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A SET OF NONNORMAL NUMBERS

MICHEL MENDES FRANCE

Let P be the set of real polynomials and let E(P)be the
the set of real numbers whose nth binary digit from a certain
point on is 0 or 1 according as [φ(n)] is even or odd for some
φeP. We prove that no number in E(P) is normal in the
binary system and that E{P) has Hausdorff dimension 0.

Some notations and definitions* It is well known that every
real number x of the unit interval which is not a binary fraction can
be expanded in the binary system

x = Σ ε^}

where (sn(x))neN is a uniquely determined sequence of functions taking
values 0 or 1. The functions rn(x) = 1 — 2 εn(x) are known as the
Rademacher functions.

We shall say that x is a normal number (in the binary system)
if for every positive integer s and every sequence of positive, strictly
increasing integers ku k29 , ks one has :

( 1 ) lim - ί Σ rn+kl(x) rn+ks(x) - 0 .

One can prove that this definition is equivalent to the other usual
ones [3], [4], [6].

If £ is a real number, [t] will denote the greatest integer not
greater than t and {t} — t — [t] the fractional part of £.

Let P be the set of real polynomials and let E(P) be the set of
points x such that for some φ e P and for some nQ ^ 0, rn(x) =
exp iπ[φ(n)] for all integers n > n0.

We wish to prove first the following theorem:

THEOREM 1. E(P) contains only nonnormal numbers.

This result shows that the measure of E(P) is null, since almost
all numbers are normal. Now the question arises if E(P) contains
"almost all" (in a sense soon to be made precise) nonnormal numbers
or notβ We answer this question by stating the known result:
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The Hausdorff dimension of the set of nonnormal
numbers is 1, (see for example [1]),

and hj proving our second theorem:

THEOREM 2. The Hausdorff dimension of E(P) is 0.

2 Proof of Theorem !• Let x be an element of E(P). We
show that for a certain sequence of increasing positive integers kl9 k29

• - , ks the equation (1) does not hold.
Let φ be a polynomial such that rn(x) = exp iπ[φ(n)} for all suf-

ficiently large integers n. Without loss of generality we may suppose
that this relation holds for all positive integers, for normality or non-
normality are asymptotic properties. Let the expansion of φ be

(2 ) φ{n) = alLnv + av^nv~ι + - + a,n + a.o , v :> 1 .

If all the numbers α^(l g j ^ v) are rational, then x is clearly rational,
hence nonnormal. If one of the numbers aό{l ^ j ^ v) is irrational, we
can without loss of generality suppose that the leading coefficient au

is irrational. Indeed, suppose that α μ (l ^ μ < v) is irrational and that
aμ.+u "Ίa» axe rational. Let q be the least common denominator of
the v — μ fractions aμ+1 •••,#„. lϊ x is normal, then so is the number
y defined by rn(y) — exp iπ[φ(2qn)] for all integers n. But clearly
[φ(2qn)] = [ψ(n)] (mod 2) where ψ{n) — αμ(2g)μ^μ + β + ot0. This
shows that we can now deal with ψ, the leading coefficient of which
is irrational.

From now on in this section, φ is defined by equation (2) where
av is an irrational number.

We need the known identity for polynomials of degree v :

v-v

and the lemma:

LEMMA 1. // F(xu xz, - — 9xv) is a Riemann integrable function
tvhich is of period 1 in each variable and if φ is a real polynomial
of degree v9 the leading coefficient of which is irrational, then the
following equality holds:

lim lτ Σ F(φ(n), φ(n + 1), , φ(n + v - 1))
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This is a very well known corollary of WeyPs theorems on uniform
distribution (see for example [2]).

Combining equality (3) and Lemma 1, one can write:

L — lim Σ exp iπl [φ(n + v)λ
N «=i V

bfa + v - 1)] + . . . +(-.iy(^[φ(n)]

— lim 2 exp iπl (Λ )φ(n + v — 1)
TV %=i VLV-1-/

v -2) + . . . + v ! tfv ΊJ

- (J)[2α;j + . . . + ( - 1)^2

By putting 2x3 = ?/,, j = 1, 2, , v, the integral becomes

L = 2 , \ e χ P '

Now the identity [a; + εy] = [a;] + ε[y] + [{x} + ε{y}], ε — ±1 shows
that one has:

[ ( ϊ ) ^ - (ΐ)y^ + + vl α - ] = ( ϊ ) ^ " 1 - ( 2 ) t y - ^ + - " + [ v \ a v \

so that:

= ± 1 exp iπl ^jτ/v - (2)^-1

Consider the hyperplane (\)y» - (%)y»-i + • • • + ( - 1)*'% = — {vl av)

in the euclidean space R\ It has rational coefficients except for the
constant term, which is irrational. Hence it cannot split the unit cube
(0, l) v into two regions of equal volume. Therefore the integral L
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cannot be 0. Finally we notice that L may be written

L = lim A Σ rn,M)(rn+^{x)fι) rn(x)
Λr->oo _/v %=i

this completes the demonstration.

3* Proof of Theorem 2* Let P v denote the set of real poly-
nomials of degree v, the coefficients of which are all in the interval
[0, 2[. It is easily seen that to prove Theorem 2, it is sufficient to
prove the lemma :

LEMMA 2β Let Ev be the set of numbers x such that for some
φePv, rn(x) = exp iπ[φ(n)] for all integers n. Then the Hausdorff
dimension of Ev is 0.

Let φ(n) = ajn? + + oc{n + a0, aά G [0, 2]

and let a = (aOf alf , aj) be a point in the space (0, 2)v + 1. We are
going to estimate the number Nu(p) of regions in (0, 2)y+1 which have
the following property: when a ranges over one of these regions,
the sequence [<p(l)], [φ(2)]t ", [φ(p)] stays invariant. First let us
show :

LEMMA 3. The h-dimensional measure (0 ^ h ^ 1) of the set
El = {x I rn(x) = exp iπ[φ(n)] n = 1, 2, , p cp G P J satisfies the
inquality

λ-meaβ ( ^ ) ^ ^ f > .

Indeed, when <p runs through P v, α ranges over (0, 2)v+1. The set
El is composed of at most Nv{p) intervals, each of which has fc-length

Now, if one notices that Ev — f |".i -KJ, one gets the result that
the Hausdorff dimension of Ev cannot be greater than

δ = l i m i n f ~ l o g Λ ^ > .
p-»~ p log 2

We wish to show that δ = 0 and we shall do so by proving our last
lemma:

LEMMA 4. When p goes to infinity, one has
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Proof. Let q be an integer such that

0 ^ q ^ 2 (nu + n*-1 + + n + 1) - 1

Consider the set jβn,g of the points a — (α0, aίy , αv) defined by

q ^ α^n* + + axn + aQ < g + 1.

Clearly, when α runs through the region Rn,q, the quantity [<£>(%)] =
[aun

y + +αxw + α0] stays equal to g. Then let ĝ , q2, , gp be any
sequence of integers such that 0 5Ξ gy < 2 ( j y + + j + 1), j 1 =
1,2, , 39. When α ranges over the set nJ=i^»,?n> the sequence
[φ(l)], [^(2)], — ,[φ(p)] does not change. But the number of these
regions is at most the number of different regions one can obtain by
dissecting the space R M 1 by hyperplanes avn

v + . . + aji + aQ~ q.
These hyperplanes are at most M — Mv(p) = 2JU 2 ( i " + β β + j + 1) =
0(pu+1), Now, one can show that the space R"+1 is dissected into
0(Mv+1) regions by M hyperplanes [5] and therefore :

Nu(p) = 0W+1)2) .

R E M A R K ! . It is easy to generalize Theorem 2 and obtain the
following result. Let (/ W ) W 6 N be a countable set of real functions
such that

l i m iog+_\fM_\ = o t v % e N >

(log+ denotes the maximum of 0 and log). Let Q be the set of all
real finite linear combinations of the family (/J. Then the Hausdorff
dimension of the set E(Q) is 0.

REMARK 2. The proof of Theorem 2 shows that the set Ev is not
dense on the unit interval (0, 1). On the other hand, Ev is invariant
under the mapping x —* {2x}. From these two remarks, one sees that
Eυ is a Rajchman iJ-set and that E(p) is therefore a set of uniqueness
for trigonometric series. This result is to be compared with the
following corollary of Pyatetski-Shapiro's theorem:

The set of nonnormal numbers is not a set of uniqueness.
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