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NORM DECREASING HOMOMORPHISMS
OF GROUP ALGEBRAS

FREDERICK P. GREENLEAF

The homomorphisms ψ of the group algebra L\F) into the
algebra M(G) of measures, where F and G are locally compact
groups, has been completely determined when both groups are
abelian by P. J. Cohen, and when G is compact and the
homomorphism is norm decreasing and order-preserving by
Glicksberg. In this paper the structure of norm decreasing
homomorphisms φ is determined for arbitrary locally compact
F and G. As an application the special structure of all norm
decreasing monomorphisms is determined, along with the
rather elegant structure of ail norm decreasing homomorphisms
mapping L\F) onto L'iG).

The analysis is effected by finding all multiplicative sub-
groups of the unit ball of measures on a locally compact
group for, as we show, each ψ extends to a norm decreasing
homomorphism φ i M(F)->M(G), and is determined by the image
under φ of the group of point masses on G, a multiplicative
subgroup of the unit ball in M(G).

This paper completes a study of norm decreasing homomorphisms
on group algebras initiated by Glicksberg in [4] and [5], If G is a
locally compact group we will denote its group algebra by L\G) and
its convolution algebra of bounded regular Borel measures by M(G).
We present a complete structural analysis of the subgroups of the
unit ball in M(G), and a structure theory classifying all norm decreasing
homomorphisms φ: L\F) —• M(G) where F and G are locally compact
groups. As an application we determine the special structure of all
monomorphisms φ mapping L\F) into M(G) and all norm decreasing
homomorphisms which map U(F) onto Lι(G).

Let C0(G) be the sup norm algebra of all continuous complex valued
functions on G which vanish at infinity, and recall that C0(G)* = M(G).
If μ e M(G) its support s(μ) is defined so that x e s(μ) <=> for each
neighborhood U of x there is some ψ e C0(G), vanishing outside of U,
with <μ, ψy Φ 0. Then s(μ) is a Borel set. If Γ is a subset in M(G)
we define supp (Γ) — U{s(μ): μe Γ}. The convolution of μ,XeM(G)
is given as an element of C0(G)* by defining

= f Γί ψ(st)dμ(s)\dX(t)
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for all ψ G C0(G). If M(G) is given the total variation norm it becomes
a Banach algebra under this multiplication.

We first show that if μ,Xe M(G) then
( 1 ) || μ*X || = || μ \\-1| λ || ^s(μ*X) = (s(μ)s(X))~
( 2 ) | | μ * λ | | = | | i « | | . | | λ | | = * | / i * λ | = | μ | * | λ | .

These facts were first pointed out, in somewhat less general form, by
Wendel [11] and Glicksberg [4]. These results suffice for the analysis
of the subgroups of the unit ball in M(G).

In order to determine the norm decreasing homomorphisms φ: L\F)—+
M(G) we use an important observation that such a map always extends
to a norm decreasing homomorphism φ: M(F) —> M(G) which is con-
tinuous on norm bounded sets as a mapping of (M(F), (so)) into
(M(G), (σ)). Here (σ) is the usual weak * topology on M(G), and (so)
is the strong operator topology on M(F) gotten by letting M(F) act by
left convolution on the ideal L\F) c M(F).

The author is greatly indebtted to the earlier work of Glicksberg
presented in [4], [5]. He is also pleased to acknowledge Professor
Glicksberg's helpful commentary in private correspondence. It will be
clear to the reader familiar with [4] that the proof of the fundamental
relation || μ*λ | | = || μ || || X || => | μ*λ | = | μ | * | λ | is a simple adaptation
of a Glicksberg theorem dealing with compact groups. The simpler
proof given here was suggested by Glicksberg.

1Φ Preliminaries* Throughout this paper we will find it con-
venient to write convergence of a net {xj} to a point x in a topological
space (X, τ) as Xj > x o r x < • xjt interchangeably. To avoid con-
fusion in discussing homomorphisms we will use the terms homomorphism
(epimorphism, monomorphism) for into (onto, 1:1) homomorphisms; we
reserve the term isomorphism for 1 : 1 onto homomorphisms.

Most measure theoretic notions are taken from Halmos [3], includ-
ing definition of Baire and Borel sets. In the following discussion let
B = B(G) (Bo = B0(G)) be the collection of Borel (Baire) sets in G. If
a function / is defined on G and if H is a σ-ring of sets in G, we say
that f is H measurable on all H sets of G if χBf is H measurable for
each set EeH (χE = characteristic function of E). It is clear that
Bo measurability on Bo sets implies B measurability on B sets in G.

If μ e M(G) define its Baire contraction μ' by restricting its domain
of definition to be B0(G). A regular Borel measure is uniquely de-
termined by its Baire contraction (see [3], 54. D). If Ee B(G) it must
be σ-bounded, and hence there is a Baire set AZDΈ\ this applies in
particular to s(μ) where μe M(G). If Ee B and / is B measurable on

G, we let \ fdμ denote the integral \ χEfdμ.

In applying the Fubini theorem, Borel functions have rather
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pathological properties when compared to those of Baire functions.
These difficulties arise from the fact that the product 6r-ring Bo x Bo —
B0(G x G), while we only know Bo x BQaB x BczB(G x G) for the
corresponding Borel sets. If / is BQ measurable on G and if A, B e Bo,
then the function χAXB(s9 t)f(st) is Bo x Bo measurable on G x G (hence
B x B measurable) and we can apply Fubini to the convolution-like
integral

< * ) t XAXB(S, t)f(st)dμ x λ(β, t) .
JGxG

If f is B measurable, the best we can say is that χAXB(s, t)f(st) is
B(G x G) measurable, but this does not give the B x B measurability
required to make (*) well defined. To avoid these difficulties we will
rely on the following well known observations.

(Rl) If / is bounded and Bo measurable, and if E, FeBOf then
XEXF(S, t)f(st) is BoxBo measurable on G x G.

(R2) If / is bounded and Bo measurable, and if μ, XeM(G), let
us choose any sets E,FeB0 such that Ei)s(μ), FZDS(X). Then

I f(x)dμ*X(x) = χEXF (s, t)f(st)dμ x λ(s, t) .
GxG

(R3) If μ e M(G) there exists a unimodular function / μ which is
2?o measurable on Bo sets in G, such that μ =fιί\μ\. Thus if EeB,

μ ( E ) = \ χE(s)dμ(s) = \ χE($)fΛs)d \ μ \ ( s ) .
)G )G

Notice that Ψ(t) = [ψ(st)dμ(s) is in CQ(G) if ψeC0(G), and all

'CΌ(G) functions are Bo measurable on G, so the definition of convolution
is meaningful for μ, XeM(G), Convolution is actually independent of
the order of iteration of the integrals used to define it, in fact the
above remarks show that

Γf ψ(st)dμ(s)]dX(t) - ( χEXF{s, t)f{st)dμ x λ(s, t)
G LjG J JGXG

if E,FeBQ are such that E^s(μ), Fz)s(X).
If G is a locally compact group and if Qc G we let &Q = {δx:xe Q}

where dx is the point mass at x for x e G. Let co[X] be the convex
span of a set I c I ( G ) and if 7 is a vector space topology on M(G),
denote the (τ)-closed convex span of X as co[X:j]. We will need the
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following lemmas about the (σ) and (so) topologies on M(G) (see intro-
duction).

LEMMA 1.1.1. If μά-^-> μ with \\μά\\ ̂  M < oo in M(F), and
if ψ is right uniformly continuous and bounded on F, then we have

Proof. Since ψ is uniformly continuous, there exists feL\F)

corresponding to ε>0 such that | | / | | = 1 and f(st)f(t)dt-f(s) <e/M

for all s e F. Then we have | </^i*/, ψy — <//,, ψv> | < ε for j e J and
likewise for μ, so that | ζμjf ψy — <μ, ψy | < 3ε for j Ξ> jQ.

LEMMA 1.1.2. If Q is a compact set in locally compact group G,
and if S is the circle group, then co[S &Q: so] — co[S &Q : σ] —
{μe M(G): || μ \\ ^ 1, s(μ)aQ}9 and on these sets the (σ) and (so)
topologies coincide.

Proof. Clearly S&Q is both (σ) and (so) compact, thus from [2,
p. 511] we see that co[S g^ : so] is compact in the (so) topology, as is
co[S gρ: σ] in the (σ) topology. On the unit ball the identity j : (M(G), so)-+
(M(G), σ) is continuous by 1.1.1, so co[S^Q : so] is (σ) compact and hence
must contain co[S^Q:σ]. Since Q is compact it is known that
co[S^Q:σ] = {μeM{G):\\μ\\^l9 s(μ)aQ}. But μ e co[S ί?Q : so] =>

s(μ)aQ and \\μ\\^Ll, which gives the reverse containment. It is
obvious that the topologies are the same on these compact sets, once
they are known to coincide.

LEMMA 1.1.3. If G is a locally compact group, co[S^G:so] is
the unit hall in M(G) if S is the circle group.

Proof. Let μe M(G), \\μ\\ = 1, and let Kn be compacta such that
JSΓn+1 =) ΛΓn and \Jζ^KnZ)s(μ). Then μn = μ\KneM(G) is such that

|| μn || g 1, μne co[S&Kn : so], and μn > μ. Thus μ is in the norm
closure of \JZ=ι co[S^Kn: so], which lies within co[S^Q:so].

LEMMA 1.1.4. On the unit ball in M(G), convolution is a jointly
strong operator continuous operation.

Proof. Let μd -^> μ and λ̂  -^-> λ in the unit ball. If / e U(G),
then because \\μj\\ S 1 for all jeJ we have | |μi*λΛ*/— μ*λ*/| | ^

|| ^ *(λ*/) - /i*λ*/|| ^ II λ f c*/- λ*/|| +

LEMMA 1.1.5. If G is a locally compact group, the unit ball in
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Lι(G) a M(G) is (so) dense in the unit ball in M(G); in particular,
U(G) is (so) dense in M(G).

Proof, Clearly there exists a left approximate identity {eό} of
norm one in U(G). If μeM(G) then μ*e3 e L\G) and || μ*eό || <Ξ \\μ\\\

furthermore, if fe Lι(G) we have

|| μ*f - (μ*ei)*f\\ = II μ*f ~ μ*{es*f) || > 0 .

2* Idempotent measures o£ norm one* If G is a locally com-
pact group and KaG is a compact subgroup, define mκeM(G) to be
the normalized Haar measure on K9 so that

, ψ} = ψ(s)dmκ(s)
JK

for ψeCQ(G). Let Kκ be the set of all continuous unimodular multi-
plicative complex valued functions on K, and if βe KA let βmκ denote
the Haar measure on K weighted with the function β. Then βmκ is
an idempotent of norm one in M(G); it is our purpose to show that
these are the only idempotent measures of norm one in M(G).

THEOREM 2,1,1, Let G be a locally compact group* Then if
μ,Xe M(G) are such that 11 μ * λ 11 = 11 μ 11 ° 11 λ 11 it follows that s(μ*X) =•=
(s(μ)s(X))~, the closure in G of s(μ)s(X)o

Proof. It is sufficient to consider the case [ | μ | | : = | | λ | | = l .
Clearly (s(μ)s(X))~ Z)s(μ*X). If this inclusion is proper we can find a
compact Baire set U which is such that (int U) Π (s(μ)s(X))~ Φ 0,
while at the same time U Π s(μ*X) = 0 β Let E, Fe BQ(G) be such
t h a t E3s(μ), F =)s(λ), and define V = {(s, s~ιu) :ue U, se E}aG x G;

notice that VeBoxBo and is such that χv(s,t) = Xu(st) for seE9

teG, thus

r

ψ(st)dμ x X(s, t)
(EXF)ΓiV

χv(s, t)ψ(st)dμ x λ(s, t)
EXF

= Xσ(st)ψ(st)dμ x λ(s, t)
J EXF

= \ Xu(
JO

Given ε > 0, there is a function ψeC0(G) such that ||ψ||oo = 1 and
|</i*λ, ψy\ > 1 - ε. If V is any Baire set in G x G, then
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1 - ε<| <>*λ, ψ> I = If χEXF(s, t)ψ(st)dμ x λ(s, t)
I JCfxQ

= I ψ(st)dμ x λ(s, ί)
( \ I J E X F

* ) -

= \ ψ(st)dμ x λ(s, ί)

+ \ ψ(st)dμ x λ(s, ί) .

For V as above, the right hand side of (*) consists of the single term

is (EXF)\V
ϊt)dμ x λ (M)

J(^Xί')\F'

^ ( d
JEXF

\ ψ(8t)

μ\ X |

= 1- \ d
J(EXF)ΠV

d

λ

μ

\μ\

-\

X

χ | λ | ( . , ί )

(^XJ JΠF

λ | .

But from our definition of U it is clear that \ d | μ | x | λ | = S > 0 ,
)(EXF)f]V

and thus for all ε > 0 we get 1 — ε ̂  1 — δ, a contradiction.

THEOREM 2.1.2. If G is a locally compact group and if μ,Xe M(G)
are measures such that \\μ*X\\ = II^IHIMI* then | μ * λ | = | j " | * | λ ; | .

Proof. Again it suffices to consider the case | | μ | | = | | λ | | = l . If

FiDs(μ) is a Baire set, it is σ-bounded and from the Radon-Nikodym

theorem we know t h a t there is a Baire measurable function / μ on F

such t h a t μ(E) = ( χE(x)f^(x)d \μ\(x) for all Ee B(G) such that EczF.

l l | / ( ) l 1 I | F dfi ficlearly = 1 I μ |-a.e. on F; we define a new function

pμ(x) =
if \fμ(x)\ = 1

11 for all other x e G .

Then pμ. is a unimodular function on G Baire measurable on Baire
sets in G.

We will show | μ * λ | ^ | / i | * | λ | . Since these are positive measures,
both of norm one (since | | μ * λ | | = | | ^ | | | l λ l l f ° r a n y positive measures
μ,\eM(G)), our result must follow. If ψeC0(G) and ψ ^ 0, then

_ Γ ψ(x) -dμ*X(x)

= ( Γ( Ψ(st)
Iβliβ (Oμ.λ(sί)
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Now the last integral is positive and the integrand is a unimodular
multiple of ψ(st), so it must be less than or equal to

The following lemma is given in Loynes [6] and Pym [8], and is also
a simple consequence of 2.1.1 and 2.1.2.

PROPOSITION 2.1.3. If G is a locally compact group and if μ e M(G)
is a positive idempotent of norm one, then there is a compact subgroup
KdG such that μ = mκ.

We can, now prove the main assertion of this section.

THEOREM 2.1.4. If G is a locally compact group and μeM(G)
is an idempotent of norm one, then there is a compact subgroup
K(zG and a function pe Ks such that μ = pmκ.

Proof. Write μ = p | μ \ where p is a unimodular function on G,
Baire measurable on Baire sets in (?. From 2.1.2 we see that | μ ] is
a positive idempotent of norm one, so that | μ \ ~ mκ for some compact
subgroup K(zG from 2.1.3.

Now p is a bounded Borel measurable function on K since B{K) —

{EΠ K:E G #((?)}, so the function p * ρ(t) = \ ρ(s~1t)ρ(s)dmκ(s) is
J K

continuous on K (we are taking # as the convolution of two functions
on K here). If f e C0(G) and if Fe B0(G) is such that Fz)s(μ) = K,
we have

f(χ)p{%) dmκ(x) = o , π/r>

= \\\ ψ(st)ρ(t)dmκ(t)]ρ(s)dmκ(s)

= j J J ^ ψ(t)p(s-1t)dmκ(t)^p(s)dmκ(s)

= I XFXF(S, t)p(s-1t)^(t)ρ(s)χκxκ(s9 t)dmκxmκ(s, t) .
JGxG

Clearly ψ(t)ρ(s)χκxκ(s, t) is B x B measurable and a slight modification
of Rl gives the Bo x Bo measurability of p(s~1t)χFXF(sf t) on G x G.
Thus Fubini applies and we get

fe t)f(t)ρ(s)p(s~1t)dmκ x m^s, ί)

- ί f (% * p(t)dmκ(t) ,

JK
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so p is I μ |-a.e. identical to a continuous function on K. Taking p to
be continuous on K, it is clear that (s, t) —> jθ(sί) is continuous on
K x K. But we can apply the argument of 2.1.2:

= t Γ( ^ ' i ? d\μ\(s)]d\μ\(t)

which means that p is a multiplicative function on K.

3* Subgroups of the unit ball in a measure algebra* In this
section we consider a locally compact group G and let Γ be a subgroup
in the unit ball of M(G). We will denote this unit ball by ΣM{Θ) and
refer to the weak * topology on M(G) as the (σ) topology. Given Γ
we denote Ho = supp (Γ) = U{s(μ) : μe Γ}.

LEMMA 3.1.1. Both Ho and its closure in G are subgroups of G,
and if the unit of Γ is denoted i (i — pmκ for some compact subgroup
K(zG and some peKs), then K is a normal subgroup of both Ho

and its closure. Furthermore, if μe Γ then s(μ) is a single coset of
the group K in Ho.

Proofo If μ e Γ then s(μ) is a union of right (or of left) cosets
of K because i^μ — μ^i ~ μ=> (s{μ)s{i))~ = s(μ)-K — K-s(μ) = s(μ)
from 2.1.1. If μ e Γ then s{μ~x) = s(μ)-\ In fact, iίxe s(μ), y e s{μ~x)
then xy = ke (s(μ)s(μ~1))- = s(μ * μ'1) = K, so that x"1 = yk~ι e s(μ~1)K =
siμ"1), and vice versa.

If g^siμ), ^ G δ ^ " 1 ) we have the relations

( * ) K= s(i) = (s(μ)s(μ-1))- =) s(μ)s(μ~1) 3 g,K2

(**) K = s(i) = (s(μ)s(μ-1))- =) s(^)s(//-1) =) Kgig2KzD{gig2} .

Thus s(/i) is a single coset of K; otherwise we could find gug2es(μ)
with gx £ Kg2y and this would => g1g2~

1 £ K. But gf1 e s(μ)"1 = siμ-1) and
(**) => g1g2~

16 iΓ? a contradiction. We see now that all supports are
compact and hence s(μ)s(X) — s(μ*X) for all μ,XeΓ.

Clearly Ho is a subgroup of G since s(μ * λ) = s(μ)s(X) and siμ)"1 =
siμ-1); hence its closure is also a subgroup in G. We get normality
of if by considering geH0 and taking any μ e Γ such that ges(μ).
Then if we take gx — g, g2 — g~xe s{μ~ι) in (*), we get Kz)gKg~\

The following theorem gives the structure of a subgroup Γ; it
gives only a necessary condition on the structure of a collection of
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measures Γ in the unit ball of M(G) in order that Γ be a subgroup.
Necessary and sufficient conditions will be given later.

PROPOSITION 3.1.2. If Γ is a subgroup of Έ,M{β) for locally compact
group G, let i — pmκ be its unit and let Ho = supp (Γ). Then there
exists a subgroup Ω c S x G , with the property

Ho = {geG : (a, g) e Ω for some | a | = 1} ,

such that Γ — {aSg*ρmκ : (a, g) e Ω).

REMARK. Here S is the circle group and S x G is the usual
product group. In 2.1.4 we have already shown that the unit is i = pmκ

where K is normal in Ho and pe KA.

Proof. Let ^ be a unimodular function on G, Baire measurable
on Baire sets in G9 such that μ — p^\ μ\ for μe Γ. lί g£ s(μ) we
have shown that s(μ) = gK and we know that ρμ is determined | μ |-a.e.
on s(/ί). But if s(μ) — gK, then | ^ | = ^ * m ^ ; in fact, we have
μ*i — μ9 which => | μ | * | i | = |^|>κm^ = |/i |, and this gives | μ | = δg*mκ

since ||jw|| = 1. We first show that pμ is | μ |-a.e. identical to a con-
tinuous function on s(μ)9 or equivalently that p^(x) — p^(gx) is m^-a.e.
equal to a continuous function on K. We have

I ψdμ=\

for f e C0(G), while μ = i*μ

\ ψdμ = I Γ\

= \ \ f{sgt)ρ{s)ριι{gt)dmκ{s) \dmκ(t) .

For r̂ G jEί0, the map ττff: s —> (/sgr1 is an automorphism of K such that
mκ(πgE) — mκ(E) for Borel sets EaK; thus if we define πg*β(s) —
βigsg-1) for se JSΓ, geHQ, and βeK\ then πg*βeKA and the last
expression above is

= J J J ^ f (gst)πg*p(s)pμ(gt)dmκ(s)jdnικ(t)

= \κ Ψ(gt)

= \ Ψ(gt)[πg*p

where r̂ gives the convolution of two functions on K rather than
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functions on G. Since πg*p and pj are bounded and B(K) measurable
functions on K, their convolution on K is a continuous function, and
the above equalities => Pμ° — πg*p * pμ° mκ-a.e. on K.

Take each function pμ to be continuous on s(μ) for μ e Γ. Then
we have pμ{x)Pχ{y) = pμ*λ(%y) for all (x, y) e s(μ) x s(λ) in G x G,
because

dμ*X(z)
p(z)

LJsβ(μ) LJs(λ)

and since the last integrand is continuous and unimodular. If s e K
and g e s(μ) for μ e Γ, then we have

PA*) =

which means that |θμ

α — cg p on if where ^ = /0μ(flr) is a scalar of
modulus one. Clearly μ — pμ(g)-(δg*ρrnκ) if ges(μ); i.e. if ges(μ),
then for some scalar a with | α | = 1 we have μ = aδg*pmκ.

Let Ω — {{a, g)e S x G : aδg*pmκe Γ}. We have shown that for
each # G iί 0 we can find a scalar | a | = 1 such that (α, βf) e β, so we
only have to show that

(aβ^*pmκ)*(a23g2*pmκ) = a1a2δQig^pmκ .

Since the left side is in Γ we get (αxα2, g$2) e Ω, and this will give
the group property. But a2δθ2*pmκe Γ and i — pmκ is the unit of Γ;
hence

a$gi* ρmκ*(a2δg2* pmκ) = a$gi*a$g2

as required. Clearly Γ = {αδ^pm^ : (α, gf)e

COROLLARY 3.1.3. If μ,Xe Γ we have s(μ) — s(λ) <=> μ — αλ /or
some scalar a with \ a \ — 1.

Proof. If s(μ) = s(λ) = <?if then there are scalars a, β of unit
modulus such that μ — aδg*pmκ and λ = βδg*pmκ.

COROLLARY 3.1.4. If Si = {ai: \a\ = 1} and if Γ C\ Si = {i},
then for μ, λ e Γ we have μ = λ whenever s(μ) = s(λ).

PROPOSITION 3.1.5. If G is a locally compact group and Γ is a
subgroup of 2^(0, let us write its unit as i = pmκ, where pe K\ and
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let Ho — supp (Γ). Then Ko — {x e K: ρ(x) — 1} is a compact subgroup
of G which is normal in both K and Ho.

Proof. If μ e Γ and ^ is the unimodular function, Baire measur-
able on Baire sets in G, such that μ — Pμ.\μ\9 then we know that p^
is a translate of p to s(μ)f and we also know that pμ{x)pλ{y) — pμ*λ(xy)
for all xes(μ), yes(λ)9 from 3βl,2β Obviously Ko is normal in K\
normality in HQ is more troublesome.

If y e KQ, x e Ho, then xyx~x e K and if x e s(μ) we get

which => α ; ^ " 1 e

PROPOSITION 3,1.6. Let G be a locally compact group, let Ho be
an arbitrary subgroup, let KZD KO be a pair of compact subgroups of
G which lie within Ho and are normal therein, and assume that pe K*
is a function such that Ko = Kerp. Then we have pmκ*δg*pnικ —
δg*pmκ for all geH0*=>K is central in Ho modZo (i.e. K/Ko is a
central subgroup of Ho/Ko).

Proof. If K is central in Ho mod iΓ0 and ψ e C0(G), then

(ρmκ*δg*pmκ, ψy = I I I I j ^(sα ^^^^dm^^JcZ

= \ \ f{sgt)ρ(st)dmκ{$) \dmκ{t) .

But sflf = flfs mod iΓ0, so that sg = ŝfc for some & e EΓ0, and the last
expression becomes

= ψ{gskt)p{st)dmκ(s) \dmκ(t)

= I Γl ψ(gst)ρ(st)dmκ(s)\dmκ(t)

= ] f f f(gs)p(s)dmκ(s) = <βg*ρmκ, f

since {pmκf — pmκ.

If, conversely, pmκ*δg*pmκ = δg*pmκ for all geH0, we show
that if is central in i ί 0 mod iΓ0 as follows. Let

where {U3 : j e J} is a basis of compact symmetric neighborhoods of
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the unit in G, and make {ψ3-: j e J} a net of functions in L\G) under
the obvious partial ordering. Then we have

= p(e)< [ χ ^; ( 8 ) p(s)dmκ(s)
)κ mκ(Uj)

p(s)dmκ(s)
mκ(Uj)

f
=

= \
J

= I ψ3d[δg*ρmκ] = i ψjd[ρmκ*dg*ρmκ]
JK JK

= ( ίί ^ r r ?
J^LJ^ mκ(Uj)

J^LJ^ mκ(Uj)

But |O is uniformly continuous on iΓ and hence, given ε > 0 there is
an index i(ε) such that j > i(ε) in the partial ordering of J=>
I P(t) - /θ(ί') I < ε if tet'Ud. Hence if i > i(ε) we get: χσj(st) Φ 0 =*
te s~ιUj, which => | p(t) — ^(s"1) | < ε. Some trivial computations then
show that the last integral is always within ε of the following expression
if j > j(ε).

pis-^dm^s) = 1
J

But s —+ pigsg"1) is a function in KA, and from the known orthogonality
of one dimensional representations of K, this integral can be nonzero
^ Pigsg"1) — p(s) for all se K. This means that gs — sg mod Ko for
all se K, ge Ho.

COROLLARY 3.1.7. If G is a locally compact group and Γ is a
subgroup of ΣM{Q), let Ho = supp(Γ), and let us write the unit of Γ
as i — pmκ as in 2.1.4, where KaG is a compact subgroup and
pe K\ Then if Ko = Ker p, K must be central in Ho mod Ko.

Proof. From 3.1.5 we know that iΓ0 must be normal in Ho.
Furthermore, i*μ = μ=>pmκ*3g*pmκ = dg*pmκ for all geH0 (see3.1.2).

THEOREM 3.1.8. (Structure Theorem for Subgroups). Let G be
locally compact group and let Γ be a subgroup of ΣM{G) with unit i.
Then we have
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( 1 ) Ho — U {s(μ): μ e Γ} is a subgroup of G.
( 2 ) i — pmκ where KdG is a compact subgroup and pe KA.
( 3 ) K and Ko = Ker p lie within Ho and are normal in Ho.
( 4 ) K is central in Ho mod KQ.
( 5 ) Ω — {{a, g)e S x G : aδg * ρmκ e Γ} is a subgroup ofSxG

with Ho = {geG : (a, g) e Ω for some \a\ = 1}.

and we have Γ — {aδg*pmκ : (a, g) e Ω}.
Conversely, let Ho be a subgroup in G, let KaG be a compact

subgroup lying within Ho, and let peKA be chosen such that
( 1 ) K and Ko = Ker p are both normal in Ho.
(2 ) K is central in Ho mod Ko.

and let Ω be any subgroup ofSxG with Ho = {g e G : (a, g) e Ω for
some I a \ — 1}. Then Γ — {aδg*pmκ : (a, g) e Ω) is a subgroup of
ΣM{G) with Ho = U{s(μ) : μeΓ}, with i = pmκ as a unit, and with
Ωa{(a,g)eS x G: aδg*pmκzΓ} = Ω-{{p{k),k): keK}.

Proof. The first part follows from 3.1β2? 3.1.5, and 3.1.7. Con-
versely, if K is central in Ho mod Ko = Ker p in a scheme of this sort
we must have pmκ*δg*pmκ = δg*pmκ for all ge HQ. This means that
Γ is a group, since the only difficulty in showing this lies in the
verification that Γ is closed under convolution. It follows immediately
that Ho — U {s(μ) : μ e Γ] and that τ 0 : (a, g) —> aδg * pmκ is a homo-
morphism of Ω onto Γ with kernel Ω n {(p(k), k) : ke K}. Notice that
Ω and Ω'= Ω {(p(k), k):ke K} give rise to the same group of measures Γ.

The classical example of a subgroup in ΣM{G) is a group of translates
of normalized Haar measure Γ — {δx*mQ\ xeG0}9 where QaG is a
compact subgroup, normal in the subgroup Go. Theorem 3.1.8 can be
stated in a form which shows that every subgroup Γ c ΣM[Q) corresponds
to a subgroup of this type in Σms^Θ) rather than ΣM{G).

Let πs, π0 be the projection homomorphisms in S x G and let
Ω z) Ωo be subgroups in S x G satisfying the conditions

(1) Ωo is a compact subgroup of S x G normal in Ω.
(2) Sί l f l o = (1, e), so πG"\x) Π ΩQ is a single point if xe πG(Ω0).

If we are given a compact subgroup KdG and a function pe KA, we
define the mappings

τ 0 :

r* :
s
c(
M

x G

,(G)-
r(S x

—>

G)

+ M(G)
C»(S x G)

>M(G)

such that τo(α, fir) = aδg*pmKj τ*ψ(a, g) = <τo(α,#),f >, and <τ**/i,n/r>
<^, Γ*Ί/Γ)>. Clearly r ^ f e C0(iS x G) since if is compact, and τ**δ{a}g)
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aδg*ρmκ for (a, g)eS x G. Furthermore, τ** : (M(S x G),
(M(G), (σ)) is a linear map which is continuous on norm bounded sets

since μs -^-* μ in ΣmsxG)9 ψ e CQ(G) ==>

<τ**μj, ψ> = <j"y, τ * t > > <j«, τ*ψ> = <r**μ, f > .

Also, r** is a norm decreasing linear map.
Now take K = πff(β0), where Ωz)Ω0 satisfy (1) and (2) above, and

define the function p(k) on K such that (p(k),k)e ΩQ for each keK.
It is clear that peKΛ since Ωo is compact. Let us also define Ho =
7Γs(i2), iΓ0 = π β (β 0 Π G). Then iΓ0 = Ker p and it is easily verified that
Ko is normal in both HQ and if, and that K is central in Ho modif0,
from conditions (1) and (2). Thus Γ = {aδg*pmκ : (α:, gr)e Ω) is a sub-
group in ΣM{Θ) since 3.1.8 applies to the system of objects HQt K, Ko, p.

The mapping r**£ : (a, g) —> aδg*pmκ is a homomorphism on Ω since

From normality of Ωo in β it follows that Γ~ = {δx*mβ o: a efl} is a
subgroup of ΣMιSXΘ).

LEMMA 3.1.9. 1/ ΩZDΩQ satisfy conditions (1), (2) above, and if
Γ = {α:^ * jOm^ : (α, gr) e Ω} then r 0 : Ω—+ Γ is an epimorphism with
kernel Ωo.

Proof. We have indicated that τ0 is an epimorphism. If τ0(oc9 g) =

pmκ, then geK and we have adg*prnκ = ap(g)pmκ = pmκ; hence

a = ^(gr) and (α, gr) = (^(g), g) with gf G iΓ, so (α, gr) e £ 0 by definition of p.

THEOREM 3.1.10. Given subgroups Ωz)Ωoin S x G satisfying (1)
and (2) let K~πQ(Ω^, define p ~ πso{πG\Ω^~x on K, and define
τ** : M(SxG)->M(G) as above. Then ρeKA (so τ0 and r** are
well defined), Γ — {aδg * pmκ: (a, g) e β} α^d Γ~ = {δx * m ^ : x e Ω}
are subgroups in ΣmG) and ΣmsxQ) respectively, and τ** is an
isomorphism between Γ~ and Γ. Conversely, if Γ c ΣM{G) is a sub-
group with unit i = pmκ, it arises from a pair of subgroups Ω z> Ωo

in S x G which satisfy conditions (1) and (2) by means of the above
construction if we take Ω = {(a, g)e S x G : adg*pmκe Γ} and Ωo =
{(α, g)e S x G: aδg*pmκ =

Proof. To establish the first part we will show that τ**(δiP*mί?0) =
r**δβ = τo(a?) for any xeί2; then from 3.1.9 it is clear that τ** is an
isomorphism between Γ~ and Γ. But Ωo is compact, so there exists a

net {Xj} in co[g%J with X^—^->mflo; hence δa.*λJ —^->δβ*mx?0 and
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r**(δβ*m f lo) <r-^— r ^ f t ^ ^ r * * ^ ) , as required. Conversely, if ΓcΣmβ)

is a subgroup, and if Ωi)Ω0 are formed as indicated, then properties
(1) and (2) hold as a consequence of the following lemma, which will
be of interest later on. Once this is shown, it is easy to check (see
3.1.8) that πΰ{Ω) = supp(Γ), πG(ΩQ) = K, and p = πso(πQ\ΩQ)~1 on K.
In the first part we showed that τ** must be an isomorphism of
{δx*mΩQ: x e Ω} onto {aδg*pmκ : (a, g) e Ω} and we know that Γ coincides
with the latter subgroup of ΣM{G) from 3.1.2.

LEMMA 3.1.11. Let G be a locally compact group and let Γ czΣM{G)

be a subgroup with unit i = pmκ. Form the pair of subgroups in
S xG:

Q = {{a, g)e S x G : aδg*pmκGΓ}D

Ωo = {(a, g)e S x G: aδg*ρmκ = ρmκ) .

Then we have Ωo = {(p(k), k) : ke K} and this is a compact subgroup
of S x G, normal in Ω. If we define the map τ 0 : (a, g)—*aδg*ρmκ

for (a, g)e S x G, then r 0 : S x G - > (M(G), (σ)) is continuous and
τ 0 : Ω—+Γ is an epimorphism with kernel Ωo.

Proof. If τo(a, g) = ί then g e K and we have aδg*pinκ ~ a p(g) pmκ.
Ήence a = p(g) and (a, g) — (p(g), g) with ge K. Since pe K\ ΩQ is
a compact subgroup of S x G. Let Ho — supp (Γ), KQ == Ker p; from
3.1.8, K is central in Ho mod iΓ0, so δg*pmκ — pmκ*δg*pmκ for
geHo (see 3.1.6). Thus τ0 is a homomorphism on £? (that it is onto is
clear from 3.1.2) since

^ = τo(a19 g1)*τ0(a2, g2)

if QD #2 € iίo Obviously Ωo = Ker τ01Ω, so i20 is normal in Ω. The
continuity of τ0 is clear.

4* Norm decreasing homomorphisms on locally compact
groups* Let G be a locally compact group and consider on M(G) the
(σ) and (so) topologies defined in § 1. Every norm decreasing homo-
morphism on L\G) extends naturally to a norm decreasing homomorphism
on M(G). To appreciate the usefulness of this extension theorem it
is helpful to recall 1.1.3.

THEOREM 4.1.1. Let F, G be locally compact groups and let
φ : L\F) —> M(G) be any norm decreasing homomorphism. Then φ
extends uniquely to a norm decreasing homomorphism φ: M(F) —* M(G)
which is continuous on norm bounded sets as a map of (M(F), (so))
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into (M(G),(σ)). If {βj: j e J} is a left approximate identity of
norm one in L\F) then the extension is given explicitly by the
formula

φ(μ) — lim {φ{eά *μ): j e J} all μ e M(F) ,

where the limit is in the (σ) topology. A similar result holds for
right approximate identities.

Proof. Let B = φ{L\F)) and let A be the (σ) closure of B in
M(G), so that A and B are subalgebras of M(G).

LEMMA 4.1.2. Let {e/ : je J} be a left approximate identity of
norm one and let {ek

r: ke K} be a right approximate identity of
norm one in Lϊ(F). Then in M(G) the (σ) limit points of the nets
{φ(e31)} and {φ{ek)} °<tt coincide in a single idempotent c e M(G), sa
we must have convergence

φ(ek

r) — > c

in the (σ) topology. If φ Φ 0 then c Φ 0 and we have a — c*a = a*c
for all ae A.

Proof. Since || <£>(#/) || ίk 1 there is at least one (σ) limit point λ,

for this net, and for an appropriate subnet we get φ(ejip)

ι) ° > λ»

Thus if fe L\F) we have

X*φf < φ(em

ι)*<pf= φ(ej{p)

ι*/) • φ(f) .

Hence if {μt: ie 1} is a net in B with μt — <p(ft) and μi > μ in A,,
we have

0 ) N j? ,. (σ)
X*μ< λ * ^ = \*<pfi = φfi = μi > μ

so that λ * α = a for all a e A. In particular we have λ e A s o λ * λ = λ.
Similarly if v is a (σ) limit point of {φ{ek

r)} then v^v — v and α*y = α
for all ae A.

If λ, i; are (σ) limit points as above, we have λ, v in A, which =>
λ = λ*y = i;; hence λ = v and all limit points (left or right) coincide
in a single idempotent c such that c*a = a*c = a iί ae A. If φ Φ 0,
dearly * =£ 0.

The main step in our proof is to show that, if {/,•: j e J} is a
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norm bounded net in Lι{F) which is (so) convergent to some μe M(F),
then the net {φ(fj)} converges to a limit λμ in the (σ) topology, and
this limit depends only on μ, rather than on the particular choice of
the net {/,}. This can be done for any μ e M(F), in view of 1.1.5.

First consider any fe L\F) and notice that | | / i * / — μ*f\\ —> 0,
which => || φfj*φf — φ(μ*f) || —• 0. Let λ be any (σ) limit point of
the norm bounded net {φ(fj)}\ there exists a convergent subnet

φ(μ */

for all fe L\F), which means that φ(μ*f) = X*φf for all fe L\F).
Clearly λ e A since each <p(/j) e 5, and this means that

X — χ*c 4 x*φ(ek) = cp(/:<*ek

r) .

Thus we get

λ = lim{φ(μ*ek

r) : ke K}

in the (σ) topology, and this formula doesn't depend on anything but

the choice of μ e M(F). Hence if fj > μ, then λ is the only possible
limit point of {φ(fj)}9 so if we take λ/x = lim {φ(μ*ek

r)}9 we always

have φfj > λμ.
Notice that if feL\F) we have | | / * e / - f\\ -> 0, which gives

W / ̂  ^ normλ/ < φ{f*ek

r) > φ(/)

so that φf = Xf for all fe U(F). Now define <p(/i) = λμ for ^ e M{F),
and verify the properties required. Clearly φ{f) — φ(f) for all fe Lι{f),
so φ extends φm

If (7) is a locally convex topology on M(F) we define the bounded
(7) topology (67) by taking as a basis of neighborhoods about zero
all sets X Γ\Y where X is a (7) neighborhood of zero, and Y is a fixed
norm neighborhood of zero. From the discussion above we know that
if μ e M(F) and if W is a (σ) neighborhood of zero in M(G), then
there is an open (bso) neighborhood V of zero in M(F) such that
φ((μ + V) Π Z/ίF)) c φμ + T7. Now let W czW be a (σ) neighborhood
of zero such that W = — W and W + W a W, and let U be an open
(δso) neighborhood of zero in M(F) such that

φ((μ + U)Π L\F)) c φμ + IF' .

If λ G /ί + U we can find a (6so) neighborhood Ϊ7λ of zero such that

(1) φ((\ + uλ) n L^JF7)) C ^λ + w

(2) X + Uk(zμ + U.
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Then we have φ((X + Uλ) Π L\F)) c φ((μ + U) Γ) L\F)) aφμ
and φ((X + Uλ) Π L\F)) c φX + W, which together imply that

(φX + W) Π ( ^ + IF') Φ 0

(see 1.1.5), which means that φXeφμ -\- W. Hence φ(μ + U)aφμ + W
as required for continuity.

Clearly || φμ || g sup{|| <p(μ*ek

r) ||} ^ || μ || for μeM(F), and if
^ λ e M(F) we have

φ(μ * λ) < φ(μ * (λ * e/)) = φμ * φ(X * efc

r) φ// * ^

since λ * e / • λ. Hence φ is a norm decreasing homomorphism.

EXAMPLE. In 4.1.1 we cannot replace the (so) topology with the
(σ) topology in M{F). Indeed, if Z — integers, S — circle, and if β is
some irrational number, then <p(ΣJΓ=i α A J = Σ~=i anδ(eiχnβ} gives a
norm decreasing homomorphism φ : L\Z) —• ikf(S). This map coincides
with its extension φ. The sequence {μn = δ{n): n — 19 2 } is (tf)
convergent to zero, while φ(μn) is not (σ) convergent in M(S).

REMARK. The proof of 4.1.1 is also valid for any bounded homo-
morphism φ : L\F) —• M(G), which means that the structure of a
bounded homomorphism is determined once we know the structure of
the bounded group of measures φ{&F); however, the structure of the
bounded subgroups in M(G) is generally not known unless G is abelian
or the subgroup lies within ΣM{G).

4*2* The structure of norm decreasing homomorphisms* If
φ extends the norm decreasing homomorphism φ : Lι(F) —-> M(G), as in
4.1.1, then Γ = φ(&F) is a subgroup of the unit ball in M(G). Using
the continuity properties of φ demonstrated in 4.1.1 and our knowledge
of the structure of Γ we can determine φ completely (see 1.1.3).

Let i — pmκ be the unit of Γ and denote Ho — supp (Γ), Ω =
{(a, g)e S x G : a§g*pmke Γ}z)Ω0 — {(a, g)e S x G : aδg*pmκ — ρmκ},
and Ko = Ker p. Let π : S x G —> (S x G/Ω0)r be the canonical map
onto the space of right cosets of ΩOf so π is a homomorphism when
restricted to S x Ho, and let τ 0 : (α, g)—+aδg*prnκ for (α, g)e S x G.
Then define 0 : F-+ (Ω/Ωo)c(Sx G/i30)r to be θ = ^ o ^ o ^ o ί , so that
0(&) = 7r(α, g) if and only if φ{8x) = adg*ρnικ in M(G). The mappings
involved are shown in the following (commutative) diagram.

S xGi)Ω<^-Γ

(S x G/ΩQ)r =)

Figure 1
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PROPOSITION 4.2.1. The map θ : F—>Ω/Ω0 is an epimorphism and
is continuous as a mapping θ : F—>(S x G/Ω0)r.

Proof. Let x19 x2e F and let (au g^)9 (α2, g2)e Ω be chosen such
that π(ai9 g^ — θ(xi)9 and let (α, g) e Ω be chosen such that π(a9 g) —
θ(xλx2). Thus φ(8x.) — a$g.*pmK. We have 0{xγx2) — θxι-θx2 if π(a9 g) —

), which happens if ((x1a2,g1g2) e (a,g)Ω0. This follows since

= (adg~i*ρmκ)*(a1δgi*ρmκ)*(a23g2*pmκ)

We want to show θ\ JP—>(S x G/Ω0)r is continuous. Because φoδ
and π are continuous it suffices to show that r 0 : S x G —> iV = ro(S x G)
is an open map when AT has the restricted (σ) topology. Let (aQ, gQ)e SxG
and let U x V be a product of open sets in S, G with <x0 e U, gQe V.
I t suffices to show that τo( 17 x V) is always a (σ) neighborhood of
^0(̂ 0, 0̂) in AT. If this set fails to be a neighborhood there is a net
{(tfj> QJ)} such that μy = τo(aj9 g3) = aβg^pmκ ~—• ocJ)gQ*pmKi while
jtίyί τo(C7 x F ) . We can assume ^ G g0WK for some compact neighbor-
hood TF of g09 and, by taking subnets, we get g3- —> g1 e g0K, aά —> aλe S.

If we let 0, * = gagr^o), then ^ * -> ^0. Let α / = ocφ{g~ιg,yy this
makes sense because ^ί/Γ1 e i^. Then we have

j = r o(a i ? ^ ) -^-> aodgo*ρmκ .

Since # / —> ^0 we must have α / —> α0 and αy* is eventually in U; hence
^o(oίj*fg3 *) — τo(aj9gj) is eventually in τQ(U x V), a contradiction.

Let τ*ψ(a, g) = <aδg*pmκ, π/r> for ψ e CQ(G). Then τ*ψ e C0(SxG)
since K is compact, and in fact τ*ψ is constant on right cosets of Ωo

in SxG since Ωo = {(p(k), k) : keK}. If Ψ e C0(S x G) and is constant
on right cosets of Ωo, let us identify it with a function

π*¥eC0((S x G/ΩQ)r) .

This function vanishes at infinity since ΩQ is compact. We can give an
integral representation for norm decreasing homomorphisms as follows.

THEOREM 4.2.2. Let F9 G be locally compact groups and let
φ : L\F) —> M(G) be a nonzero norm decreasing homomorphism with
extension φ to M{F), as in 4.1.1. Denote

( 1 ) Γ = φ(&r)
(2 ) i — pmκ the unit of Γ
( 3 ) Ω = {(a,g)eS x G: aδg*pmκeΓ}
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( 4) Ωo = {(a, g)eS x G: adg*ρmκ = i}.
Define the maps

τ0: S x G > Γ

τ* : C0(G) > CQ(S x G)

τr*τ* : Co(G) > C0((S x G/£0)r)

θ: F >Ω/Ω0

as indicated above. Then we have the representation

for all μ e M(F) and ψ e C0(G).

REMARK. Since θ : F—>Ω/Ω0 is a continuous homomorphism and
τr*z-*f 6 CQ((S x G/Ω0)r)9 it follows that (π*τ*ψ)oθ is a uniformly con-
tinuous and bounded function on F. Thus the right hand side of (*)
is uniquely determined. We will want to make use of 1.1.1 in the
following discussion.

Proof. We have <<?(<?*), ψ> = <βθaf τr*τ*α/r> = <&, (τr*τ*α/r) o ̂ > if
xe F. If μ e M(F) is of norm one then there exists a net {σά: j e J}
in the convex span of the extreme points of ΣM{F) such that ||0"i|| = 1

and Gj • μ (see 1.1.3). If we write GJ = X MJ> #)&* (finite sum)f

we can apply 1.1.1. to get

(i,

Thus

As a converse we have the following theorem which classifies all
norm decreasing homomorphisms.

THEOREM 4.2.3. Let F, G be locally compact groups and let Γ
be a subgroup of 2^(0) with unit i — pmκ and with

Ω = {(OL, g)e S x G: aδg* ρmκ e Γ) ,

Ωo — {(a, g)e S x G : aδg*pmκ = i}. Then if θ : F-^>Ω/Ωo is any con-
tinuous epimorphism (Ω/ΩQ is given the restricted topology from
(S x G/ΩQ)r), the relation

for μ e M(F), ψ e C0(G) defines a norm decreasing homomorphism
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φ : (M(F), (so)) —> (M(G), (σ)) which is continuous on norm bounded
sets, and we have φ( %?F) ~ Γ.

REMARK. If φ has the above continuity properties it is clear that
φ is obtained, as in 4.1.1, by extending the norm decreasing homo-
morphism φ I &(F).

Proof. From 3.1.11 we see that Ωo is a compact subgroup of
S x G which is normal in Ω, so Ω/ΩQ is well defined. We have also
noted that τ*π/r(α, g) = ζμpg*pmκ, ψy is in C0(S x G) and

π*τ*ψ e C0((S x G/Ω0)r) ,

so (π*τ*ψ)oθ is bounded and uniformly continuous on F. Hence (*)
is always well defined.

Clearly φ\ (M(F),(so))—>(M(G), (σ)) is a norm decreasing linear
map, and continuity on norm bounded sets follows from 1.1.1. Now
φ(3x) = aδg*pmκ for all (a, g)eπ~1θ(x), so φoδ = (τ^oπ^oθ] thus,
φ( g^) — Γ and ψ is a continuous homomorphism of (gf#, (so)) into
(M(G), (σ)). Convolution is a jointly (so) continuous operation in ΣM{F),
so φ is a norm decreasing homomorphism of M(F) in view of the
density theorems 1.1.3, 1.1.4.

A norm decreasing homomorphism φ : L\F) -+ M(G) is order pre-
serving if μ ^ 0 => φ(μ) ^ 0. From the continuity properties given in
4.1,1 and the structure theorem 3.1.8 it follows that φ is order
preserving <=> ψ(^F) is a group of translates of Haar measure
{δx*mQ: xeG0}, where Q(zG is a compact subgroup, normal in the
subgroup (τ0. Every norm decreasing homomorphism φ is closely related
to an order preserving norm decreasing homomorphism of Lι(F) into
M(S x G).

If Ω ZD ΩQ are two subgroups in S x G satisfying conditions (1) and

(2) in the discussion following 3.1β8, define the maps τ0, -. , r * * as

indicated there.

THEOREM 4.2.4. If φ : (M(F)y (so)) -> (M(G), (σ)) is a norm de-
creasing homomorphism, continuous on norm bounded sets, and if
Γ = φ( ifp) has unit i — pmK9 then the subgroups

Ω = {(&, g)eSxG:aδg* ρmκ eΓ}i) Ωo = {(a, g)eSxG:aδg* ρmκ = ρmκ)

satisfy conditions (1) and (2) of 3.1.9 and we can factor φ — τ**oφ
where Φ is some order preserving norm decreasing homomorphism
of M(F) into M(S x G). Here Φ maps cgF to the group of measures
{δx*mΩo: xeΩ} and τ** is a homomorphism on the range of Φ»
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Conversely, if Φ : M(F) —+ M(S x G) is any order preserving norm
decreasing homomorphism, let Ω = supp (Φ( gV)) ZDΩ0 — s(Φ(de)). If
Ω, Ωo satisfy conditions (1), (2) in 3.1.9, then φ = τ**oφ: (M(F),(so))~-»
(M(G), (σ)) is a norm decreasing homomorphism, continuous on norm
bounded sets.

Proof. Let Ωz)Ω0 satisfy (1) and (2) of 3.1.9 and define MQ to
be the subspace of measures in M(S x G) whose intersection with
ΣM{SXG) is co[S&Ω:σ]. We assert that

(*) MΩ is a subalgebra in M(S x G), τ**(δx*mO() = τ**(δx) = τo(x)
for xe Ω, and τ** is a norm decreasing homomorphism on Mo.

Clearly MΩ — {μ: s(μ) c Ω], and is a subalgebra. We have already shown
(in discussing 3.1.10) that mΩ(je MΩ and τ**(δx*mΩ{) = τ**(δx) = τo(x)
for all xeΩ. Thus τ** is multiplicative on S^Ω, and since convolu-
tion is separately (σ) continuous we can show that τ**(δx*μ) =
τ**(<y *r**(μ) for μ G Λfβ, a; e fl. Then if λ, -^-> λ for || λ || = 1, where
Xj G CO[AS gfβ] we use the same idea once more to get

so τ * * I MΩ is a homomorphism.

Now 0 maps S&T into Λffl, and if μe M{F), \\μ\\ = 1, there exists

a net {μj} a co[S %?F] such that μs-^-+μ. This means Φμj—^Φμ
while Φ/iy e ^^(^xβ) Π Mi?, so Φμ e MΩ and (P maps M(F) into Λίfl. Thus
τ**0 is well defined and is a norm decreasing homomorphism with the
desired continuity properties (τ** is (σ) continuous on M(S x G)).

Conversely, let φ be given; then Ω, Ωo defined above satisfy (1)
and (2), as shown in 3.1.11. The homomorphism θ : F-* Ω/Ωo, associated
with φ as in 4.2.2, is continuous, so θ*ψ — ψoθ is uniformly continuous
and bounded (UCB) on F and we can consider the dual maps.

β* : CQ((S x G/Ω0)r) > UCB(F)

θ** : M(F) > M((S x G/ΩQ)r) .

For ψ e CQ(S x G) define π*f e CQ((S x G/ΩQ)r) by lifting the function

π*ψ(x) ~ I ψ(xt)dmΩo(t) (constant on right cosets of ΩQ) over to the

coset space (S x G/Ω0)r. The desired map Φ is given by

(Φμ, t > = <θ**μ, π*ψ> = ζμ, (π*ψ)oθ}

for f e C0(S x G). It is easy to verify that Φ(δx) = δiatg)*mΩo for all
(a, g)e π~1θ(x)', therefore, as indicated in 3.1.10, we h a v e ^ τ * * ^ ^ ) , ψ} —
<^**(δ(α,,)*mΰo), ψ> = ζτ**(δ{atg)), ψy = <adg*pmκ, ψ} = ζφ(δΛ)ψy for
all XGJP7. Thus φ = τ**Φ on Sg^F. But from 1.1.1 we see that Φ
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defined above is continuous on norm bounded sets mapping from the
(so) to the (σ) topology; clearly, then τ**Φ : (M(F), (so))-> (M(G), (σ))
is continuous on norm bounded sets. Now ψ and τ**Φ both enjoy
this continuity property and coincide on S&F; from 1.1.3 it follows
that they coincide on all of M(F), and this is the desired factorization
of φ.

5Φ Examples and applications* In 5.1 we analyze the special
structure of norm decreasing monomorphisms ψ : L\F) —> M(G) between
locally compact groups F and G; then in § 5.2 we give the structure
of all norm decreasing homomorphisms φ which map L\F) onto L\G).
Maps in the latter class have very simple structure.

5Λ* Norm decreasing monomorphisms* Let us denote JF~ =
S&F — {adx : I a \ — 1, xe F} and j^l = g^ throughout this discussion.

LEMMA 5.1.1. If φ : L\F) —» M(G) is a norm decreasing mono-
morphism, and if φ is its extension to M(F) as in 4.1.1, then φ is
a monomorphism of M(F) into M(G). Furthermore φ(JFl) Π Si = {i},
where i = φ(δe), and μ = λ in ψ(^l) whenever s(μ) — s(λ).

Proof. If μ, λ e M(F) have φμ — ψX — ξ and μ Φ λ, then there
is some / e Lι(F) such that μ * / Φ λ * / while φ(μ */) = <̂>(λ */) = f * <̂ /,
a contradiction. Hence ^ ( ^ ^ ) Π Si = {i} and the last property follows
from 3.1.4.

We propose to study the structure of all norm decreasing homo-
morphisms φ whose extensions φ have the special property Γo Π Si — {i},
where Γo — cp(J^l) and i — φ{Se) is the unit in ΓQ0 This discussion
will apply to norm decreasing monomorphisms as a particular case.
Hereafter we will denote Γ — φ{^~), ΓQ = φ(^l) (writing the unit of
these groups as i = pmκ), Ho = supp (Γ), and

Ω = {(a, g)e S x G : aδ(J* pmκ e Γ} .

Let π : G —> (G/K)r be the canonical map onto the right coset space,
so π : Ho —> HQ/K is the corresponding canonical homomorphism. Let
7F, ΊG be the topologies on F, G and, if 7 is a group topology on G,
let j/π denote the quotient space topology on (G/K)r (notice y/π — π(j))β

The restriction of yθ to a subset NaG is y0 \ N. We will speak
interchangeably of a topology 7 and the collection of open sets it
specifies.

The following lemma holds for all locally compact groups; notation
is chosen so its meaning in the present context is clear.
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LEMMA 5.1.2. Let F, G be locally compact groups and consider
any system of subgroups Ka HoaG with K a compact subgroup in
G which is normal in HQ. Let π : G —> (G/K)r be the canonical map
onto the right coset space. If ζ : F—» (HJK, 7G/π) is a continuous
epimorphism then ζ(yF) and ττ~1oζ(7ί,) are topologies in Ho/K and HQ

respectively; moreover, if 7 is the common refinement in HQ of
{ΊQ I Ho) and π'1 o ζ(jF) then (Ho, 7) is a locally compact topological
group, y/π — ζ(jF), and ζ : F—>(H0/K,yln) is an open, continuous
epimorphism.

REMARK. Unless K is trivial, TΓ"1 o ζ ^ ) will not be a Hausdorff
topology, but in all other respects (homogeneity, joint continuity of
multiplication, etc.) it is like a group topology.

Proof. The topology axioms for π'1 o ζ(yF) follow if we can verify
them for ζ(jF). Only the finite intersection property is nontrivial. If
Vlf V2e7F let Vi = F - K e r ζ and notice that ζ~\x) Π Ut Φ 0 implies
that ζr\x) c Ui. Thus

n ζ(v2) = ζ(Ud n ζ(U2) = [x: ζ- 1 ^) n u< Φ 0 , i = 1,2}

= ζ(ϊ71n U2)eζ(iF).

Now (Ho, 7) is a Hausdorff space and the collection of sets ^ =
{UΠ V: U=WΠH0, WejG; V^π-'o^X), XeyF} is a base for 7.
If U Π Ve <%r then (U Π V)-1 = TJ-1 Π V~xe <%f, so the inverse mapping
is bicontinuous. It is quite easy to verify that 7 is homogeneous, in
the sense that 7 = {xll: Uej} for any xeH0, so joint continuity of
multiplication will only be proved at the identity e e H. If e lies
within UΓ\Ve^ there exist UoeyG\Ho and Voe π - ' o ζ ^ ) , which
contain e, such that U0

2aU and F 0

2 c F; hence (UQ Π Fo) x (C/o Π Fo)
is an open neighborhood of (e, e) in (ίί0, 7) x (HQ, 7) which maps into
U Γ\V under the product mapping.

Clearly 7 3 π~x o ζ(7#), so that 7/τr = 71(7) =) TΓ O ττ-1(ζ(7^)) = ζ(7^). For
the converse inclusion, we first make a few simple assertions:

( 1 ) If A c Ho is a union of Z-cosets and if i? is any subset of
Ho, then (A ΓΊ B) 1Γ = A n (B-K)\

( 2) If Aα c Ho for indices α e /, then (U«e/^) ^ = \Jaei{Aa-K).
Now a typical element in 7 has the form X — \JaβIAa Γ\Ba where
Aa — π~ιoζ{Ua) for some Ua e yF, and Ba — Va Π i ϊ 0 for some F α e j G .
Evidently Aa — Aa*K and Ba K= π~1o(τrBα), so we get

π(X) = π(X-K) = π(\Jaei(Aa Π Bβ) iΓ)

= ^(U«er^«n(B

TrίU^Cίt^) ΓΊ
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But continuity of ζ implies that ζ(yF) z> {ΊGJTZ \ Ho/K) and it is easily
verified that the latter collection of sets is just τr(γ# | Ho); hence the
last term in (*) is in ζ(τ F ) , giving π(y)dζ(yF). Clearly j/π = ζ(ΎF)=>
ζ : F—*(H0/K,7/π) is an open mapping; so (H0/K,j/π) is topologically
isomorphic to the locally compact quotient group i^/Ker (ζ). To see
the local compactness of (HO9y)9 notice that KczH0 is 7 compact
because 7 | K — yG \ K. A result due to Mackey gives local compactness
(see Montgomery-Zippen [7], P 52).

If xe F write s(x) = s(φ(dx)), a coset of K in Ho. The map ζ =
π©s : F-*((G/K)r,yG/π) carries F onto Ho/K, is a homomorphism (see

2.1.1), and is continuous since x3- —-> x => δXj > 8X => <P(δXj) —> ̂ (δ^) ==>
π o S(XJ) —> 7Γ o s(#). lί μe Γo and # e s(/>ί), then we can write μ — ρμ\ μ\ —
p^(()g*mK) and we can take pμ. to be a unique continuous function on
the coset s(μ) c Ho. Assigning pμ in this manner for each μe ΓQ we
have p^\(st) = pμ.(s)pλ(t) for ses(μ), tes(X), as indicated in the proof
of 3.1.2. Define p on all of Ho such t h a t p{x) — p^x) iί xe s(μ), μ e Γo;
t h i s is u n a m b i g u o u s since s(μ) — s(λ) => μ = λ (we as sume Γof) Si — {i},
so 3.1.4 applies).

Consider t h e g r o u p topology 7 on i ? 0 c o n s t r u c t e d as in 5.1.2 for
t h e epimorphism ζ = π o § : F ^ - ^ (Ho/K, ΊQITL).

PROPOSITION 5.1.3. (iί0, 7) is a locally compact Hausdorff group
and pe(HQ9y)\

Proof. Clearly p is a unimodular mult ip l icat ive funct ion on HQ

which is cont inuous on cosets of K (see proof of 3.1β2). T h e topological
g r o u p propert ies of (HQ, 7) w e r e verified in 5,1.2. Given ε > 0 we can
find a yQ neighborhood V of t h e u n i t in G such t h a t | p{g^ — p(g2) \ < ε
for all gu g2 e HQ w i t h gι — g2 mod K and gr^ e F . This is clear since
Pμf(s) = Pμ.(gs) — ap(s) for some | a | = 1, w h e n e v e r se K, ge s(μ), μe Γ
(see proof of 3.1.2), and we k n o w p is uni formly cont inuous on K.

L e t g e Ho; t h e n gQ e s(xQ) for some x0 e F, and if U is a compact
j F neighborhood of xQ, N = s(U) is a neighborhood of g0 in (H0,y).
N is compact since c o n t i n u i t y of T Γ O S : F—+(H/K,j/π)=^πos(U) is
compact, and since iΓ is a 7 compact s u b g r o u p in Ho. If (O fails to be

7 cont inuous a t 0O w e can find a n e t {g3} a N such t h a t g3 > g0

while p{g3)-* β Φ β0 = p(g0)- F o r each index j t h e r e exis t s a n xόe U
such that gjes(Xj); we can assume that the net {Xj} is j F convergent

to some a?! e ?7, which will => ^, = ^(δXJ) > φ(δXj) — μt. But this

=> s(/iθ = Sfo^ = 8(μQ), since gr,- -^-> gOf so ^ = ^ 0 = φ ί & J . Recall that
μά — p(δg *mκ) and jw0 = P(δgo*wικ) from the definition of p.

lί ψe C0(G) has sup norm one and (μ0, ψ)> Φ 0, then Ψ(s) =
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[ ψ(ts)ρ(t)dmκ(t) is in CQ(G), \\Ψ\U^1, a n d Ψ(s) = aφ(s) for a l l

se g0K, where a = (μ0, ψy (a constant =£ 0). Furthermore,

= j Ψ(x)p(x)d[δgo*mκ](x) =

If ε > 0 we can insure that | Ψ(gjS) — Ψ(gos) | < ε for all a e if and

j ^ y6 since gj — -̂> ̂ 0, and this means that a = <^0, 5P"> < <^5 , ?Γ> =

I Ψpd[δgj*mκ] = I Ψ(gjS)p(gjS)dmκ(s). The last integral is eventually

within ε of

Φ(go$)p(gjS)drκκ(s) = α J ρ{g,s)p{gfi)dmκ{s)

= « J
Since this is true for all ε > 0, and /30 ̂  /S, we have a contradiction*

COROLLARY 5.1.4. If F is a compact group and φ : L\F) -
is a norm decreasing monomorphism, then in 5.1.2 Γ = φ(J^~) is a (σ)
compact subgroup of ΣΛΓ(0)> HQ = s u p p ^ ) is a compact subgroup in
G, and 7 = ΊQ \ Ho in Ho. Thus if p is defined as above, pe (Ho, 7<?)A

Proof. Clearly Γ is compact; HQ is then yθ compact since
(H0/K,7G/π) is compact (recall πog; F—^(Ho/Ky70/π) is a continuous
epimorphism). By definition of 7 the map πos: F-* (H0/K,7/π) is
continuous and we know that Ka Ho is 7 compact; thus Ho is 7 compact
as well as y0 compact. Since 7 is finer than yθ9 these must be equivalent
topologies on HQ.

Consider the following maps between measure algebras.
( 1 ) Let H, G be locally compact groups and let j : H —•> G be a

continuous monomorphism. Define i** : {M{H), (so))—>(M(G), (σ)) such
that <i**^, t > = <μ, Ψ°i> for ψ e C0(G).

( 2 ) Let H be a locally compact group and let ρeHA. Define
Ap: (M(H), (so)) — (M(H), (so)) such that Ap(μ) = pμ, so <Ap/«, t > =

( 3 ) Let F, H be locally compact groups, let K be a compact
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normal subgroup in Hf and let ζ : F—>(H/K,y3/π) be an open con-
tinuous epimorphism, where π : H —* H/K is the canonical homomorphism.
Then define Φ: (M(F),(so))->(M(H), (so)) such that <Φμ, ψ>=ζμ,(π*ψ K > ,

where the function π*ψ(x) = I ψ(xt)dmκ(t), constant on cosets of K,
j

is considered as a function in C0(H/K).
We assert that the maps in (1) (3) are all norm decreasing

homomorphisms, continuous on norm bounded sets with respect to the
topologies indicated. Since (Apμ)*f = p(μ*pf)9 this assertion is clear
for (2), and follows easily from 1.1.1 for (1), because ψoj is uniformly
continuous and bounded on H; we momentarily put off verification of
(3). Once this assertion has been checked we can prove the following
structure theorem.

THEOREM 5.1.5. If we are given groups and maps as in (1) (3)
then the map φ = j * * oApoφ : (M(F), (so)) —* (M(G), (σ)) is a norm
decreasing homomorphism, continuous on norm bounded sets, with
the special property that Γ0Π Si = {i}, where ΓQ — φ{tβ

r

Q) and ie Γ
is its unit. Conversely, let φ :. Lι(F) —» M(G) be a norm decreasing
homomorphism whose extension φ (as described in 4.1.1) has the
special property Γof] Si = {ί}, where Γo = φ(j^Q) and i — pmκ is its
unit. If Ho — supp (Γ), then we get φ — j**oApoφ by taking groups
H = (Ho, 7) Z) K = (K, y) and maps ζ = πoS : F-+ (HJK, y/π), j =
id : (Ho, T) —> (G, yG), where pe (Ho, τ)Λ is the unique function on Ho,
continuous on cosets of K, with the property μ = ρ\ μ\ for all μ e ΓQ.

REMARK. In the first part, φ is clearly the extension of φ =
φ I L\F). Purthermore? the unit of Γ will be i = pmκ and supp(T) = H,
when H and K are regarded as subgroups in G. In the second part
the 7 topology in Ho is defined as in 5.1.2.

Proof. In the first part consider H and K as subgroups of G (with
new group topologies) and j as the identity injecting H into G; H
has a topology finer than 7<? | H, but since j is continuous, it is a
homeomorphism on compacta and on cosets of K in particular. If
xeF it is easy to verify that φ(8x) = ρ(3g*mκ) for any geπ~1oζ(χ)9

From this it is clear that Γ has unit i = pmKj and that Γo Π Si = {i}.

Conversely let φ : L\F) —> M(G) be given. If we take H = (Ho, 7),
K — (K, 7) and let ζ = πos, j = id : (Ho, 7) —* (G, Jβ), we see that H
is a locally compact group and that ζ : F—>(H0/K,fy/π) is an open,
continuous homomorphism (5.1.2); thus, the maps j * * 9 APf Φ are well
defined. We know pe(H0,yy from 5.1.3.

If xe F then | <ρ(δx) \ — δg*mκ for any g e s(x) and φ{δa) — p(δg*mκ)
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by definition of p. It is a simple matter to verify that

δx) = p(δg*rnκ)

for any ges(x), so that φ ~ id**oApoφ on ^ 7 Since the maps on
each side of this identity are continuous on norm bounded sets, as
maps of (M(F), (so)) into (M(G),(σ)), we get φ = id**oApoφ on all

^of M(F) from 1.1.3.

COROLLARY 5.1.6. A norm decreasing homomorphism φ : L\F)—>
M(G) is a monomorphism <=> its extension has the structure φ —
id**oApθφ, as in 5.1.5, where the map ζ — πos which induces Φ is
an isomorphism of F onto Ho/K.

Proof. If φ is a monomorphism, so is φ \ F (see 5.1.1); now 5.1.5
applies and it is clear that ζ = πos is an isomorphism, as required
for (=>). Notice that the maps Ap and id** are always monomorphisms
in (2) and (3) above. Conversely, in (3) we have Φ — π^oζ**, where
(ζ**μ, ψy — <ju, ψ°C) and (π**μ, ψy — (μ, π*ψy define maps

M(F) -^ M(H0/K, y/π) — M(H0, 7) .

Since ζ — πos: F—*(HQ/K,7/π) is a topological isomorphism if ζ is
1:1, ζ** is a monomorphism. It is easy to verify that π*(CQ(H0,y))
is sup norm dense in C0(H0/K, y/π); hence π** is always a monomorphism.

In the following paragraphs we digress to study the map defined
in (3) and prove the assertions about it which were used to prove
5.1.5. Then in 5.2, we will use these observations to study the
structure of special norm decreasing homomorphisms.

THEOREM 5.1.7. Let F and H be locally compact groups, let Kc. H
be a compact normal subgroup, and let ζ : F-^H/K be an open,
continuous epimorphism. Then the map Φ : (M(F),(so))-^(M(H),(so)),
defined such that (Φμ, ψy — <j«, (^+)°C), is a norm decreasing
homomorphism, continuous on norm bounded sets, if we identify

π*ψ(x) — \ ψ(xt)dmκ(t) (constant on cosets of K) with a function in

C0(H/K) for each ψeC0(H).

Proof. Consider the maps shown in Figure 2,

(M(F),(so)) — (M(H),(so))

Φl

(M(F/F0), (so)) -±+ (M(H/K), (so))
Figure 2
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where FQ = Ker (ζ), (Φxμ, f} = ζμ,ψ°πoy (π0: F—> F/Fo is the canonical
homomorphism), ζΦ2μ, Ό — <(μ, ̂ °ζ°^o~ iX and where ζπ**μ, ψy —
<j«, π*ψyc Clearly Φ2 is bicontinuous with respect to the topologies in
Figure 2. Continuity of Φ follows from the lemmas below, since we
can verify by direct computation that Φ — π**oφ2oφ1 on M(F).

LEMMA 5.1.8. Let Q be a locally compact group with QQ(zQ a
closed, normal subgroup, and let π0: Q —* Q/Qo be the canonical homo-
morphism. Define Φ : (M(Q), (so))—>(M(Q/QQ),(so)) such that <Φμ,ψy =
ζμ,ψoπoy for | e CQ(QIQQ)O Then Φ is a norm decreasing homo-
morphism, continuous on norm bounded sets.

Proof. It is easy to verify that Φ is a norm decreasing homo-
morphism. We assert that Φ(M(Q)) = M(Q/Q0), and in fact Φ{ΣM{Q)) =
ΣM{QIQO)'> from this it will follow that Φ(L\Q)) is a two sided ideal in
M(Q/Q0) since L\Q) is a two sided ideal in M(Q). If Σx =
{μ: || μ\\^l, s(μ) c X) for XaQ, we will show that Φ(ΣK) --= ΣπQK

for all compacta KaQ; since π0 is open, this means that every μ with
compact support in M(Q/Q0) is the (P-image of some μ e M(Q) with
\\μ\\ = | | λ | | . Clearly Φ(ΣK) c ΣπQK, and K compact ==> the map

Φ : (Έ,κ, (σ)) > (M(Q/Q0), (σ))

is continuous, in fact if {μ5}aΣκ with μά-?—*μ and if feCQ(Q) has
/ = 1 on K, then for any ψ e C0(Q/Q0) we get <Φμd, ψ) = ζμjf ψ o τro> =
( ^ / • ( f ^ o D ^ ^ / ί t ^ o D ^ ^ M ) . Now ^ is precisely the
(σ)-closed convex span of {aδx : \a\ — lf xe K), so Φ{ΣK) is (o')-compact;
since Φ{ox) = δπQX we have Φ(Σκ)z) co {adπQX : \ a \ = 1, ^ e i f } , which

gives the converse inclusion.
Now if λ 6 M(Q/Qo) there are measures λn with compact support

such that || λ, - λ || — 0 and || λ || = || λx || + Σf = 1 1| λn+1 - Xn \\ (restrict
λ to increasingly large compacta). Then there exist μne M{Q) with
Φ(μx) = \u\\μ1\\ = \\\1\\ and(P(/in+1) = (λn+1 - λ j , | | /^ + 1 | | = ||λw + 1 - λ j |
for n i> 1; hence μ = Σ£=i t*n converges in ikf(Q), | l i" | | = | | λ | | , and
φ(^) = λ as required.

Next we show Φ{L\Q))dL\QIQQ)) in fact, if μ = Φf and xeQ/Q0,
then given ε > 0 and gr e TΓO"1^) we can find a compact neighborhood
V oί g with | | < W - / | | < ε for all fee V. Thus || Φ(δh)*Φf - Φf\\ =
|| δ y * ^ — /̂ II < ε for yeπQV. Since πQ is open and continuous, this
means μ = Φfe L^Q/QQ) (see Rudin [9], p. 230; the abelian hypothesis
used there is superfluous). To prove 5.1.8 it is now sufficient to show
that Φ{U(Q)) is norm dense in U{QjQ,). To prove density, let {e,} c U(Q)
be a left approximate identity such that e, > 0, \\ej\\ = 1, and s(βj)
are compacta which are eventually within any fixed neighborhood of
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t h e uni t in Q. Then s(Φβj) are compacta shrinking to t h e uni t in Q/Qo

But (Φes, ψy-+ψ(e) for all ψ e C0(Q/Q0), hence Φed -^U de and || Φes || ^ 1;

these facts together imply that lim {|| Φβj ||} = 1. Since Φβj ̂  0 (clear),

{Φβj} c L'iQ/Qo) is an approximate identity for U(QIQQ). Since Φ(L\Q))

is an ideal in M(Q/Q0), norm density of Φ{U{Q)) in Lι(QIQQ) follows.

LEMMA 5.1.9. If Q is a locally compact group, KaQ a compact

normal subgroup with canonical homomorphism π : Q —> Q/K, define

7Γ** : (M(Q/K), (so)) -> (M(Q), (so)) such that <π**μ, ψ> = ζμ, 7Γ*ψ>

where π*ψ(x) = I ψ(xt)dmκ(t) (constant on cosets of K) is regarded

as a function in C0(Q/K). Then TΓ** is a norm decreasing homo-

morphism, continuous on norm bounded sets.

Proof. Normality of K in Q => h* mκ = mκ * h = mκ * h * mκ for
all h e U(Q). Define ξ : M(Q) -> M(Q/K) such that <£μ, t > = <A«, f ° π>.
It is a simple matter to verify that (1) τr**f(μ) = μ*mκ for all
// G Λf(Q), and (2) ξπ**(μ) = μ for all /J G M(Q/K). One can also verify
by direct computation that π**μ = (π**/i)*m^ for /ιe M(Q/K). From
(1) we see that π**(ΛΓ(Q/£")) = Λί(Q)*m^, so that π**(L\QIK)) is
closed under right or left multiplication by elements of M(Q)*mκ.
Finally, π**(L\QfK)) c U(Q)\ for if ε > 0 and x e Q, and if / G L\Q/K),
we can find a neighborhood V of π(x) with | | δ w / ~ / | | < ε whenever
ue V. Thus, if W is a neighborhood of x such that π( W) c F, we
have P,*(τr**/) - π**/ | | ^ || f(8,)*f(π**/) - f(ττ**/) || = || δxy*f-f\\ < ε
for all yeW. Thus π**feU(Q) (again see Rudin [9], p. 230). If

{βj} is a norm one approximate identity in L\Q/K)f then e3- > de

and it is easy to show t h a t π**e3- —°—* mκ = π**(de) from 1.1.1. We
can a r r a n g e t h a t t h e supports s(π**ej) shrink to s(mκ) = K, a compact

set; t h u s we ge t π**βj >mκ by applying 1.1.2. Since π**(U{QIK))
is closed under r i g h t multiplication by elements of mκ*M(Q) = M(Q)*mκ,
we get (for any heU(Q)) \\ (π**ej)*mκ*h — mκ*mκ*h \\ —> 0, which
=>π**(L1(Q/UL)) is norm dense in mκ*U(Q).

Consider μά - ^ μ in M(QjK) wi th \\μό\\^l\ if heU(Q) then
(π**μ3)*h = (π**μj)*mκ*h. But we can approximate mκ*h in norm
by some π**f(feU(QIK)) and we know that (π**μj)*(π**f) =

5.2. Norm decreasing homomorphisms which map L\F) to
L\G). Suppose φ actually maps L\F) onto L^G), then the structure
of φ is exceedingly simple. First recall that if φ is a norm decreasing
isomorphism of L\F) onto 1/(6?) it is actually an isometry; furthermore,
an isometric isomorphism has the special structure
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= \ P ° Φ)Ψ ° s(x)df(x)
JF

where s: F-+G is any topological isomorphism and peGA, as was
first proved by Wendel [10], [11]. Although the structure theorem
5.1.4 could be used as the basis for a direct proof of these results,
it only gives conditions on the structure of φ which are necessary
(but not sufficient) if we are to have φ{L\F)) = L\G). To identify
these norm decreasing isomorphisms (or isometries) precisely we would
have to retrace some of WendeΓs analysis rather than do this we use
WendePs analysis as a starting point.

THEOREM 5.2.1. Let φ : L\F) —> L\G) be a norm decreasing
epimorphism. Then there exists a closed normal subgroup FQdF,
an isometric isomorphism A: L^F/FQ)—* L\G), and βeFA with
KerβaFo such that φ = Λo(π*Aβ), where Aβ(μ) — βμ, and the
canonical homomorphism π : F-~• F/Fo gives <7Γ*(μ), ψy ~ <μ, ψoπy
for ψeC0(F/F0).

Proof. First notice that, if s(x) = s(φ(δx))9 then s: F—>G is a
continuous homomorphism; in fact, φ(δe) = pmκ for compact subgroup
KCLG and peK\ and if heL\G) we can write h = φf for some
fe L\F). Thus h*pmκ = φ(f)*φ(δe) = φf = h, which is impossible
for all h unless K — {e}, so ψ maps &M{F) into g^^,. For continuity
of s see remarks preceding 5.1.3. Hence FQ — {xe F: s(x) — e in G}
is a closed normal subgroup in F. If we define β(x) = ae S <=> φ(δx) =
aδs{χ), the continuity properties of φ (see 4.1.1) insure that βeFΛ;
thus Aβ : μ —> βμ is an isometric automorphism of M(F). The map
π* : M(F) —> M(F/FQ) has been discussed in 5.1.8; we assert that π*
has the following properties (which will be verified at the end of this
proof):

(1) π*L\F) = L\F/F0), and
(2) | |π*(μ)| | = inf {\\ μ + n\\: %eKer(π*)},

the quotient norm in M(F)/Ker (π*).

Clearly μ e Ker {π*Aβ) — <τrMβ(μ), ^> = \ β{x)f{πx)dμ{x) = 0 for
JF _

all ψ 6 CQ(F/FQ); it is not hard to show that μ e Ker ψ ^=> ζφμ, ψ} =

\ <φ(δx),ψ>dμ(x) = { β(x)<δt{x), ψydμ(x) = 0 for feCQ(G). The non-
jFt JF

trivial first equality here can be seen from 4.2.2, or directly by looking
at the action of φ on finite sums of point masses and using the (so)
continuity of φ. We assert that Ker φ Z)Ker (π*Aβ), so

A = φ o (π*Aβ)~x: M(F/F0)

is a well defined homomorphism.
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LEMMA 5.2.2. If {/,-} is a net of bounded functions in C(F)

with M— sup {||/y ||oo} < °° and fj—+f uniformly on compacta, then

<β, fi> - <j", /> for all μ e M(F).

Proof. As usual, for bounded fe C(F) we define ζμ, /> = ζμ, χEfy
where Ee B(F) and Ez)s(μ). For K compact in F we obviously have
(s(μ\K),fϊ)—>((μ\K),fy and for suitably chosen compacta Knczs(μ)
we have || μ - (μ \ Kn) || — 0; hence </*, /,> - <μ, />.

Each function Ψ(x) = <δβ(aί), α/r> is continuous, bounded, and constant
on cosets of Fo in ί7, if ψeCQ(G). But any bounded feC(F) which
is .constant on cosets of Fo can be approximated uniformly on compacta
by a uniformly bounded net of functions selected from {hoπ: he C0(F/F0)};
in fact, if Ka F is compact so is πK, and if U is a relatively compact
open neighborhood of πK, we can find continuous h such that h = 1
on 7riΓ, I Ξ O outside Z7 and 0 ^ fc^ 1. Then f'(hoπ) coincides with
hλ°π on ί7, where hx{x) — h(x)-f(π^1(x))e CQ(F/F0); we have h^π = f
on K and || l ^ J i H*, ̂  11/1U as desired. Taking Ψ as the uniform on
compacta limit of uniformly bounded net {/̂  °π} we get

f Λy oτr>} - lim {<ττMβ(^), ̂ ,>} = 0

if μ e Ker (π*Aβ), so Ker ^ Z)Ker (π*Aβ).
Now I ] J 11 ̂  1 since (2) insures that

[| π*Aβ(μ) \\ = inf {|| μ + n\\: ne Ker (τr*Ap)}

^ inf{|| μ + w|| : ^G Ker ̂ }

^ i n f { | | ^ + ^ | | - \\φμ | | } - | | ^ | |

for/J G M(i^). Since π* : (M(F), (so)) -> (M(F/FQ), (so)) is continuous on
norm bounded sets (see 5.1.8), (π1*)-1 is open on ΣM{FlFo) relative to the
(so) topologies; hence A : (M(F/F0), (so)) —• (M(G), (σ)) is continuous on
norm bounded sets. From (1) we see that A maps U(FjF0) onto Lι(G),
so Λ on M(F/F0) coincides with the extension A from L^F/Fo) discussed
in 4.1.1. Furthermore,

A r^F\F) = Ψ o (π*Aβy\ &FlF) - φ{β(x)δx: xeF} = {dsix): x e F} ,

so A( tfFiFQ) Π S{δe} = {de} in g^(ff) and the analysis of 5.1 applies; i.e.
we can write A = j**oApoζ* : M(F/Fo) —> M(G) as in 5.1.5. In our
present context some of these maps are trivial since A(δx) = ds{π-ι{χ))

for x e F/Fo; indeed, p and K are trivial, j is the injection of H —
{s(x) : x G F} into G, and ζ : .F/Fo ~> H is given by ζ(x) = s(^(δx)) =
sίπ-Xa;)). But -Po = Ker s = Ker π in .F, so ζ is an isomorphism of
F/Fo onto ί ί ; hence, as indicated in 5.1.6, A must be a monomorphism
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on M(F/F0). Thus A is a norm decreasing isomorphism between L\F/F0)
and L\G), and WendePs analysis applies to A.

In proving 5.1.8 we showed that π*(M(F)) = M(F/F0) and that
K*(ΣM{F)) — ̂ M(FIFQ)- The latter identity proves assertion (2) above.
Furthermore, we showed π*{L\F))(zU{FIF^ is norm dense, and that
a right approximate identity {eό} of norm one in L\F) is mapped to
the same sort of approximate identity {π*βj} in L1{FJFQ). Let fe LXF/FQ),

say with | | / [ | = 1, and let μ e M(F) be chosen with || μ || = 1, π*μ = /;

then π*(μ*ej) — (π*μ)*(π*ej) =/*(7r*e5 ) >f and μ*ejβ L\F) with
^ II μ li = ll/ll Hence we see π*(Sχi(ί.)) is norm dense in

We can find Sί e L\F) with || βl || g 1 and || π*flfi - / II ^ 1/2.
Since TΓ*^ -feL^F/Fo), there exists g2e L\F) with | | # 2 | | ^ 1/2 and
11 π*#2 — (/ ~ 7Γ*flfi) 11 < (1/2)2. By continuing this selection we get gn e L\F)
with || ^ || g (1/2)-1 and || π*gn - (/ - Σ5=ί π*^) || < (l/2)\ Thus g -
ΣΓ=i ^% converges in L\F) and π*^ = Σ»=i ^^^^ = Λ proving assertion
(1) above.
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