition, an interelement of (a; V #<) Λ y,
ie I, and since the latter net is eventually equal to y, we have y —
x A y, hence y ^ x. Thus x — Aί^ί0 (

χi V x). Similarly we prove the
dual equality.

2.4. COROLLARY. // G is Archimedean, then x is an interelement
of (x^ if and only if it is a central element of (α^).

Proof. If (xt) is eventually bounded this is a direct consequence
of Lemma 1.3. If (x{) is not eventually bounded the result is included
in the above Lemma.

2o5. THEOREM. L-lim Xi — x implies L*-lim x{ — x, and
L*-lim Xi = x implies α-lim xt — x. If (a?<) is eventually bounded then
L^-lima;^ — x is equivalent with L-lim xi — x (and with v-limXi — x).
If (%i) is not eventually bounded L*-lim^ i = a; is equivalent with
α-lim x{ — x.

Proof. If L-lim xt = x, where (x^ is not eventually bounded,
then v-lim (a V Xi) A b = (a V x) A b for every a, bo Hence x is an
interelement of (x{). If y were another interelement, then (with a —
x A y, b — x V y in the definition) [(x A y) V y] A (x V y) — y would
be an interelement of [(x A y) V cc<] Λ (x V y), ie I, which however
converges naturally to [(x A y) V x] A (x V y) = x. Thus y — x. We
have shown that L-lim Xi — x implies L*-limXi — x.
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If L*-limα^ = x then x = V ^ i o ( ^ A x) for every io; in fact if
y Ξ> xi Λ x for all i ^ i0, then a; Λ 2/ is an interelement of (x{) by
Lemma 2O2, therefore x Λ !/ = «, i.e. y ^ x. Dually we show that
x — Ai^ίo(

χί V x). That x is the only central element of (x^ follows
from Lemma 2.3. The final part of the theorem is also a consequence
of Lemma 2β3o

None of the converse implications is valid. To show that L*-lim x{ =
x does not imply L-limX; = x consider the direct product I x (JoM)
of the i-groups M and JoM and set xn = (σn\ 0, σn) (the sequence (σn)
was defined above). It can easily be shown that a-lim xn — 0 and
since (xn) is not eventually bounded in M x (JoM) we infer from the
preceding theorem that L*-limίcΛ = 0o However L-lim xn = 0 is false;
in fact if x = (/; 1, g) then (0 V xn) A x fails to converge naturally
to (0 V 0) Λ x = 0, since every superelement u — (h; m, h') of
(0 V xn) A x = (on A /; 0, σn) must necessarily have m ^ 1. Finally to
show that a-lim Xi = x does not imply L*-limXi = x consider the
sequence (0, σn) in JoM. We thus see that α-convergence is in general
weaker than L-convergence, both for bounded as well as for unbounded
sequences. However, in an Archimedean i-group they are equivalent:

2.6. THEOREM. In an Archimedean l-group L-convergence and
a-convergence are equivalent.

Proof. Assume a — lim x{ = x. Then, by Thm. 3.8 of the follow-
ing section, for every a,beG a — lim (a V xt) A b — (a V x) A b. By
Corollary 2.4 this means (a V x) A b is the only interelement of
( α V ^ ) Λ ^ ίe I and since the latter net is bounded, v — lim (a\fx{)Ab —
(a V x) A bo Hence L — lim x{ — x.

The entire machinery of [9, §8] is now at our disposal for the
"completion" of an Archimedean i-group relative to its α-convergence.

3. Continuity of the algebraic operations* The operations
+ > — 9 V, Λ etc. are continuous relative to L-convergence; this follows
from Prop. 1.2 (see [9, Prop. 7.4]). It is much less trivial to show
that they are continuous relative to α-convergence too. This will be
our next goal: The proof of Thm. 3.8 below goes via a number of
auxiliary propositions, most of them covering special cases. Let us
however remark at this point that L*-convergence violates this natural
requirement of continuity. Setting xn — (σn; 0, σn) in the i-group
M x (JoM) as before, and c — (0; 1, 0) we see that L*-limxn = 0 does
not imply L*-lim x{ A c — 0 Λ c. Hence the mapping x —> x A c, with
c fixed, may fail to be continuous. The mapping G x G 3 (x, y) —>
x + yeG may also fail to be jointly continuous as is seen from the
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consideration of the sequences xn — (σn; 0, σn) and yn = ( — σn; 0, 0) in
M x (J°M). These are overwhelming disadvantages and we have to
reject L*-convergence. It is of course true that L*-limα^ = x
implies L*-lim(—x{) — —x and L*-lim (a^ + c) = x + c but this offers
little consolation.

Notice the following useful facts:

{2) If x — A 0&i V x) and if x* ^ x, then x* = A (#* V a?*);

and dually.

{3) If α-lim Xi — x and if Xι S y eventually, then x ^ y;

and dually.

( 4 ) If xfy are central elements of (a^), then so are

a? V 2/ and x Λ y.

{5) If (τ/y) is a subnet of (#<) (in the sense of [6]) and if as is a

central element of (τ/y), then x is a central element of

(Xi) also.

( 6) The following three statements are equivalent:
( i ) x is a central element of (a^);
(ii) —-X is a central element of ( — x^);
(iii) x + c is a central element of (x{ + c).

The easy proofs are left to the reader. From (6) in particular it
follows that α-lim^ = x, α-lim( — x{) = — x and α-lim (x{ + c) — x + c
are equivalent.

3.1. PROPOSITION. If a-limiel xt = x and if {yj)jeJ is a subnet

of (Xi)iei, then α-lim, €j y, = a;.

Proof. We first show that x is a central element of (^y), i.e.

( 7 ) x = V (2/i A a;) = A (2/i V a;) for each io

Assume z ^ y3- A x for every i ^ i0 and define y = x Λ z. We
shall show that y is a central element of (xt). In fact fix ίQ. We have
x^y, hence by (2) | / = V ^ o f e Λ l / ) . To show the dual equality
1/ = ki^iQ{χi v 2/) assume

( 8 ) u ^ Xi V y for all ΐ ^ ί0 .

Then u ^ a?i V 1/ V a; = x{ V x for all i ^ i0, hence

( 9 ) u S A fe V x) = x .



CONVERGENCE IN ABELIAN LATTICE-GROUPS 1353

Suppose now y3- — xn{j), j e J, and choose j ' ^ j 0 such that n(f) ^
i0. Then by (8) u ^ xn{JΊ V y and combining with (9)

u ^ x A (xniJΊ V y) = i/ V fe(i') Λx) = y ,

since y = z Λ % ̂  y, Λ x fov all i ^ j 0 . Thus 7/ = Λ^;o (»» V 2/)
We infer that y is a central element of (x{), hence y — x, i.e.

x Λ z — x, z ^ x and this proves the first half of (7). The dual is
proved analogously. It follows now from (5) that x is the only central
element of (y3).

3.2. PROPOSITION. If x{ ^ 0 for every i, then the following are
equivalent:

( i ) α-lim ^ = 0
(ii) If x ^ 0 and # = V (#* Λ x) for every i0, then x = 0

(iii) For each x > 0 there exist i o e I and % G G such that x>u0 ^
αji Λ x for all i ^ i0.

Proof. That (i) implies (ii) is obvious, (iii) is only a restatement
of (ii). We now show that (ii) implies (i). Assume (ii) is true. Then
0 is a central element of (xt). In fact fix ix; obviously 0 = V ^ ^ ΛO).
To verify the dual equality 0 = Λ ^ f e V 0) = A ^ ^ suppose y g x{

for all i ^ i1# Defining x — y V 0 we have 0 ^ x ^ x̂  for all i ^ ίly

i.e., x = xi Λ ^ for all i ^ i l β But then x — V^;o (
χi Λ x) for αn^/ ί0,

since there is always an i ^ i0, ίlβ By hypothesis (ii) x — 09 he., 7/ ̂  0
and this means 0 = A ^ ^ ^

If x were another central element of (α^), then x = A^*o feVx) ^ 0
and on the other hand x = V ^ ; o ( ^ Λ ») for every i0. By (ii) a? = 0.

3.3. PROPOSITION. If xt ^ 0 (ί e I), yά ^O(je J ) , α-lim ^ = 0
and a-limyj — 0, then a-\imuj)EIXJ (x{ + ^ ) = 0. (Here I x J is
directed by the cartesian ordering).

Proof. We shall apply the preceding proposition. Let z ^ 0 be
such that

(10) z= V [fai + Vi) Λ zj for every iQ, j 0 .

We shall first show that

(11) z= V (#< Λ z) for every i0 .

Let 7/ ̂  Xi Λ « for all i ^ i0. Define y^ — zί\y. Then 2 i> τ/0 ̂  x% Λ ^
for all i*ziQ. From this we shall deduce that
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(12) z - Vo = V [Vi Λ (z - 7/0)] for every j 0 .

In fact if u ^ τ/y Λ (2 — τ/0) for all j i> j 0 > t h e n

v> + 2/0 ̂  (#; + 1/0) Λ s Ξ> (VJ + Xi Λ Z) Λ Z

for all i Ξg ΐ0 and all ,7 ̂  j 0 , hence u + y0^ (yd + #*) Λ (#*• + z) A z =
(2/j + ff») Λ 3 for all i ^ i0 and all i ^ j 0 . By (10) u -\- y0^ z, i.e., w ^
z — y0 and t h u s (12) is established. This implies, by t h e preceding
proposition, z—yo — O, z~yQ — zAy, y^z which proves (11). Finally,
by t h e preceding proposition again, (11) implies z ~ 0.

3.4. PROPOSITION. If #-lim x{ = 0 then αMim xf — 0 and
α-lim xi ~ 0 (where xι ~ x{ V 0, xι — ( — x) V 0).

Proof, xf ^ 0, therefore we can apply Prop. 3.2. Let x ^ 0 be
such that

(13) x — y {xf Λ a?) for every i0 .

We shall show that

(14) x — \/ (xi /\ x) for every i0 .

If y ^ Xi Λ % for all i ^ i0, then 1/ ̂  x{ Λ 0 Λ ^ for all i ^ i0, 7/ ^
[ V ^o feΛ0)]Λa; = 0 Λ a( = 0). Thus 2/^feΛa;)V(0Λa;) = ccί Λ x
for all i ^ i0, hence 7/ ̂  x by (13); (14) is established. That x —
Ai^ίo(

χi V x) follows from (2) and the relation x ^ 0. Now x being
a central element of (xt) must be equal to 0.

Finally α:-lim xt = 0 implies <£-lim(—^J = 0 and by what was
proved <x-lim xϊ — 0.

3.5. COROLLARY, α-lim Xι — 0 implies α-lim | cĉ  | = 0.

Proof. α-lim â  — 0 implies α-lim cc? = 0 and α-lim xj = 0. By
Prop. 3.3 α-lim^ (ccf + a j) = 0. Now | xt \ = xf + xi, ί e /, being a
subnet of (x/ + xj), (i, j)e I x J, α-converges to 0.

3.6. PROPOSITION, α-lim | xi \ = 0 implies α-lim â  = 0.

Proof, α-lim 1 ^ 1 = 0 implies α-lim ( —| »< |) = 0. Since 0 ^
a?< V 0 ^ I α?i I V 0 we have 0 = A^»o ̂

 v °) f o r every i0. Dually 0 ^
%i Λ 0 ^ ( — I ^ I) Λ 0 implies 0 = V^<0 (x{ Λ 0) and thus 0 is a central
element of (xt). Let x be another central element. Then — x is a
central element of (—«<), therefore



CONVERGENCE IN ABELIAN LATTICE-GROUPS 1355

(15) x — \/(xι A x) for every i0

(16) — x = y ( — β» Λ —x) for every % .

We infer from (15) and (16) that

(17) I x I = V (I χi I Λ I x I) for every ί0 .

(In fact if y ^ | xζ | Λ | x | then y^x{f\x and # ^ ( —«») Λ ( — x), hence

y ^ x a n d 7/ Ξ> — αj, i . e . y ^ x \/ — x — \x\)
By Prop. 3.2 | x \ = 0, a = 0.

3.7. THEOREM, α-lim x{ — xif and only if α-lim | x̂  — a; | = 0.
In fact both are equivalent to α-lim (xt — x) = 0. Notice that, by

Prop. 3.2 a-limiei xi — 0 and 0 ^ yt g cc4 for all ΐ e J imply
α:-limier #< = 0.

3.8. THEOREM. / / α:-limΐe7 ^ = x and α:-limi6J yd = 0, then
α-lim ί eJ ( — Xi) = - x ? ^-lim ί 6 J | x{ \ = \ x |, α-lim(ί,i)eJXJ(a?ί + #,•) = x + 1/,
α-lim ( ί ) i ) 6 / X J (oĵ  V yj) = x V y and dually.

Proof. 0 £ i \ ( x i + y j ) - ( x + y ) \ ^ \ x i - x \ + \ y s - y \ . B y P r o p .
3.3, Thm. 3.7 and the remark preceding the present theorem:

a-lim (Xi + y3) = x + y .

Similarly

i V 2/i — x V 1/1 = I Xi V I/,- — x V 2/i + x V i/i — x V y \

^\XiV ys — xv yA + \χ\/ y3- — xv y\^\Xi — χ\ + \y3 -v\

etc.

4. Subspaces and product spaces. If an abelian Z-group G is
embedded in another abelian Z-group E with preservation of all existing
joins and meets, then the (^-convergence of E can be relativized to G.
It is natural to ask under what conditions this relative convergence
coincides with the α-convergence of G itself. Theorem 4.1 below gives
three sufficient conditions.

Let E be an Z-group and G an Z-subgroup. G is said to be regular
in E (equivalently E is said to be regular over G or a regular ex-
tension of G) if AdG and inf{G) A = 0 imply inf{E) A = 0. It is then
true that x = sup(<?) X(XaG) implies x = sup(jE7) X, and dually.
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4.1. THEOREM. If the abelian l-group E is a regular extension
of G, (x^ and x are in G, then α-lim(2?) xt — x implies a-\im{G) x{ — x.
If moreover either

( i ) G is Archimedean
or (ii) E is completely distributive (see Definition 5.1 below)
or (iii) for every e e E, e > 0 there is geG such that 0 < g ^ e
then a-lim{G) x{ — x and <x-lim(2?) Xi — x are equivalent.

Proof. That a-\\m.{E) Xi — x implies a-lim{G) x{ = x follows from
the definition of α-convergence and the regularity of E over G.
We here prove the sufficiency of conditions (i) and (iii) for the converse
implication; the sufficiency of condition (ii) will be proved below (§ 5).

Let a-lim{G) Xi — x. Without loss of generality we can assume
x — 0, Xi ^ 0. Then 0 is a central element of (xt) relative to E too.
Let eoe E be another central element of (x{) in E; then e0 =

(18) e0 = y { E ) (χi Λ O for every i0 .

Case ( i ) (G Archimedean). We first show that e0 A a — 0 for
every positive aeG. In fact a-lim{G) x{ = 0 implies L-lim(ί?) ^ = 0
by Thm. 2.6, hence y-lim((?) x{ A a — 0. Then v-lim(ί7) ^ Λ α = 0
(see [9, Prop. 6.2]), therefore i;-lim(^) xt A e0 A a = 0. If u is any
superelement of Xi A eQ A a,ie 7, in E then by (18)

e0 Λ a — \/{E) (xt A e0 A a) ^ u

for suitable iQ. Thus eQ A a, being a lower bound to the set of super-
elements of Xi A e0 A a, i e /, in E, must be 0.

In particular e0 A Xι — 0 for every is I, hence by (18) e0 — 0.
Case (iii). (For every e > 0, eeE9 there is # e G such that

0 < g ^ e)o Assume eQ > 0 in (18) and let g e G be such that 0 < g ^ e0.
Then

0 = e0 Λ g = Γ V(jE) (a* Λ βo)Ί Λ flr = V(^) {%i Ae0Ag)= \/{E) (ff< Λ flf)

hence βf = Vilί0 (̂ < A βf)- By Prop. 3.2 we then have g = 0, a contra-
diction. Thus β0 must be 0.

Condition (iii) in the above theorem covers the case of the Everett
extension G* of G by means of "Cauchy" cuts, as well as the extension
G (see [9]). It seems improbable that the implication #-lim(<?) x{ =
x ==> α~lim(2?) £; = # remains valid if we merely assume that E is
regular over G.
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We close this section with a theorem on cartesian products, whose
proof is easy.

4.2. THEOREM. If G is a direct union G — XτβτGτ of abelian
l-groups G%τe T and if xeG, xie G, then a-limf) xζ = x if and
only if a-\ivcifT)xl — xτ for every τeT. (Here xτ denotes the τ-th
"coordinate" of x).

5* The case of completely distributive abelian i-groups* There
is a very neat characterization of α-convergence in a completely
distributive abelian £-group«

5.1. DEFINITION. An abelian i-group G is said to be completely
distributive if it satisfies the following condition:

(P) If, for each index a in a set A, (xaj)jeia is a family in G
and if all joins and meets exhibited in equality (19) below exist,
then this equality is valid:

(19) A V χaj = V A »«,*<«>
cύEA jEJcύ φSφ cύβA

here Φ = XaeA^a, i.e., Φ is the set of all choice-functions φ(.) on A
with φ(a) G Ja for each ae A.

For equivalent formulations of complete distributivity see [12,
Thm. 2.6].

5.2. THEOREM. If G is completely distributive and (Xi)iei is a
directed net in G, then the following are equivalent:

( i ) a-lim x{ = 0
%ei

(i i) For each cofinal subset J of I A I χj I — 0.
jej

Proof. If a-limiei x{ = 0 then α-lim ί e l | x{ \ = 0 and since (Xj)jβj

is a subnet of (Xi)iei we must have α - l i m i € J \XJ\ — 0, hence

A J 6 J I χj I — 0c Conversely assume t h a t (ii) holds. To show t h a t

α-lim 0̂  = 0 (equivalently α-lim | ̂  | = 0) it is sufficient, by Prop. 3β2,

to show t h a t if x >̂ 0 and sc = Vi^* (I ̂ i I Λ %) for each i e I then

cc = 0. But if x = V j^ί (I ̂ i I Λ x) for each i e I then

x = A V (i a, I Λ a?) .
iβl j^i

On the other hand by hypothesis (ii) A e/d^u) I Λ x) = 0 for each
choice function φ(.) e χiei J{, where J{ — {j e I:j >̂ ΐ}β Thus

V A (I ^ ( i , I Λ x) = o
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and by the complete distributivity of G, x = 0.
Notice that (i) implies (ii) in any abelian ί-group. We can now

proceed to the

Completion of the proof of Theorem 4.1. Let E be a completely
distributive regular extension of G. If α-lim l j X;=0 then Λiej I ^i 1=0
for every coίinal subset J c / . By the regularity of Eover G Ai 1 J I # J I = 0
for every cofinal Ja I, hence by Thm. 5.2 α-lim(2?) x{ — 0.

Our next result is that in a completely distributive abelian £-group
the α-convergence derives from a group topology.

5.3. THEOREM. // G is completely distributive then its a-con-
vergence derives from a topology X on G which makes G into a
Hausdorff topological group.

This means that α-lim x{ = x if and only if {x^ is eventually in
each ^-neighborhood of x.

Proof. To show that the α-convergence is a topological conver-
gence, it is sufficient, by [6, p. 74] to show that it has the following
properties:

( i ) If xi = x for every i e /, then α-lim x{ = x.
(ii) If α-lim x{ = x and if (y/) is a subnet of (Xi), then

α:-lim y3- — x.
(iii) If α-lim xt — x is false, then there is a subnet (yj) of (xt) no

subnet of which α-converges to x.
(iv) If, for each ΐ in a directed set /, (#*,j^-e^ is a net in G such

that α-lim xitj = x̂  and if α-lim xi = x then

α-lim i/(if/) = x

where ^ ( j l / , Ξ |/ ( j ) / ( l ) ), (ΐ, /(.)) e I x X i^ Ξ 2 i s the net defined by
iez

Vu,f{-)) — χi,fu) ( Σ = ^ x X ^ is directed coordinatewise).

For a variation on these conditions see [1].
(i) is obvious and (ii) was proved earlier (Prop. 3.1). To show (iii)

we assume (without loss of generality) that x — 0. If α — lim xi — 0
is false then by Thm. 5.2 there is a cofinal subset J of I and some
zeG such that 0 < z g | x3- \ for every je / . Then (x3)3ej is a subnet
of (#i) ίei

 n o subnet of which can α-converge to 0.

Finally to establish (iv) we need a lemma.

LEMMA. Let D be a cofinal subset of Σ= I x Xiei Ri. For each
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iQ e I let Aio — {j e RίQ: there exists a choice-function /(.) e Xiei Rι with
f{%) =j and (%,/(.)) e D}, i.e. Aio = {/(%): f is such that (ίo,f)eD}.
Then the set

Ω — {ioe I: AίQ is cofinal in RίQ}

is cofinal in /„

In fact suppose there is k0 e I such that, for every i ^ k0 Ai is not
cofinal in Rim Then for each i ^ k0 there is j(i) e R{ such that no
element j of Ai is }zj(i). Define /0(.) in XieiRi by:

(an arbitrary element of R{ if i g k0

fM =

Then there is no element (i,f(.))eD with (i,/(.)) ^ (Kfo(.)), which
contradicts the fact that D is cofinal in / x XieiRi.

Having established the lemma we now turn to the proof of (iv).
Suppose that a-limJeR. xitj — x{ for each ie I and that oc-limίei %i — 0.
(There is no loss of generality in assuming x — 0)β We shall show
that θί'lim{itfί.))eΣy{itf[.)) = 0 by applying Thmo 5.2. If D is cofinal
in 2 a n d z = I Vi,f( ) I f o r every (i, /(.)) e D, i.e. if z ^ | ίcίf/(<) | for every
•i and /(.) such that (i,f(.))eD, then in particular, for a fixed i in £?
(β is defined as in the lemma) z ^ \%itfu) I for every /(.) e XiβiRi such
that (i, /(.)) G D, hence

z — \Xi\^\ xitfU) I - ! x{ I ̂  I »ί>/(ί) - x̂

2 - |x, | ^inf{ |a? ί f / ( ί ) - x{\ : f(.)e X R, and ( i , / ( . ) ) e D \ = 0 .
I iei )

(That the inf is zero is a consequence of the equality a-limjeR. | ̂ ,y — Xi —
0 and the fact that A, = {f(i) : /(.) e Xίei R, and (i, /(.)) e b} is cofinal
in S,)e

Thus z S I #* I for each i e i3 and since ί? is cofinal in /, z ^
Λίea I E* I = 0 by the same reasoning. In other words

A l2/(i,/( » l = o

for each cofinal subset D of X ; hence α-limu,/ (. ) ) e Σ 2/u ,/(.)) = 0.
We conclude that there is a topology % on G such that α:-lim 0̂  = 05

if and only if, for each ^-neighborhood U of x, Xiβ U eventually.
This topology is Hausdorff since limits of arbitrary α-convergent nets
are unique. Finally by Thm. 3.8 the operations of the Z-group are
continuous and the proof is complete.

5.4. COROLLARY. If G is a regular l-subgroup of a direct union
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XτeτG
τ of simply ordered abelian l-groups, then its a-convergence

derives from a Hausdorff group-topology. In particular in RΣ (X
any set) a-convergence is pointwise convergence.

In fact such an Z-group G is completely distributive. It is a little
absurd to derive this corollary from Thmβ 5.3, since we can prove it
directly and in fact determine the topology. In each Gτ ^-convergence
is equivalent to the topological convergence which is defined by means
of open intervals. By Theorem 4.2 the α-convergence of XτβTG

T

derives from the product topology. Finally by Thm. 4.1, case (ii),.
(XzβτGτ is completely distributive) the α-convergence of G derives
from the relative topology of the subspace Ga XτeτG

τ. Notice that
this argument serves to establish Thm. 5O3 in the particular case that
G is Archimedean, for if G is Archimedean and completely distributive
then it is representable as a regular Z-subgroup of a direct union
XτeτG

τ of simply ordered (abelian) i-groups Gτ,τeT (in fact as a
"regular subdirect union"). See [13, Thm. 2.2].

Similar results are of course valid for Boolean algebras, where
the analogue of ^-convergence is simply the natural convergence as
defined in § 1. For instance the "pathological" examples given in [7,
p. 1192-93] and [3] are not completely distributive. K. Matthes [8]
has given a condition on a lattice L which is necessary and sufficient
in order that the natural convergence of L derive from a topology.
If RB is the i-group of all real functions on the real line, then the
natural convergence of RR does not derive from any topology (RR is
not "^o-regular" [8]), whereas its α-convergence (L-convergence is a
topological convergence. Notice however that for sequences natural
convergence and α-convergence are equivalent in RR.

An abelian Z-group G is said to be (fc$0, ^-distributive if it satisfies
condition (P) of Def. 5.1 whenever the set A as well as each Ja are-
countable.

5.5. PROPOSITION. If G is (^ 0, ^-distr ibutive then its α-con-
vergence of sequences derives from a !\-topology %{G).

This follows from the discussion of § 6 and the fact that in an
(Ho, ^-distr ibutive i-group the characterization of Thm. 5.2 is valid
for ordinary sequences. As far as continuity of the group operations
is concerned we can affirm that the mapping GBX-^ — xeG is continuous
relative to Z(G) and that for each y eG the mapping G3x—+x + yeGis
also continuous. The i-group G x G is ()ftQf ^0)-distributive, hence its
sequential ^-convergence derives from a Tropology X(G x G). lίGxG
is topologized with %(G x G) and G is topologized with £(G) then the map-
ping φ: G x G B (x, y) —> x + y e G is continuous. In fact using Thm. 4.2
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we can easily show that the inverse image φ~ι(K) c G x G of a Z(G)-
closed set KaG is Z(G x G)-closed.

6* Appendix on abstract sequential convergence* In this
section we give an elementary theorem on a necessary and sufficient
condition in order that a given abstract sequential convergence be
equivalent to a sequential convergence defined by means of a topology.
The argument establishing this result is essentially due to Lδwig [7].
Though the present appendix is only loosely connected with the rest
of the paper, it is attached here because the main result is used in
establishing Proposition 5.5.

Let X be an arbitrary set and (£ an assignment of "limits" to
certain sequences of elements of X. If the element x e X is assigned
to the sequence (xn), we write &-limw xn — x and say that (xn) (£-
converges to x. We say that (£ is an abstract sequential convergence
in X ivith unique limits if it satisfies the following conditions:

{20) To each sequence at most one "limit" is assigned.

(21) If xn — x for every n, then K-lim xn — x*

(22) If E-lim xn = x and if (xk(n)) is a subsequence of (xn), then

e-lim xk{n) = x.
n

The star-convergence corresponding to E is defined as follows:
γίf*-lim£% — x if and only if every subsequence (xkin)) of (xn) contains
.a sub-subsequence (fffc(λ(»))) = x s u c h that ^-lim xk(λ{n)) = x. The
notion of star-convergence was introduced by Urysohn in [11]. A T:-
topology %{^) can also de defined in X by means of (£; it is called the
derivative topology of (£:

(τ) A set K c X is closed relative to £((£) if

K-lim $π = x and xw e iΓ for all n imply xe K.

determines a new sequential convergence which we shall call
the derivative topological convergence: £((£)-lim xn — x if and only
if, for each S(K)-neighborhood U of x, (xn) is eventually in U. In
ordinary cases star-convergence is known to be equivalent with the
derivative topological convergence. According to theorem 6.1 below
this is actually true in the most general case, provided we stick to
our reasonable assumption of uniqueness of limits. The first to observe
the connection between star-convergence and derivative topological
convergence was P. Urysohn [11] who proved a restricted form of
Thm. 6.1, under the severe assumption that © satisfies the following
condition:
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(I) The operator A —•> A defined by Ά — {xeX: there

exists a sequence (xn) in A with (£-lim xn = x}

for every A c X, is idempotent, i.e. Ά = Ά.

The same condition was involved in the proof of Satz 29 of [5], which
dealt with a particular kind of order-convergence in lattice groups
introduced by Kantorovitch in the same paper. Lowig [7, pp. 1191-
1192] removed condition (I) proving the same equivalence for another
particular concept of order-convergence in Boolean algebras. However,
it is easily seen that Lowig's argument, with slight modifications, can
serve to establish the following general theorem.

6.1. THEOREM. (Urysohn [11], Lδwig [7])β Let (£ be an abstract
sequential convergence with unique limits in a set X. Then the
corresponding star-convergence is equivalent to the derivative topo-
logical convergence, i.e., &*-\imxn = x if and only if %(Qίy\imxn=x.

Lowig's argument can be found in [7, pp» 1191-92]. What follows
here is an outline of this argument, with some modifications necessitated
by the fact that the property expressed by condition (22) above is
assumed here for subsequences only and not for rearrangements (see
Lόwig's Thm. 29). First, one shows that if K-lim xn — x, then
£((£)-lim xn — x and x is the only limit of (xn) under the topological
convergence £((£). This latter assertion (uniqueness) is established as
follows: If y Φ x then the set K = {xn: xn Φ y) U {x} is £((£)-closed;
in fact if (an) is a sequence in K with K-lim an = a and if the range
of (an) is infinite then by the definition of K there is a subsequence
of (an) which is of the form xλil), xλi2), xλ(3), - with λ(l)<λ(2)<λ(3)< •;
in other words there exists a sequence which is both a subsequence
of (an) and a subsequence of (xn)o This implies a = xf hence aeK.
If the range of (an) is finite the same conclusion (i.e. a e K) is trivial.
Thus K is indeed 2((£)-closed. The complement of K is a S£(&)~neigh-
borhood of y which fails to contain eventually the terms of the
sequence (xn).

Next we show that £(&)-lim xn — x implies (£*-lim xn = χΦ

Assume, by way of contradiction, that there exists a subsequence {xk(n))
of (xn) no sub-subsequence of which K-converges to χ0 The above
result then can be seen to imply that no subsequence (or rearrangement
of a subsequence) of (xkin)) ©-converges at all. Then the set K =
{#*(*)• χk(n) Φ %} is 2(K)-closed and its complement is a £((£)-neighborhood
of x, but (xk{n)) is eventually outside this neighborhood; a contradiction.

Finally the implication (£*-lim xn = x => ϊ(K)-lim xn — x is easy
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to establish,, This completes the argument.
It follows from Thm. 6.1 that limits of sequences are unique under

the derivative topological convergence. Notice however that the topology
£((£) is not necessarily Hausdorff, i.e., limits of nets may fail to be
unique. Consider for instance the extended real line R and set
E-l im^ = x whenever xn — x for every n (x may be + 00 or — oo),
K-lim xn — Λ-^ whenever (xn) is strictly increasing and ^- l im xn =
— oo whenever (xn) is strictly decreasing. Let A, B be £((£)-open sets
containing + oo and — oo respectively; then A f) B ^ 0 since the
complements Ac and B° are countable. In fact an uncountable set
contains both a strictly increasing and a strictly decreasing sequence,
hence an uncountable £((£)-closed set contains both — oo and — oo # An
immediate consequence of 6.1 is the following theorem:

6.2. THEOREM. An abstract sequential convergence Wwith unique
limits derives from a topology if and only if it satisfies the follow-
ing condition

(23) // (xn) does not converge to x under K, then there is a sub-

sequence (xk(n)) no sub-subsequence of which converges

under (£ to x.

Comparing this theorem with analogous results of Arnold [1] and
Kelley [6] on convergence of arbitrary directed nets we see that,
surprisingly, in the case of ordinary sequences the extra assumption
of uniqueness of limits renders the condition on iterated limits (condition
(iv) at the beginning of the proof of Thm. 5.3) superfluous.

Theorems 6.1 and 6.2 have been recorded here because the author
has been unable to find an explicit statement of these general results
in the literature. It seems that only the obvious implication (£*-lim#% =
x => ί£(S)-lim xn — x is widely known. For instance it is stated in
[2, p. 62] that if (xn) star-converges to a then "it certainly converges
to a in the star topology; moreover . . . this special case is sufficient
for the applications of star-convergence which we have in mind."

In connection with Thm. 6.2 we observe that in general there are
more than one topologies determining the sequential convergence (£.
For instance if (£ is pointwise convergence of sequences of real functions
on [0,1], then the class of Baire functions is £((£)-closed but not closed
relative to pointwise convergence of nets (i.e., relative to the product
topology of i2[0'1]). The topology £((£) is the strongest topology de-
termining (£ and is T\. If there is at least one Hausdorff topology
determining & then a fortiori £((£) is Hausdorff.

If K is an abstract sequential convergence with unique limits on
X which satisfies condition (23), then the sequential convergence E x E
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on X x X defined by:

(a) K x K - lim (xn, yn) = (x, y) if and only if

(£ — lim xn = x and (£ — lim yn — y,

also satisfies condition (23) and hence it derives from a Tropology
£((£ x (£). This topology is stronger than the product topology
£(<£) x £((£) on X x X. (Observe that if A, B are £((£)-open in X
then A x J5 is £((£ x &)-open in I x I ) , It may be strictly stronger.
For instance if £((£) is not Hausdorfΐ, then the diagonal of X x X is
not closed under £((£) x £((£) though it is obviously £((£ x &)-closed.

The assumption of uniqueness of limits plays an important role in
the considerations of the present section. (Let X be an infinite set
and set K-lim xn = x whenever the "range" of (xn) is finite and x is
any element of X. Under £((£) every sequence converges to every
element).
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