THE 2-LENGTH OF A FINITE SOLVABLE GROUP

Fletcher Gross

Abstract

One measure of the structure of a finite solvable group G is its p-length $l_{p}(G)$. A problem connected with this measure is to obtain an upper bound for $l_{p}(G)$ in terms of $e_{p}(G)$, which is a numerical invariant of the Sylow p-subgroups of G. This problem has been solved but the best-possible result is not known for $p=2$. The main result of this paper is that $l_{2}(G) \leqq$ $2 e_{2}(G)-1$, which is an improvement on earlier results. A secondary objective of this paper is to investigate finite solvable groups in which the Sylow 2 -group is of exponent 4 . In particular it is proved that if G is a finite group of exponent 12 , then the 2 -length is at most 2 .

Introduction and discussion of results. The object of this paper is to obtain bounds for the 2-length of a finite solvable group. Following Hall and Higman [4], we call a finite group $G p$-solvable if it possesses a normal series such that each factor group is either a p-group or a p^{\prime}-group. The p-length, $l_{p}(G)$, of such a group is the smallest number of p-groups which can occur as factor groups in such a normal series. $e_{p}(G)$ is defined to be the smallest n such that $x^{p n}=1$ for all x belonging to a Sylow p-subgroup of G.

For an odd prime p, it is proved in [4] that $l_{p}(G) \leqq e_{p}(G)$ if p is not a Fermat prime and $l_{p}(G) \leqq 2 e_{p}(G)$ if p is a Fermat prime. Furthermore these results are best-possible. A. H. M. Hoare [6] then proved that in a 2 -solvable group $G, l_{2}(G) \leqq 3 e_{2}(G)-2$ provided that $l_{2}(G) \geqq 1$. The primary purpose of this paper is to prove the following improvement:

Theorem A. If G is a finite solvable group and $l_{2}(G) \geqq 1$, then $l_{2}(G) \leqq 2 e_{2}(G)-1$.

Feit and Thompson [1] have proved that solvability and 2-solvability are equivalent notions for finite groups. Thus no loss of generality is involved in requiring G to be solvable in the theorem.

Theorem A will be shown to be an easy consequence of the following theorem about linear groups:

Theorem B. Let G be a finite solvable linear group over a field

[^0]F of characteristic 2 and assume G has no nontrivial normal 2subgroup. Then if N is the largest normal 2^{\prime}-subgroup of G and if g is an exceptional element of order 2^{m} in G, it follows that $g^{2 m-1}$ is in the largest normal 2-subgroup of G / N.

Here, following [4], an element x of order p^{n} in a linear group over a field of characteristic p is said to be exceptional if $(x-1)^{p n-1}=0$.

Whether or not Theorem A represents a best-possible result is not known, but it seems likely that further improvements can be made. Indeed, the author knows of no group whose 2-length exceeds its 2 -exponent. In the special case of finite solvable groups satisfying $e_{2}(G)=2$, i.e., solvable groups whose Sylow 2 -subgroups are of exponent 4, I think it likely that $l_{2}(G) \leqq 2$ instead of the bound $l_{2}(G) \leqq 3$ furnished by Theorem A.

In § 4 of this paper, groups satisfying $e_{2}(G)=2$ are studied in more detail. A sufficient condition for $l_{2}(G) \leqq 2$ in this special case is established, and, as an application, we prove that $l_{2}(G) \leqq e_{2}(G)$ if G is a finite group of exponent 12.
2. Proof of Theorem A from Theorem B. For the rest of this paper we adopt the convention that all groups referred to are assumed finite, and, if G is such a group, then $|G|$ denotes its order. If H is a normal subgroup of G, we write $H \triangleleft G$.

We now recall the definition of the upper 2 -series of the solvable group G :

$$
1=P_{0} \leqq N_{0}<P_{1}<N_{1}<\cdots<P_{l} \leqq N_{l}=G
$$

Here N_{k} / P_{k} is defined to be the greatest normal 2^{\prime}-subgroup of G / P_{k} and P_{k+1} / N_{k} the greatest normal 2 -subgroup of G / N_{k}. The least integer l such that $N_{l}=G$ is the 2 -length $l_{2}(G)$. (If there is no danger of confusion we write simply l_{2}.)

It is proved in [4] that the automorphisms of P_{1} / F, where F / N_{0} is the Frattini subgroup of P_{1} / N_{0}, induced by G represent G / P_{1} faithfully. Thus G / P_{1} is faithfully represented as a linear group operating on P_{1} / F (P_{1} / F is an elementary abelian 2-group and so is considered as a vector space over the field with 2 elements).

Now if $l_{2}(G)=1$, the conclusion of A is trivial. Also the p-length group is at most equal to the class of a Sylow p-subgroup [4, Theorem 1.2.6]. An immediate consequence of this is that if G is solvable and $e_{2}(G)=1$, then $l_{2}(G)=1$. Thus $l_{2}=2$ implies that $e_{2} \geqq 2$ so the result again follows. Now if $l_{2}>2$, then $l_{2}\left(G / P_{2}\right)=l_{2}(G)-2 \geqq 1$ so that Theorem A would follow by induction on l_{2} if we could prove that
$e_{2}\left(G / P_{2}\right) \leqq e_{2}(G)-1$.
Now suppose g is an element of maximal order 2^{m} in a Sylow 2-Sylow subgroup of G / P_{1}. If g is not exceptional, then [4, Lemma 3.1.2] we have $e_{2}(G) \geqq m+1$. If g is exceptional, then, since G / P_{1} satisfies the hypothesis of Theorem $\mathrm{B}, g^{2 m-1}$ is in P_{2} / P_{1} if Theorem B is true. Thus, assuming the validity of B, we obtain in all cases $e_{2}\left(G / P_{2}\right) \leqq e_{2}(G)-1$ and Theorem A follows.
3. Proof of Theorem B. Neither the hypothesis nor the conclusion of the theorem is affected by an extension of the field F. Hence, without loss of generality, we assume that F is algebraically closed. Since an element of order 2 cannot be exceptional, m must be greater than 1. Let $\mathrm{h}=g^{2 m-2}$ and so $h^{2}=g^{2 m-1}$.

In proving B we will define subgroups H and H_{1} such that $H \triangleleft G, H_{1} \triangleleft H, h^{2} \in H_{1}$, and g normalizes H_{1}. It then will be shown that if x is any element in the largest normal 2-subgroup of $H_{1} / H_{1} \cap N$ then $\left(h^{2}, x\right)=(h, x)^{2}$. From this it will follow that h^{2} is in the largest normal 2-subgroup of $H_{1} / H_{1} \cap N$, and, finally, from this the theorem will follow.

First we need two lemmas which are of use later and which motivate the definition of H. Here, and elsewhere, we denote the space on which G operates by V.

Lemma 3.1. If Q is any 2^{\prime}-subgroup of G which is normalized by g, then h^{2} fixes every minimal characteristic $F-Q$ submodule of V.

Proof. A minimal characteristic $F-Q$ submodule is simply the join of all those $F-Q$ submodules operator isomorphic to a given irreducible $F-Q$ submodule. Now if Q is a 2^{\prime}-group, V can be written as the direct sum of the minimal characteristic $F-Q$ submodules. g normalizes Q so g must permute the minimal characteristic $F-Q$ submodules. If the lemma were not true, then g, as a permutation of these submodules, would have a cycle of length 2^{m} which would contradict the assumption that g is exceptional.

Lemma 3.2. If Q is any abelian 2'-subgroup of G and x is any element of G normalizing Q and fixing every minimal characteristic $F-Q$ submodule of V, then x centralizes Q.

Proof. Let V_{i} be any minimal characteristic $F-Q$ submodule of V. Since Q is abelian and F is algebraically closed, Q operates on V_{i} as a scalar multiplication, i.e., if $y \in Q$ and $v \in V_{i}$ then $y v=\chi_{i}(y) v$ where $\chi_{i}(y)$ is a scalar. We now obtain

$$
\chi_{i}\left(x^{-1} y x\right) v=x^{-1} y(x v)=x^{-1} \chi_{i}(y) x v=\chi_{i}(y) v
$$

Thus (y, x) is the identity on V_{i} for all $y \in Q$ and the lemma follows.
Now let H be the normal subgroup of G consisting of all elements which fix every minimal characteristic $F-Q$ submodule for every normal 2 -subgroup Q. Since the largest normal 2 -subgroup and the largest normal 2^{2}-subgroup of H are normal in G, we see that H has no normal 2 -subgroup greater than the identity and the largest normal 2^{\prime}-subgroup of H is $H \cap N$. By Lemma $3.1 h^{2}$ must belong to H.

Let M be the largest normal nilpotent subgroup of H. Clearly M is a 2^{\prime}-group and $M \triangleleft G$. Furthermore, since H is solvable, M contains its own centralizer in H [2].

Lemma 3.3. M is of class 2.

Proof. Since $h^{2} \in H, h^{2}$ does not centralize M. Thus by Lemmas 3.1 and 3.2, M is not abelian. Now let c be the class of M and suppose $c \geqq 3$. Then if $\Gamma_{i}(M)$ is the i th term in the lower central series of $M\left(\Gamma_{1}(M)=M\right.$ and $\left.\Gamma_{i+1}(M)=\left(\Gamma_{i}(M), M\right)\right)$ and if d is the first integer $\geqq(c+1) / 2$, we have [3, Chap. 10]

$$
\left(\Gamma_{d}(M), M\right)=\Gamma_{d+1}(M) \neq 1(\text { since } d \leqq c-1)
$$

and

$$
\left(\Gamma_{d}(M), \Gamma_{a}(M)\right) \leqq \Gamma_{2 d}(M)=1
$$

Thus $\Gamma_{d}(M)$ is abelian and, of course, normal in G but is not centralized by M. From Lemma 3.2 and the definition of H we see that this is impossible, and so $c=2$.
$M=M_{1} \times M_{2} \times \cdots$ where M_{i} is the Sylow q_{i}-subgroup of M and q_{i} is an odd prime. Each M_{i} is of class at most 2 and so M_{i} is a regular q_{i}-group [3, p. 183]. Then the elements of order at most q_{i} form a characteristic subgroup K_{i} of M_{i}. Let $K=K_{1} \times K_{2} \times \cdots$ An automorphism of M_{i} of order prime to q_{i} centralizes K_{i} only if it is the identity automorphism [7, Hilfssatz 1.5]. Therefore no 2-element of H, except for the identity, centralizes K. Hence K cannot be abelian (since h^{2} is a nonidentity 2 -element of H) and so K must be of class 2.

We now are prepared to define the subgroup H_{1}. For this purpose decompose V for each K_{i} into the sum

$$
V=V_{i 1} \oplus V_{i 2} \oplus \cdots
$$

where the $V_{i j}$ are the minimal characteristic $F-K_{i}$ submodules. Let
$C_{i j}=\left\{x \mid x \in H\right.$ and $\left(K_{i}, x\right)=1$ on $\left.V_{i j}\right\} . \quad \mathrm{C}_{i j}$ is a normal subgroup of H although not necessarily normal in G.

Take H_{1} to be the intersection of all the $C_{i j}$ which contain h^{2}. If h^{2} is not in any $C_{i j}$ then set H_{1} equal to H. In any event $H_{1} \triangleleft H$ and H_{1} is normalized by g. As was the case with H, H_{1} has no normal 2 -subgroup greater than the identity and the greatest normal 2^{\prime}-subgroup is $H_{1} \cap N$.

Now let P be a 2-subgroup of H_{1} such that P and g belong to the same Sylow 2 -subgroup of G and $P\left(H_{1} \cap N\right) /\left(H_{1} \cap N\right)$ is the largest normal 2-subgroup of $H_{1} /\left(H_{1} \cap N\right)$. Since, modulo N, P is normalized by g, it follows that g normalizes P.

Lemma 3.4. If $x \in P$, then $\left(h^{2}, x\right)=(h, x)^{2}$.
Proof. First we show that this lemma finishes the proof of Theorem B: h normalizes P so that $(h, x)^{2} \in \Phi(P)$ where $\Phi(P)$ is the Frattini subgroup of P. Thus the lemma implies that h^{2} centralizes $P / \Phi(P)$. Therefore from [4] we conclude that $h^{2} \in P$. Since h^{2} is in the greatest normal 2-subgroup of $H_{1} /\left(H_{1} \cap N\right)$, it follows that h^{2} is in the greatest normal 2 -subgroup of $H /(H \cap N)$ from which the conclusion of Theorem B follows.

To prove the lemma, let $k=\left(h^{2}, x\right)(h, x)^{-2}$ and suppose $k \neq 1$. Since k cannot centralize $K,\left(K_{i}, k\right)$ is not the identity on some $V_{i j}$. Since $k \in H_{1}$, we must have (K_{i}, h^{2}) also not the identity on $V_{i j}$. (This last statement is the motivation for our choice of H_{1}).

In what follows let $V^{\prime}=V_{i j}, q=q_{i}$, and Q, x_{1}, k_{1} the restrictions of K_{i}, x, k, respectively, to V^{\prime}. Let $g^{2^{m-n}}$ be the first power of g fixing V^{\prime} and let g_{1} be the restriction of $g^{2 m-n}$ to V^{\prime}. Now h^{2} is not the identity on V^{\prime} and $[4, \mathrm{p} .13] g_{1}$ must be exceptional

$$
\text { (i.e., } \quad\left(g_{1}-1\right)^{2^{n-1}}=0 \text {) }
$$

and thus n must be at least 2. Let $h_{1}=g_{1}^{2 n-2}$. $k_{1}=\left(h_{1}^{2}, x_{1}\right)\left(h_{1}, x_{1}\right)^{-2}$ and both $\left(Q, h_{1}^{2}\right)$ and $\left(Q, k_{1}\right)$ are not the identity.

Since g_{1} is exceptional and $\left(Q, h_{1}^{2}\right) \neq 1, Q$ cannot be abelian. Thus Q must be of class 2. V^{\prime} is the sum of absolutely irreducible $F-Q$ submodules all of which are operator isomorphic to each other. Hence $Z(Q)$, the center of Q, is cyclic and is generated by a scalar matrix. Since Q is of exponent q and $Q^{\prime} \neq 1$, we see that

$$
Z(Q)=Q^{\prime}=\Phi(Q)
$$

and so Q is an extra-special q-group [4, p. 15]. We note also that if S is the 2 -group generated by x_{1} and g_{1}, then $(Z(Q), S)=1$ since $Z(Q)$ is generated by a scalar matrix.

Now let $V^{\prime \prime}$ be an irreducible $F-Q S$ submodule of $V^{\prime} . V^{\prime \prime}$ is an irreducible $F-Q$ module [4, Lemma 2.2.3], and V^{\prime} is the sum of $F-Q$ modules operator isomorphic to $V^{\prime \prime}$. Thus $\left(Q, h_{1}^{2}\right) \neq 1$ on $V^{\prime \prime}$ and g_{1} is exceptional on $V^{\prime \prime}$. From [4, Theorem 2.5.4] we have the following:
(1) $2^{n}-1$ is a power of q, and
(2) if g_{1} is faithfully and irreducibly represented on Q_{1} / Q^{\prime} (such a Q_{1} can always be found since h^{2} is not the identity on Q / Q^{\prime}), then Q can be written as the central product of Q_{1} and a group Q_{2} and g_{1} transforms Q_{2} trivially. It now follows [6] that $2^{n}-1=q$ and $\left|Q_{1} / Q^{\prime}\right|=q^{2}$.

The representation of Q on $V^{\prime \prime}$ is isomorphic to the representation of Q on V^{\prime} so that $\left(g_{1}, Q_{2}\right)=1$ on $V^{\prime \prime}$ implies that $\left(g_{1}, Q_{2}\right)=1$. Thus the centralizer of g_{1} in the space Q / Q^{\prime} has co-dimension 2 over $G F(q)$. The minimal equation of h_{1} on Q_{1} / Q^{\prime} must be $t^{2}+1=0$ so that h_{1}^{2} must have the representation

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

on Q_{1} / Q^{\prime}. We now can conclude that for every power of g_{1} (except for the identity, of course), the co-dimension of its centralizer in Q / Q^{\prime} is 2 . Also, since $q \equiv 3(\bmod 4), G F(q)$ contains no primitive 4 th root of unity. Thus if $n \neq 2$ then in the completely reduced representation of g_{1}^{2} on Q / Q^{\prime} there is only one nontrivial block. If $n=2$, there are two nontrivial blocks.

Now if c is a generator of Q^{\prime}, define $\rho(a, b)$ for $a, b \in Q$ by the equation

$$
(a, b)=c^{\rho(a, b)}
$$

$\rho(a, b)$ is bilinear and skew symmetric and gives Q / Q^{\prime} the structure of a symplectic space over $G F(q)$ [4].
ρ is of maximum rank since $Q^{\prime}=Z(Q)$ so Q / Q^{\prime} must have dimension $2 r$. Since $\left(S, Q^{\prime}\right)=1, S$ preserves the symplectic structure of Q / Q^{\prime}. Thus the representation of S on Q / Q^{\prime} may be considered as a subgroup of a Sylow 2 -subgroup of the symplectic group on Q / Q^{\prime}.
Q / Q^{\prime} is of dimension $2 r$ over $G F(q)$ so that Q / Q^{\prime} can be provided with the structure of a vector space U of dimension r over $G F\left(q^{2}\right)$. If u_{1}, \cdots, u_{r} is a basis for U, the expression [4]

$$
\rho\left(\Sigma \alpha_{i} u_{i}, \Sigma \beta_{i} u_{i}\right)=\Sigma\left(\alpha_{i} \beta_{i}^{\prime}-\alpha_{i}^{\prime} \beta_{i}\right) / \gamma,
$$

where $\alpha^{\prime}=\alpha^{q}$ and γ is a primitive 4 th root of unity, is a skew symmetric bilinear form on U of rank $2 r$ with values in $G F(q)$.

Let θ be a primitive 2^{n+1}-th root of unity in $G F\left(q^{2}\right)$ and let T be
the group of transformations of $G F\left(q^{2}\right)$ generated by the two transformations $\alpha \rightarrow \theta^{2} \alpha$ and $\alpha \rightarrow \theta \alpha^{\prime}$. All transformations \boldsymbol{y} of U of the form

$$
\boldsymbol{y}\left(\Sigma \alpha_{i} u_{i}\right)=\Sigma\left(T_{\imath} \alpha_{i}\right) u_{\sigma(\imath)},
$$

where the T_{i} are taken from T and σ is a permutation taken from a Sylow 2 -subgroup of the symmetric group on the numbers $1,2, \cdots, r$, form a Sylow 2 -subgroup of the Symplectic group on Q / Q^{\prime} [4].

Thus we may assume that $\boldsymbol{x}_{1}, \boldsymbol{g}_{1}, \boldsymbol{h}_{1}$, the representations of x_{1}, g_{1}, h_{1}, respectively, on Q / Q^{\prime}, are of this form. Since $\left(Q, h_{1}^{2}\right) \neq 1$ and $\left(Q, k_{1}\right) \neq 1$, we have $\boldsymbol{h}_{1}^{2} \neq 1$ and $\left(\boldsymbol{h}_{1}^{2}, \boldsymbol{x}_{1}\right) \neq\left(\boldsymbol{h}_{1}, \boldsymbol{x}_{1}\right)^{2}$. We now need more information on \boldsymbol{g}_{1}.

Lemma 3.5. The permutation σ associated with \boldsymbol{g}_{1} is the identity permutation.

Proof. σ is of order less than the order of g_{1} from [4, p. 23]. First suppose σ is of order >2. Then $n>2$ and so the representation of g_{1}^{2} on Q / Q^{\prime} has only one nontrivial irreducible block. But the permutation associated with \boldsymbol{g}_{1}^{2} is σ^{2} which has at least 2 disjoint nontrivial cycles. Clearly this is a contradiction. Thus $\sigma^{2}=1$.

Now suppose $\sigma \neq 1$. Assume, say, $\sigma(1)=2, \sigma(2)=1$. The representation of g_{1} on Q / Q^{\prime} has only one nontrivial irreducble block so \boldsymbol{g}_{1} must be the identity on

$$
\sum_{i \neq 1,2} \alpha_{i} u_{i}
$$

Now $\boldsymbol{g}_{1}^{2}\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}\right)=T_{2} T_{1} \alpha_{1} u_{1}+T_{1} T_{2} \alpha_{2} u_{2}$ and so one of $T_{2} T_{1}$ or $T_{1} T_{2}$ must not be the identity of T. But then neither one can be the identity. Therefore the representation of Q / Q^{\prime} would have 2 nontrivial irreducible blocks. This can happen only if $n=2$. This implies that $T_{2} T_{1}$ and $T_{1} T_{2}$ are of order 2 and thus must equal the transformation $\alpha \rightarrow-\alpha$. (This is the only element of order 2 in T.) Thus the centralizer of g_{1}^{2} in Q / Q^{\prime} has co-dimension 4 over $G F(q)$ whereas it should have co-dimension 2 . This proves that $\sigma=1$.

Hence \boldsymbol{g}_{1} fixes each u_{i} and must act trivially on α_{i} for all but one value of $i, i=1$, say. Therefore

$$
\boldsymbol{g}_{1}\left(\Sigma \alpha_{i} u_{i}\right)=A \alpha_{1} u_{1}+\sum_{i \neq 1} \alpha_{i} u_{i}
$$

where A is an element of order 2^{n} in T. Then

$$
\boldsymbol{h}_{1}\left(\Sigma \alpha_{i} u_{i}\right)=A^{2 n-2} \alpha_{1} u_{1}+\sum_{i \neq 1} \alpha_{i} u_{i}
$$

and

$$
\boldsymbol{h}_{1}^{2}\left(\Sigma \alpha_{i} u_{i}\right)=-\alpha_{1} u_{1}+\sum_{i \neq 1} \alpha_{i} u_{i}
$$

We may assume that

$$
\boldsymbol{x}_{1}\left(\Sigma \alpha_{i} u_{i}\right)=\Sigma T_{i} \alpha_{i} u_{\pi(i)}
$$

Case 1. $\pi(1) \neq 1$. Assume, say, that $\pi^{-1}(1)=2$. Straight forward calculation yields

$$
\left(\boldsymbol{h}_{1}, \boldsymbol{x}_{1}\right)\left(\Sigma \alpha_{i} u_{i}\right)=A^{-2^{n-2}} \alpha_{1} u_{1}+T_{2}^{-1} A^{2 n-2} T_{2} \alpha_{2} u_{2}+\sum_{i \neq 1,2} \alpha_{i} u_{i} .
$$

But $A^{2 n-1}$ is the unique element of order 2 in T. Thus

$$
\left(\boldsymbol{h}_{1}, \boldsymbol{x}_{1}\right)^{2}\left(\Sigma \alpha_{i} u_{i}\right)=-\alpha_{1} u_{1}-\alpha_{2} u_{2}+\sum_{i \neq 1,2} \alpha_{i} u_{i}
$$

and it is easily verified that this is the same result as ($\boldsymbol{h}_{1}^{2}, \boldsymbol{x}_{1}$).
Case 2: $\pi(1)=1$. In this case we easily find that ($\left.\boldsymbol{h}_{1}^{2}, \boldsymbol{x}_{1}\right)$ is the identity while

$$
\left(\boldsymbol{h}_{1}, \boldsymbol{x}_{1}\right)^{2}\left(\Sigma \alpha_{i} u_{i}\right)=\left(A^{2 n-2}, T_{1}\right)^{2} \alpha_{1} u_{1}+\sum_{i \neq 1} \alpha_{i} u_{i} .
$$

Now the group T easily is seen to be a generalized quaternion group of order 2^{n+1} so that the only conjugates of A in T are A and A^{-1}. Thus

$$
\left(A^{2 n-1}, T_{1}\right)^{2}=A^{2 n-1} T_{1}^{-1}\left(A^{2 n-1}\right) T_{1}=1 .
$$

Thus ($\boldsymbol{h}_{1}, \boldsymbol{x}_{\mathbf{1}}$) is also the identity.
Therefore it has been shown that

$$
\left(\boldsymbol{h}_{1}, \boldsymbol{x}_{1}\right)^{2}=\left(\boldsymbol{h}_{1}^{2}, \boldsymbol{x}_{1}\right)
$$

in all cases. This completes the proof of lemma 3.4, and, by a previous argument, Theorem B now is proved.
4. Groups with $e_{2}=2$. If G is a solvable group whose Sylow 2 -groups are of exponent 4 , then we know from Theorem A that $l_{2}(G) \leqq 3$. We now investigate conditions for $l_{2}(G) \leqq 2$ to hold. The argument is similar to that used in proving Theorem B, but a more restrictive hypothesis is needed. That no loss of generality is involved in assuming the stronger hypothesis is insured by the following reduction theorem, which is stated in a slightly more general form than needed.

A proposition R will be said to be of type 4.1 if it is of the following form:

If G is a finite p-solvable group satisfying condition C, then
$l_{p}(G) \leqq f\left(e_{p}(G)\right)$, where f is a monotonically increasing function defined for nonnegative integral arguments, $f(0)=0$, and condition C either is vacuous or states that $e_{p_{i}}(G) \leqq a_{i}$ for some set, possibly infinite, of primes p_{i} and nonnegative integers a_{i}.

Note that the proposition that $l_{2}(G) \leqq e_{2}(G)$ if G is a finite solvable group satisfying $e_{2}(G) \leqq 2$ is of type 4.1. One of the results of this section is that $l_{2}(G) \leqq e_{2}(G)$ if G is a finite group of exponent 12 . This statement is also of type 4.1 since the condition that G be of exponent 12 is equivalent to stating that $e_{2}(G) \leqq 2, e_{3}(G) \leqq 1$, and $e_{p}(G) \leqq 0$ for all other primes.

Theorem 4.1. To prove a proposition R of type 4.1 it is sufficient to prove the proposition for the following special case:
(1) G is the normal product of V by G_{1} where V is a vector space over F, a finite field of characteristic p, and G_{1} is a p-solvable linear group on V having no normal p-subgroup other than the identity.
(2) Any irreducible representation of any p^{\prime}-subgroup of G_{1} over F is in fact absolutely irreducible.
(3) All groups of order at most $\left|G_{1}\right|$ satisfy R.
(4) V is an irreducible $F-G_{1}$ module.

Proof. In proving this theorem we assume R is valid for the special case and then prove it is valid for the general case.

Now suppose G is the group of smallest order which satisfies the hypothesis but not the conclusion of R, and let

$$
1=P_{0} \leqq N_{0}<P_{1}<\cdots<P_{l} \leqq N_{l}=G
$$

be the upper p-series of G. Since $f(0)=0$ we must have $l_{p}(G)>0$. If F_{1} / N_{0} is the Frattini subgroup of P_{1} / N_{0}, then, as is shown in [4], $l_{p}\left(G / F_{1}\right)=l_{p}(G)$ so that if $F_{1} \neq 1$ we would have a proper factor group of G satisfying the hypothesis but not the conclusion of R.

Hence assume $F_{1}=1$. Thus P_{1} is an elementary abelian p-group which we identify with a vector space V_{1} over $G F(p) . G / P_{1}$ is faithfully represented as a linear group G_{1} on V_{1} and G_{1} has no normal p-group greater than the identity.

From [4, p. 4] we may assume that G has only one minimal normal subgroup. This subgroup must be contained in V_{1} and we denote it with M. If $M \neq V_{1}$ and G_{1} is faithfully represented on V_{1} / M then we have $l_{p}(G / M)=l_{p}(G)$ so that we would have a contradiction to the minimality of G.

Now suppose $M \neq V_{1}$ and G_{1} is not faithfully represented on V_{1} / M.

Then the elements of G_{1} centralizing V_{1} / M form a normal subgroup of G_{1} greater than the identity. If Q is a minimal normal subgroup of G_{1} centralizing V_{1} / M, then Q must be a p^{\prime}-group so that V as a Q-module is completely reducible. Thus there exists a Q-module M_{1} such that $V_{1}=M \oplus M_{1} . \quad Q$ is the identity on M_{1} but not on M since Q is faithfully represented on V_{1}. Now if M_{2} is the centralizer of Q in V_{1} then M_{2} is normal in G, M_{2} is not the identity, and M_{2} does not contain M. This contradicts the minimality of M.

Thus we see that $M=V_{1}$ which implies that G_{1} is irreducibly represented on V_{1}. A consequence of this is that if H is any normal subgroup greater than the identity in G_{1} then H can have no nonzero fixed vector in V_{1} Otherwise all the vectors fixed by H would form a nontrivial submodule of V_{1}.

Now pick F to be a large enough finite extension of $G F(q)$ such that any irreducible representation of any p^{\prime}-subgroup of G_{1} over F is absolutely irreducible. Let $1=\theta_{0}, \theta_{1}, \cdots, \theta_{r}$ be a basis for F over $G F(p)$ and let $v_{1}, v_{2}, \cdots, v_{s}$ be a basis for V_{1} over $G F(p)$. Finally let V be the vector space over F with basis v_{1}, \cdots, v_{s}, i.e., the vectors of V are the formal sums

$$
\sum_{j=1}^{s} \sum_{i=0}^{r} c_{i j} \theta_{i} v_{j}
$$

where $c_{i j} \in G F(p) . \quad G_{1}$ acts on V in the obvious way.
Consider the group $G^{*}=G_{1} V$, i.e., the normal product of V by G_{1}. If g^{*} is of order p^{m} in G^{*} then either the image g of g^{*} in G_{1} is of order p^{m} or g is of order p^{m-1} and g is not exceptional on V. In the latter case $(g-1)^{p^{m-1}} v_{i} \neq 0$ for some v_{i} from which it follows that g is not exceptional on V_{1}. Thus $e_{p}(G) \geqq(m-1)+1=m$.

Therefore in any event $e_{p}(G) \geqq e_{p}\left(G^{*}\right)$. Since $e_{q}\left(G^{*}\right)=e_{q}(G)$ for $q \neq p, G^{*}$ satisfies condition C. Furthermore $l_{p}(G)=l_{p}\left(G^{*}\right)$ so that if G^{*} satisfies R so does G.

Now suppose H is any normal p^{\prime}-subgroup other than the identity in G_{1} and suppose

$$
v=\sum_{j=1}^{s} \sum_{i=0}^{r} c_{i j} \theta_{i} v_{j}
$$

is a nonzero vector fixed by H. Since $v \neq 0$ the coefficient of v_{j} is not zero for some $j, j=1$ say. Then there exists $\alpha \in F$ such that $\alpha\left(\sum_{i=0}^{r} c_{i 1} \theta_{1}\right)=1$. H must fix αv which can be written in the form $\alpha v=v^{\prime}+v^{\prime \prime}$ where

$$
v^{\prime}=v_{1}+\sum_{j=2}^{s} c_{0 j}^{\prime} v_{j}, v^{\prime \prime}=\sum_{j=2}^{s} \sum_{i=1}^{r} c_{i j}^{\prime} \theta_{i} v_{j}
$$

For H to fix αv it must also fix v^{\prime} which contradicts the fact that
H has no nonzero fixed vector in V_{1}. Thus H has no nonzero fixed vector in V.

If V is an irreducible $F-G_{1}$ module then we have arrived at the special case of the theorem. Therefore assume U is a proper submodule.

If G_{1} is not faithfully represented on V / U, then let Q be a minimal normal subgroup of G_{1} centralizing $V / U . Q$ must be a p^{\prime}-group so that V is completely reducible as an $F-Q$ module. Thus there exists a nontrivial $F-Q$ submodule on which Q is the identity. This is impossible since Q can have no nonzero fixed vector.

Hence G_{1} is faithfully represented on V / U. Thus $l_{p}\left(G^{*}\right)=l_{p}\left(G^{*} / U\right)$ and, of course, $e_{p}\left(G^{*}\right) \geqq e_{p}\left(G^{*} / U\right)$ so that if G^{*} / U satisfies R so does G^{*} and then so does G.

We still have that any normal nonidentity p^{\prime}-subgroup H of G_{1} has no nonzero fixed vector in V / U since V is completely reducible as an $F-H$ module. Therefore if G_{1} is not irreducibly represented on V / U then the same argument as before yields that G_{1} is faithfully represented on a nontrivial factor module of V / U. Continuing in this way we ultimately arrive at the special case where G_{1} is faithfully and irreducibly represented on some vector space over the field F. This finishes the proof of Theorem 4.1.

Among the results we now shall prove is that if G is of exponent 12 then $l_{2}(G) \leqq e_{2}(G)$. Before doing this it might be well to justify this work. For in a group of order $2^{a} 3^{b}$ the 2 -length and the 3 -length can vary at most by one. Thus if it were true that the 3 -length of a group of exponent 12 was one, then it would be trivial to state that the 2-length was at most two. However in [5, p. 5] is found an example of a group of exponent 12 but with 3 -length two.

For the rest of this paper we make the following standing assumptions.
(1) $G=G_{1} V$, the normal product of V by G_{1}, where V is a vector space over a finite field F of characteristic 2 and G_{1} is a finite, solvable linear group having no normal 2 -subgroup other than the identity.
(2) V is an irreducible $F-G_{1}$ module.
(3) Any representation over F of any p^{\prime}-subgroup of G_{1} is absolutely irreducible.
(4) $\quad e_{2}(G) \leqq 2$.

We are interested in seeing under what conditions can $l_{2}(G)$ exceed $e_{2}(G)$. But if $e_{2}\left(G_{1}\right)=0$ then both $e_{2}(G)$ and $l_{2}(G)$ are 1 , and if $e_{2}\left(G_{1}\right)=1$ then $l_{2}\left(G_{1}\right)=1$ so that $l_{2}(G)=e_{2}(G)=2$. Thus we may as well assume
(5) $\quad e_{2}\left(G_{1}\right)=2$.

Later we shall add to these assumptions the further one that G is of exponent 12. Actually, until we restrict ourselves to groups of exponent 12 , we will make no use of the fact that G_{1} is irreducibly represented on V.

Now let N be the largest normal 2^{\prime}-subgroup of G_{1}. We shall show that a certain 2 -subgroup, to be described later, must be contained in the greatest normal 2 -subgroup of G_{1} / N. In particular if $l_{2}(G)>2$ (which is the same as $l_{2}\left(G_{1}\right)>1$), we shall see that there must exist. an element of order 4 of a special type in G_{1}.

First let H be the following normal subgroup of $G_{1}: x \in H$ if, and only if, for every normal nilpotent subgroup Q of class at most 2 in G_{1}, x fixes every minimal characteristic $F-Q$ submodule of V. A normal nilpotent subgroup of G_{1} must be a 2^{\prime}-group so that V splits into the sum of minimal characteristic $F-Q$ modules.

From (5) there are elements of order 4 in G_{1}, and from (4) all such elements must be exceptional. Thus if g is of order 4 in G_{1} then g^{2} must be in H by lemma 3.1. Hence H is greater than the identity. H has no normal 2-subgroup except for the identity and the largest normal 2^{\prime}-subgroup is $H \cap N$.

Let D be the greatest normal nilpotent subgroup of $H . D=$ $D_{1} \times D_{2} \times \cdots$ where D_{i} is a Sylow q_{i}-subgroup of D for an odd prime q_{i}. H centralizes any normal abelian subgroup of G_{1} so that, by the proof of Lemma 3.3, we obtain $c(D)=2$. Now, as before, let K_{i} be the subgroup of D_{i} consisting of all elements of order at most q_{i} and let $K=K_{1} \times K_{2} \times \cdots$ We again have that no non-identity 2-element of H centralizes K.

Now take H_{1} to be the subgroup of G_{1} consisting of all elements which fix every minimal characteristic $F-K_{i}$ module for all i. $H_{1} \triangleleft G_{1}$, and, since $c\left(K_{i}\right) \leqq 2, H \leqq H_{1}$. H_{1} has no normal 2 -subgroup except for the identity and its greatest normal 2^{\prime}-subgroup is $H_{1} \cap N$.

Let P be a Sylow 2 -subgroup of $H_{1} . \quad P \neq 1$ since if g is any element of order 4 in G_{1} then $g^{2} \in H$. Now the square of any element of P must be in H. Thus $P /(P \cap H)$ is of exponent 2 and thus abelian. Therefore $P^{\prime}<H$. We now prove two lemmas which enable us to show directly that $P N / N$ is normal in G_{1} / N.

Lemma 4.2. Suppose that g and h are two elements of P and V^{\prime} is a minimal characteristic $F-K_{i}$ submodule of V. Let Q, g_{1}, and h_{1} be the restrictions of K_{i}, g, and h, respectively, to V^{\prime}. Then if $\left(Q, h_{1}^{2}\right)=1$ it follows that $\left(Q,\left(g_{1}, h_{1}\right)\right)=1$.

Proof. Assume $\left(Q,\left(g_{1}, h_{1}\right)\right) \neq 1$. Therefore neither g_{1} nor h_{1} central-
izes Q. If $\left(Q, g_{1}^{2}\right)=1$, then straight forward calculation yields

$$
\begin{aligned}
& \left(Q,\left(g_{1} h_{1}\right)^{2}\right)=\left(Q,\left(g_{1}, h_{1}\right)\right) \neq 1, \\
& \left(Q,\left(g_{1} h_{1}, h_{1}\right)\right)=\left(Q,\left(g_{1} h_{1}\right)^{-1}\right) \neq 1 .
\end{aligned}
$$

'Thus, replacing g_{1} by $g_{1} h_{1}$ if $\left(Q, g_{1}^{2}\right)=1$, we may assume that $\left(Q, g_{1}^{2}\right) \neq 1$ along with $\left(Q, h_{1}^{2}\right)=1$ and $\left(Q,\left(g_{1}, h_{1}\right)\right) \neq 1$.

Now exactly as in the proof of Lemma 3.4 we obtain that Q is an extra special q-group (actually $q=3$ since g_{1} is of order 4 and thus exceptional so that $4-1$ must be a power of q), Q / Q^{\prime} is a symplectic space, g_{1} and h_{1} preserve the symplectic structure of Q / Q^{\prime}, and we may assume that g_{1} and h_{1} operate on Q / Q^{\prime} as follows:

$$
\begin{aligned}
& \boldsymbol{g}_{1}\left(\Sigma \alpha_{i} u_{i}\right)=A \alpha_{1} u_{1}+\sum_{i \neq 1} \alpha_{i} u_{i}, \\
& \boldsymbol{h}_{1}\left(\Sigma \alpha_{i} u_{i}\right)=\Sigma T_{i} \alpha_{i} u_{\sigma(i)},
\end{aligned}
$$

where σ is a permutation of order $\leqq 2$ (since $\left(Q, h_{1}^{2}\right)=1$), and A and the T_{i} are chosen from a group isomorphic to the quaternion group of order 8 (since $q=3$). In addition A must be of order 4 since $\left(Q, g_{1}^{2}\right) \neq 1$.

If σ does not fix 1 then $\left(\boldsymbol{g}_{1}, \boldsymbol{h}_{1}\right)$ would be of order 4 but its centralizer in Q / Q^{\prime} would have co-dimension 4 over $G F(3)$. Thus ($\left.\boldsymbol{g}_{1}, \boldsymbol{h}_{1}\right)$ would be of order 4 but not exceptional which is impossible.

Hence σ fixes 1 and, since $\left(Q, h_{1}^{2}\right)=1$, we must have

$$
\boldsymbol{h}_{1}\left(\Sigma \alpha_{i} u_{i}\right)= \pm \alpha_{1} n_{1}+\sum_{i \neq 1} T_{i} \alpha_{i} u_{\sigma(i)} .
$$

It is now an easy matter to verify that $\left(\boldsymbol{g}_{1}, \boldsymbol{h}_{1}\right)=1$ and the lemma is proved.

Corollary. If $g, h \in P$ and $h^{2}=1$, then $(g, h)=1$.

Proof. (g, h) is in P^{\prime} and thus in H. So if $(g, h) \neq 1$ then $\left(K_{i},(g, h)\right) \neq 1$ for some K_{i}. Then lemma states that this cannot happen.

Lemma 4.3. If $g, h \in P$, then $(g, h)^{2}=1$.

Proof. Suppose that $(g, h)^{2} \neq 1$. Then for some $K_{i},\left(K_{i},(g, h)^{2}\right) \neq 1$. Choose V^{\prime} to be a minimal characteristic $F-K_{i}$ submodule of V such that $\left(K_{i},(g, h)^{2}\right)$ is not the identity on V^{\prime}. If Q, g_{1}, and h_{1} are defined as in the previous lemma, then, if either $\left(Q, g_{1}^{2}\right)$ or (Q, h_{1}^{2}) is the identity, $\left(g_{1}, h_{1}\right)=1$. Therefore assume neither g_{1}^{2} nor h_{1}^{2} centralize Q. Thus g_{1} and h_{1} are both exceptional of order $4 . Q$ is an extra-special

3 -group and we may assume g_{1} and h_{1} operate on Q / Q^{\prime} as follows:

$$
\begin{aligned}
& \boldsymbol{g}_{1}\left(\Sigma \alpha_{i} u_{i}\right)=A \alpha_{1} u_{1}+\sum_{i \neq 1} \alpha_{i} u_{i} \\
& \boldsymbol{h}_{1}\left(\Sigma \alpha_{i} u_{i}\right)=B \alpha_{j} u_{j}+\sum_{i \neq j} \alpha_{i} u_{i}
\end{aligned}
$$

Now if $j \neq 1$ then $\left(\boldsymbol{g}_{1}, \boldsymbol{h}_{1}\right)=1$ and if $j=1$ then

$$
\left(\boldsymbol{g}_{1}, \boldsymbol{h}_{1}\right)^{2}\left(\sum \alpha_{i} u_{i}\right)=(A, B)^{2} \alpha_{1} u_{1}+\sum_{i \neq 1} \alpha_{i} u_{i} .
$$

But A and B are elements of a quaternion group so that $(A, B)^{2}$ is: the identity and the lemma is proved.

Theorem 4.4. $P N / N \triangleleft G_{1} / N$.
Proof. We shall prove that $P\left(H_{1} \cap N\right) /\left(H_{1} \cap N\right) \triangleleft H_{1} /\left(H_{1} \cap N\right)$ which is equivalent to the theorem since $H_{1} \triangleleft G_{1}$.

Let P_{1} be the subgroup of P such that $P_{1}\left(H_{1} \cap N\right) /\left(H_{1} \cap N\right)$ is the largest normal 2 -subgroup of $H_{1} /\left(H_{1} \cap N\right) . \quad P_{1} \triangleleft P$ and P_{1} contains the center of P [4, Lemma 1.2.3]. Thus by the corollary to Lemma 4.2, P_{1} contains all elements of order 2 in P. The elements of order 2 in P form an elementary abelian group P_{2} which is normal, modulo. $H_{1} \cap N$, in H_{1}. The elements of $H_{1} /\left(H_{1} \cap N\right)$ which centralize both P_{2} and P_{1} / P_{2} form a normal subgroup of $H_{1} /\left(H_{1} \cap N\right)$. But if any 2^{\prime}-element centralized both P_{2} and P_{1} / P_{2}, then, as easily may be seen, this element would centralize P_{1} contrary to the fact [4, Lemma 1.2.3] that P_{1} contains its centralizer in $H_{1} /\left(H_{1} \cap N\right)$. Thus the elements. centralizing both P_{2} and P_{1} / P_{2} form a normal 2-subgroup of $H_{1} /\left(H_{1} \cap N\right)$, and from the corollary to Lemma 4.2 and from Lemma $4.3, P$ must. be contained in this normal 2 -subgroup. But P is a Sylow 2 -subgroup. of H_{1} and thus it follows that, modulo $H_{1} \cap N, P$ is normal in H_{1}.

Corollary. $\quad l_{2}\left(H_{1}\right)=1$.
Now let S be a Sylow 2 -subgroup of G_{1} which contains P. From the theorem it follows that P is normal in S.

Lemma 4.5. If P contains all elements of order 4 in S, then. $l_{2}\left(G_{1}\right)=1$.

Proof. If $S=P$ we are done. Therefore assume $S \neq P$. Then if $x \in S-P$ we must have $x^{2}=1$. Also $x \in S-P, y \in P$ imply that. $x y \in S-P$ so that $(x y)^{2}=1$ which implies that $x^{-1} y x=y^{-1}$. Thus x induces the automorphism $y \rightarrow y^{-1}$ of P. This can be an automorphism only if P is abelian. Now if both x_{1} and x_{2} are in $S-P$ then $x_{1} x_{2}$
centralizes P. But $e_{2}\left(G_{1}\right)=2$ so that P does contain elements of order 4. Hence $x_{1} x_{2}$ cannot be in $S-P$.

Therefore $|S / P|=2$ and P is abelian. Now if $x \in S-P, y \in P$, then $(x, y)=x^{-1} y^{-1} x y=y^{2} \in \Phi(P)$ and thus x centralizes $P / \Phi(P)$. Hence [4, Lemma 1.2.5] $P N / N$ connot be the largest normal 2-subgroup of G_{1} / N. But P is maximal in S so that $S N / N$ must be the largest normal 2 -subgroup of G_{1} / N. This implies that $l_{2}\left(G_{1}\right)=1$.

To our assumptions (1)~(5) we now add
(6) G is of exponent 12.

This implies that K must be a group of exponent 3 and class at most 2. We prove that $l_{2}\left(G_{1}\right)=1$ in this case by showing that the hypothesis of Lemma 4.5 are satisfied.

For this purpose assume that g is an element of order 4 in $S-P$. g^{2} is in H so $\left(K, g^{2}\right) \neq 1$. Let $V=V_{1} \oplus V_{2} \oplus \cdots$ be the decomposition of V into minimal characteristic $F-K$ modules. Since $g \in S-P, g$ does not fix some V_{i}. g^{2} does fix each V_{i} and if g^{2} is not the identity on a V_{i} then g must fix that V_{i} for otherwise g could not be exceptional [4, p. 13]. We now need the following result:

Lemma 4.6. There exist x and y in K such that $\left(\left(x, g^{2}\right)\right.$, $\left.\left(y, g^{2}\right)\right) \neq 1$.

Proof. Let $C=\left\{x \mid x \in K,\left(x, g^{2}\right) \in Z(K)\right\}$. Clearly $C \geqq Z(K)$ but $C \neq K$ since then g^{2} would centralize $Z(K)$ and $K / Z(K)$ which would imply that $\left(K, g^{2}\right)=1$. (g^{2} centralizes $Z(K)$ by Lemma 3.1 and 3.2.) $K / Z(K)$ is an elementary abelian 3 -group so that there must be a $G F(3)-g$ module of $K / Z(K)$ complementary to $C / Z(K)$. Thus $K / Z(K)=L / Z(K) \oplus C / Z(K)$ and g normalizes L. For all $x \in L-Z(K),\left(x, g^{2}\right)$ is not in $Z(K)$.

Now suppose $x, y \in L-Z(K)$ and $\left(x, g^{2}\right)\left(y, g^{2}\right)^{-1} \in Z(K)$. Since $K / Z(K)$ is abelian, straight forward calculation yields

$$
\begin{aligned}
\left(x y^{-1}, g^{2}\right) & \equiv\left(x, g^{2}\right)\left(y^{-1}, g^{2}\right) & & (\bmod Z(K)) \\
1=\left(y y^{-1}, g^{2}\right) & \equiv\left(y, g^{2}\right)\left(y^{-1}, g^{2}\right) & & (\bmod Z(K)) .
\end{aligned}
$$

Thus $\left(x y^{-1}, g^{2}\right) \equiv\left(x, g^{2}\right)\left(y, g^{2}\right)^{-1} \equiv 1 \quad(\bmod Z(K)$. This implies that $x y^{-1} \in Z(K)$. Therefore we have shown that $\left(x, g^{2}\right) \equiv\left(y, g^{2}\right)(\bmod Z(K))$ if, and only if, $x \equiv y(\bmod Z(K))$ for $x, y \in L$.

It immediately follows from this that for any $x \in L$, there exists a y such that $x \equiv\left(y, g^{2}\right)(\bmod Z(K))$. Now L cannot be abelian since g normalizes L and g^{2} does not centralize it. From all this we see that there exist $x, y \in L$ such that $\left(\left(x, g^{2}\right),\left(y, g^{2}\right)\right) \neq 1$.

Now taking x and y to satisfy the lemma, we may assume without
loss of generality that $\left(\left(x, g^{2}\right),\left(y, g^{2}\right)\right)$ is not the identity on V_{1}. This implies that g^{2} is not the identity on V_{1} so g must fix V_{1}.

Since g does not fix every V_{i}, assume g does not fix V_{2}. Therefore g^{2} is the identity on V_{2} which then also must be the case for $\left(x, g^{2}\right)$ and (y, g^{2}).
V is an irreducible $F-G_{1}$ module so that there must be an element taking V_{1} into V_{2}. Such an element must be of the form $z h$ where $h \in S$ and z is from a Sylow 3 -subgroup of G_{1} which necessarily must contain K. We shall derive a contradiction by showing that z and K generate elements of order 9 which is impossible in a group of exponent 12.

If $h V_{1}=V_{m}$ then $z V_{m}=V_{2}$. Set $g_{1}=h g h^{-1}$. Then

$$
\left(\left(x^{h^{-1}}, g_{1}^{2}\right),\left(y^{h-1}, g_{1}^{2}\right)\right)
$$

is not the identity on V_{m}. Now suppose $g_{1} V_{2}=V_{2}$. Then $g h^{-1} V_{2}=$ $h^{-1} V_{2}$, and, since $g V_{2} \neq V_{2}$, this implies that $h^{-1} V_{2}=V_{j}, j \neq 2$. Then we would have $g V_{j}=V_{j}$. But $g h^{-1} \in S$ so that $\left(g h^{-1}\right)^{2} \in H$. Thus $\left(g h^{-1}\right)^{2}$ fixes V_{2} and, therefore, $g h^{-1} V_{j}=V_{2} . \quad\left(h^{-1}\right)^{2}$ also must fix V_{2} so we have $h^{-1} V_{j}=V_{2}$. From this we conclude that $V_{2}=g h^{-1} V_{j}=g V_{2}$ which is a contradiction. Hence $g_{1} V_{2} \neq V_{2}$. A consequence of this is that $V_{m} \neq V_{2}$ for $V_{m}=V_{2}$ would imply that $h^{-1} V_{2}=V_{1}$ which would imply that $g_{1} V_{2}=h g V_{1}=V_{2}$. Since $V_{m} \neq V_{2}$ it follows that z is not the identity and so is of order 3.

If we replace V_{1}, g, x, and y by $V_{m}, g_{1}, x^{h^{-1}}$, and $y^{h^{-1}}$, respectively, we may assume that $z V_{1}=V_{2}, g V_{2} \neq V_{2}$, and $\left(\left(x, g^{2}\right),\left(y, g^{2}\right)\right)$ is not the identity on V_{1}. Let $x_{1}=\left(x, g^{2}\right)$ and $y_{1}=\left(y, g^{2}\right) . x_{1}$ and y_{1} must be the identity on V_{2} since g_{2} is. Since z is of order 3, we have $z V_{1}=V_{3}$, $z V_{2}=V_{n}(n \neq 1,2)$, and $z V_{n}=V_{1}$.

Let $V^{\prime}=V_{1} \oplus V_{2} \oplus V_{n} . V^{\prime}$ is fixed by z and the restrictions of x_{1}, y_{1}, and z to V^{\prime} are

$$
z=\left(\begin{array}{ccc}
0 & 0 & A \\
B & 0 & 0 \\
0 & C & 0
\end{array}\right), x_{1}=\left(\begin{array}{ccc}
M & 0 & 0 \\
0 & I & 0 \\
0 & 0 & M_{1}
\end{array}\right), y_{1}=\left(\begin{array}{ccc}
N & 0 & 0 \\
0 & I & 0 \\
0 & 0 & N_{1}
\end{array}\right),
$$

where I is the identity and 0 the zero matrix. Now (x_{1}, y_{1}) is not the identity on V_{1} but $\left(x_{1}, y_{1}\right) \in Z(K)$ and $Z(K)$ is represented on V_{1} as a cyclic group generated by a scalar matrix. Thus $(M, N)=\omega I$ where ω is a primitive third root of unity. From $z^{3}=1$ we obtain $C=A^{-1} B^{-1}$.

Now z, x_{1}, and y_{1} all belong to the same Sylow 3 -subgroup of G_{1}. Thus $\left(z x_{1}\right)^{3}=\left(z y_{1}\right)^{3}=1$. From this direct computation yields that $M_{1}=A^{-1} M^{-1} A, N_{1}=A^{-1} N^{-1} A$. Thus $\left(M_{1}, N_{1}\right)=A^{-1}\left(M^{-1}, N^{-1}\right) A$. But M and N generate a group of exponent 3 and class 2. It follows easily that $\left(M^{-1}, N^{-1}\right)=(M, N)=\omega I$. Thus

$$
\left(x_{1}, y_{1}\right)=\left(\begin{array}{llr}
\omega I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & \omega I
\end{array}\right)
$$

It is now a simple matter to verify that $\left(z\left(x_{1}, y_{1}\right)\right)^{3} \neq 1$. Hence $z\left(x_{1}, y_{1}\right)$ is a 3 -element of order greater than 3 which is impossible in a group of exponent 12. This contradiction proves that the hypothesis of Lemma 4.5 is satisfied and thus:

Theorem 4.7. If G is a finite group of exponent 12, then $l_{2}(G) \leqq e_{2}(G)$.

References

1. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
2. H. Fitting, Beitrage zur theorie der gruppen endlichen ordnung, Jber. DMV 48 (1938), 77-141.
3. M. Hall Jr. The Theory of Groups, Macmillan, New York, 1959.
4. P. Hall and H. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42.
5. G. Higman, p-length theorems, Proc. of Symposia in Pure Mathematics, AMS 6 (1962), 1-16.
6. A. H. M. Hoare, A Note on 2-soluble groups, J. London Math. Soc. 36 (1960), 193-199.
7. B. Huppert, Subnormale untergruppen und Sylowgruppen, Acta Szeged. 22 (1961), 46-61.

California Institute of Technology
Occidental College
(Now at the University of Alberta, Edmonton)

[^0]: Received July 13, 1964. This work, supported in part by a National Science Foundation Cooperative Fellowship, is based upon my doctoral dissertation at the California Institute of Technology. I wish to express my heartfelt appreciation to my advisor Marshall Hall, Jr. for his encouragement and helpful suggestions.

