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THE BOREL SPACE OF VON NEUMANN ALGEBRAS
ON A SEPARABLE HILBERT SPACE

EDWARD G. EFFROS

Let (S, .°) be a Borel space (see G.W. Mackey, Borel
structures in groups and their duals, Trans, Amer, Math,
Soc. 85, (1957) 134-165), 5~ a separable Hilbert space, ¥ the
bounded linear operators on 57 with the Borel structure gene-
rated by the weak topology, and _c7 the collection of von
Neumann algebrason 52 A field of 57 von Neumann algebras
on Sis a map s—UAs) of S into _o7. We prove that there is
a unique standard Borel structures on .07 with the property
that s —(s) is Borel if and only if there exist countably many
Borel functions s — A;(s) of S into ¢ such that for each s, the
operators A;(s) generate (s). This is a consequence of the
more general result that when it is provided with a suitable
Borel structure, the space of weakly* closed subspaces of the

dual of a separable Banach space has sufficiently many Borel
cheice functions.

We show that the commutant, join, and intersection
operations on 07 are Borel. It follows that the Borel space
of factors is standard. The reievance of o7 to the theory of
group representations is also investigated.

Essentially following von Neumann [9], we say that a field s — 2(s)
is Borel if there exist countably many Borel functions s— A,(s) of
S into ¥ such that for each s the operators A,(s) generate A(s).
This definition may be regarded as somewhat artificial. Rather than
state which maps of S into & are Borel, one would conjecture
that there is a standard Borel structure on & for which this
characterization of the Borel maps of S into .9 is then valid. In §2
and § 3 we shall show that this is the case. The demonstration depends
on two results: a theorem in [4] showing that a certain Borel structure
on the closed subsets of a polonais space is standard, and Theorem 2
of this paper. In the latter we prove the existence of Borel choice
functions for the weakly* closed subspaces of the dual of a separable
Banach space.

The Borel space .o~ is of importance in representation theory. If G
is a second countable locally compact group, and G°(2#°) are the weakly
continuous unitary representions of G on 5% with the weak Borel
structure (see [8]), the map L — L{(G)' (prime indicates commutant) of
G(27) into .7 is Borel. By proving in § 3 that the factors & are
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a Borel subset of &7 we obtain new proof in § 4 of Dixmier’s result
that the factor representations G'(2#°) form a Borel subset of G°(57).
We are also able to show that the quasi-equivalence relation is a Borel
subset of G%(57) X G(ZF).

It is interesting to speculate about the isomorphism relation on & .
Conceivably, one might find an argument similar to those in [3] to
prove that the quotient space was not smooth, and thus in particular,
that there are uncountably many essentially distinet factors on 57

We remark that an analogous problem of a ‘‘nonintrinsic’’ defini-
tion of structure, solved for .7 below, exists in Spanier’s definition of
a quasi-topology [12]. As is shown in [12], one must look for struc-
tures more general than topologies.

We are indebted to E. Alfsen and E. Stérmer, who enabled us to
simplify the proofs of Theorem 2 (by the convexity argument for the
continuity of L) and Theorem 5, respectively.

2. Separable Banach spaces. Let ¥ be a separable real or
complex Banach space, ¥* the dual of ¥, _/"(¥) the norm closed sub-
spaces of ¥, and 277(X¥*) the weakly* closed subspaces of X*. We
wish to define a Borel structure on 777(X*). As 9 — 9L (the annihilator
of 9)) is a one-to-one correspondence between _#(X) and 777(X*), it suffices
to find a Borel structure on . #7(X) and then to transfer it to 27 (¥*).

A7(%) is a subset of &,(X), the collection of nonempty closed sub-
sets of the polonais space X. In [4] we showed that convergence of
subsets in &(X) defines a standard Borel structure on <,(X¥). Recal-
ling the procedure, if F, is a net in &5(X) let lim ¥, be those x in
¥ for which there is a net », ¢ F, with 2, — x. Let lim F, be those
x in ¥ for which there iz a subnet F“s and Tag € FaB with Ty — 2.
If Fe&,(¥), we say that F, converges to the limit F, F, — F, if
F=lmF,=lmF,. If I< Z,%), welet 3 be the limits of nets in
Y, and we say that 3 is convergence closed if 3 =23. The convergence
closed sets form a topology, and generate a standard Borel structure
on Zy¥X). We let _#7(X) have the relative Borel structure. It is
easily verified that _#7(¥) is convergence closed in (%), hence /(%)
and %7 (%¥*) have standard Borel structures.

If d is any metric on X compatible with the topology of X, « € %,
and Fe &y(X), define d(z, F') = glb {d{x, ¥): ye F'}. For any positive ¢,

(1) {Fe cy(®):d, F) = ¢

is convergence closed. It follows that F'— d(x, F') is a Rorel function
ou %,X). As in the proof of the first theorem in [4], sets of the
form (1) separate points in Z5(X), and thus as %,(X) is standard,
generate the Borel structure. It follows that the Borel structure on
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&,(%) is the weakest for which the functions I'— d(x, F') are Borel
(actually it would suffice to restrict to the 2 in a countable dense
subset).

Let d be the norm metric on ¥. Then for ¢ 77 (¥*), d(x, 9*) =
[l + DL}, the latter being the quotient norm in %X/P+. As 9 is
weakly* closed, 9+ 9, and we have a natural isometry (¥/9+)* = 9.
The corresponding isometry of X/2)* into 9* is defined by z + 9+ —x|9),
where 2|9 in the restriction of @, regarded as an element of X**, to
9. We conclude:

THEOREM 1. Let X be a separable Banach space, 777 (X¥*) the
weakly* closed subspaces of X*. The Borel structure on 77 (X*) is
standard, and may be described as the smallest structure for which
the functions

I—lle+P =19, weX

are Borel.

If ¥ is a real or complex separable Banach space, the weak* Borel
structure on X* is that generated by the weak* topology. In other
words, it is the smallest structure for which the functions f— f(x),
x € X are Borel. Although we shall not use this fact, we remark that
this structure is standard (see the proof of |8, Th. 8.1]).

Theorem 2 may be regarded as an elaborate form of the Hahn-Banach
Theorem. Recalling the usual argument, suppose that X is a real
Banach space, and that we wish to construct a function in the closed
unit ball X of X*. Suppose that f has been defined on a linear sub-
space B of X, and is in Bf. If we extend f to the space generated
by 8 and a vector x, we must insist that

(2) e +wl=lle+wl
for all w e ¥, i.e.,

— e+ ull —fw =7 =lle+v] - flv)
for all u, v ¢ B, Let

L(f) = lub{—[jo + u || — f(u): w e T},
M(f) = glb{lle + v || — f(v):v e T} .

These exist as for any u, v € B,

®3)

fo—w=llv—ull=lle+vl+le+ul,
(4) ie., —lle+ull —fw)=lle+v]—fl).

Thus we may rewrite (2):
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() L(f) = f(@) = M(f) .

We shall assume below that 0 is finite dimensional, and let L* have
the norm topology. The functions f— L(f) and f— M(f) are defined
on the closed unit ball Bjf. As it is the least upper bound of convex
functions, f— L(f) is convex, and thus continuous on the interior of
of BF (see [1, p. 92]). From

(6) M(f) =— L(—= 1),

f— M(f) is also continuous on the interior of LB}.

THEOREM 2. Let X be a separable Banach space, <7 (X*) the
weakly* closed subspaces of X*. There exist countably many Borel
choice functions f,: 7 (X*) — X* such that for each Y e % (X*), the
vectors f,(2) are weakly* dense in the closed unit ball %), of 9.

Proof. Suppose that X is real. If Y e Z7(X*), we may identify
9 with (¥/91)*, the norms and the weak* topologies will coincide.

For each sequence of real numbers ¢t = (¢, ¢, +-+) with 0 = ¢, = 1,
we shall construct a function fP e (/94)r. Let @, @, --+ be norm
dense in %, with 2, = 0. Let 2,¥) = z, + 9+, and B,(?) be the linear
space spanned by 2,(9), ---, z,(9) in X/9*. Define f ?Z(O) = 0. Suppose
that we have defined f?l,...,tn to be an element of B, (Y)f. Letting
B, =B, f:?_...,t" =f, and x,..(9) = in our previous discussion,
define

(T I (@) = L) + (1 — 6 )MS)
If ze B, letting v = v =— x, we have from (3), (5), and (7)
— fw) S L) = fD.,, (@) S M) = — fv),

i.e.,

.....

£2..., satisfies (5), it readily follows that f7.....,, is in B,.(D).
Define f}z) on the space spanned by the x,(2) to be the union of the
functions f ?1 This extends by continuity to an element of
&/DH)r.

It is clear that any function in (¥/9%)F must have the form f P

..... [



THE BOREL SPACE OF VON NEUMANN ALGEBRAS 1157

for some sequence ¢t = (t,, t,, +-+). We claim that the countable family
of functions f ?, r = (r, 7y, ---) with the #; rational, and all but a
finite number equal to 0, are weakly* dense in (/9+4)F. It suffices to
norm dense in the interior of (L,(9))¥. This is trivial if » = 1. Sup-
pose that it is true for n. If g€ B, ,(P)* and || g || = 1, let f be the
restriction of g to B,(Y). From our hypothesis and the earlier discus-
sion, we may select rationals »,, ---, 7, with f 3)1 . close to f in the

......

N

close to g(z,.(Y)).

For any sequence (t, t, -+-) we have that §— f¥(,) is Borel
(regarding f ? as an element of ¥)). This is trivial if » = 1. Suppose
that it is true for k¥ =< n. Then

@) = £y (@01:(D))

® b L(FPs ) 4 (L — by ) MCFD )

If B, is the linear span of x,, ---, %,

From Theorem 1 and the induction hypothesis,
D — — || Bpurt u + D[ — FPw)

is Borel for any w € B,. Restricting to » that are rational linear
bound of a countable number of Borel functions, and is thus Borel.
From (6) and (8), 9 — fY(x,.,) is Borel. For any z ¢ %, 9 — fI(z) is
a limit of functions of the form ¥ — fP(x,), and hence is Borel. Thus
9 — P is Borel.

Finally, suppose that X is a complex Banach space. Letting X be
the corresponding real Banach space, .#7(X) is a convergence closed
subset of _#7(X;). Define a map of %77 (X*) into 27 ((Xp)*) by 9 —Re D,
where the latter consists of all real functions Ref with fe 9 (the
customary argument shows that f— Ref is an isometry of X* onto
Zp*. For 3e _+7(%), Re(8%) = 8%, where annihilators are taken in
X* and (Xz)*, respectively. It follows that 9 — Re%) defines a Borel
isomorphism of ¢77(¥*) onto a Borel subset of %7 ((X;)*). Choose real
choice functions f,: 77 ((Xx)*)—(Xz)* with f,(9) weakly* dense in 9,
for each YPe 7 ((Xp)*). Let g,. # (¥*)—%* be the corresponding
complex functions, i.e., for Ye 7 (¥*) and = € %, let
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9.(D)(x) = fu(Re P)(@) — if.(Re P)(iw) .

Then Re ¢,(9) = f.(Re)) € (Re ), implies ¢,) € Y,. Given an ar-
bitrary g € Yy, &y, +++, %, € ¥, and ¢ > 0, choose an f, with

| f(Re Y)(@;) — Reg(w)) | < e
| f/Re Y)(ix;) — Re gliwy) | <e,

for 5=1,---,k. Then as
9(x) = Re g(@) — i Re g(ix) ,
we have
[ 9.0)(;) — gl | < 2

for y=1,--+, k. Thus the ¢g,(J) are weakly* dense in 2,. Clearly
the ¢, are Borel.

COROLLARY. If (S,.&”) is a Borel space, then a map s — )(s) of S
anto 977 (X*) is Borel if and only if there exist countably many Borel
functions s — fr of S into X*, such that for each s, the vectors f: are

weakly dense in Y(s)..

Proof. If s— Y(s) is Borel, the functions f; are obtained by
composing this map with the choice functions of Theorem 2. Con-
versely, if such functions exist, we have from the isometry

Y (s) = X/ Y)H)*,
o+ YE)*t || =sup{|fi@)|:1=1,2, -}

for each © € X. Thus s— ||« + Y(s)* || is Borel for each e X, and
by Theorem 1, s — 2(s) is Borel.

3. Von Neumann algebras. Let 277, &, &, and &% be as
in § 1. We have that ¥ = (8,)*, where ¥, is the separable Banach
space of ultra-weakly continuous functions on £ (or by a natural
identification, the trace class operators with a suitable norm-see |10]).
The ultra-weak and weak* topologies coincide on ¥. Thus letting
277(2) be the ultra-weakly closed subspaces of ¥, we may give it the
Borel structure described in § 2.

If Pe 7(R), write P* and ¥’ for the adjoints of elements in 9),
and the commutant of ¥), respectively. The proof of the following
theorem is largely patterned after that of [6, Th. 2.8].

THEOREM 3. Y —9* and Y — Y define Borel transformations of
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7 ().

Proof. For f e &, define f* ¢ &, by f*(4) = f(A*), the bar indica-
ting complex conjugate. This is an isometry of 2., hence the trans-
formation B — B* on _#7(8) is a homeomorphism (in the sense of
convergence), and a Borel isomorphism. For J e 277(8), (P)* = (P*)*,
i.e., the adjoint operation on .#7(8*) is carried into that on <7 7(2),
and thus is a Borel isomorphism on the latter.

From Theorem 2, we may let 9 — AY be Borel choice functions
on 7°(2) with AY ultra-weakly dense in ¥);.. We have

9 ={Be&:BAY — AYB =0 for n = 1,2, ---}.

Let M and M. be the sequences (4,) and (f,) of elements in £ and

L., respectively, with sup{||4,.|:n=1,2, -} <coand 32 || f.|/< .

With the norms |[[(4,) (| =sup{[|4,|:n=1,2,---} and [[(f)I =

o || fu 1], P and M, are Banach spaces, and defining (f,)((4,)) =
o fa(A4,), M may be identified with the dual of M,. We have

9’ = kernel TY,
where T9: ¢ — I is defined by
TYB) = (BAY — AYB) .
we claim that 79 is continuous in the weak* topologies. If (f,)e M.,
(£)TUB) = S9.(B) ,
where ¢,(B) = fn(BA? — A?B). The partial sums >.7,g, are weakly*

continuous, and converge uniformly on the unit ball £, of ¥, as if
Be g,

S B =25 Il

It follows that B — (f,)TY(B) is continuous on €, and thus on £ (see
[2, p. 41]). Define T?: M, — 8y by

TS NB) = (fIUTIUB)) .

We have that (kernel T9)* is the closurc of the range of TY. Thus
letting B; be ultra-weakly dense in ¥, and ¢; = (f%) be norm dense in
M., we have for any fe .,

If+ @) =gl {lf+TAg)ll, §=1,2 )

where
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1F + T || = Wb {| AB) + Tg)BY: § = 1,2, --+)
= lub {| f(B) + 3 FABAY — AVB) |: i = 1,2, ---).

As 9 — AY is ultra-weakly Borel, 9 — || f + () || is Borel, and as f
is arbitrary, we have from Theorem 1 that ¥)— 9’ is Borel.

COROLLARY 1. &7 1s a Borel subset of 777°(%), and thus is stand-
ard under the relative Borel structure.

Proof. & consists of the Ye 977(2) invariant under the Borel
transformations ¥ — 9* and ¥ — 9”. In general say that 0 is a Borel
transformation of Borel space (S,.&”). If 4 is the diagonal of S x S,
and 0 X ¢: S— S xS is defined by 0 x ¢(s) = (0(s), 8), we have

{se€ S:0(s) =8} =(0 x )™(4) .

Thus if (S, .5”) is standard, 4 is a Borel subset of S x S, and the set
of fixed points of ¢ is Borel.

Given von Neumann algebras % and B, we let €A \V B dencte the
von Neumann algebra generated by 2 and 8. Providing .o %X . with
the product structure,

COROLLARY 2. The maps of &7 X .7 into & defined by
A, B)—-ANDB and (A, B) —» A/ B are Borel.

Proof. As ANDB = v BY, it suffices to prove the second as-
sertion. From Theorem 2, there exist Borel choice functions A;: .o/ — &
with A,(A) ultra-weakly dense in 2, for each e .. For each pair
A, Bye . x.o7, let @R B) be the self-adjoint linear algebra
generated by the elements A, 2) and A;(B). Let B, B) be an
enumeration of the finite complex rational combinations of finite
products of the elements A;(), A{B) and their adjoints. The B, B)
are norm dense in & (2, B), hence defining BL(A, B) = B, (A, B) if
|| B, B) || £1, and B, B) = 0 otherwise, the BN, B) are norm
dense in (U, B),. From the Kaplansky Dengity Theorem, the latter is
ultra-weakly dense in (U Vv B),. As (U, B)— B (2, B) are Borel, our
assertion follows from the corollary to Theorem 2.

COROLLARY 3. & 1s a Borel subset of .o, and thus is standard
i the relative Borel structure.

Proof. Let J be the von Neumann algebra on 5% consisting of
complex multiples of the identity operator. Then & is the inverse
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image of the element & under the Borel map of .o into & defined
by €A — AN A,

The argument used in the proof of Corollary 2 shows that a map
s — 2A(s) of a Borel space (S, &) into &7 is Borel if and only if there
exist Borel functions s — A;(s) of S into & such that the A;(s) generate
A(s). Thus we have recaptured the original definition of § 1.

In direct integral theory, it is of some importance to know that
various other subsets of .7 are measurable (see [9, 11]). We suspect
that constructive procedures similar to that used in Theorem 2, would
enable one to show that many of these sets are Borel.

4. Representation spaces. Let 577, €, .o and &% be as above,
and G be a second countable locally compact group (an analogous theory
exists for separable C*-algebras). Let G°(57°) be the weakly continuous
unitary representations of G on 57, with the standard Borel structure
defined by Mackey (see [8]). Let G’(5#) be the subset of factor re-
presentations, i.e. those representations L € G°(9#°) with L(G) a factor
von Neumann algebra.

If L, Me G(2#), let R(L, M) be the ring of intertwining operators
for L and M, i.e., those Be & with BL(t) = M(t)B for all teG. In
particular, R(L, L) = L(G)'. As was the case for Theorem 3, the
following is simply a refinement of [6, Th. 2.8].

THEOREM 4. The map G(S7) x G(57) — G(57) defined by
(L, M) — R(L, M) is Borel.

Proof. Let ¢, be dense in G, and define M and MW, as in the
proof of Theorem 3. Defining S*%¥: & — M by

S(L’M)(B) e (BL(tn) - M(tn)B) ’
we have that
R(L, M) = kernel S&» |

and that S%* is continuous in the weak* topologies. S%* is the
adjoint of a map S&¥: M, — L., and choosing B; ultra-weakly dense
in &, and g; = (f7) norm dense in N, we have for any fe L,,

| f+ REL, M) || = glo{i| f+ S& (@) ll: =1,2,---},
where

If + 8¥2(g)) || = lub{| £(B))
+ 3 FHBL(t) — ME)B) |: 6 =1,2, -} .
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(L, M) — f}(B;L(t,) — M(t,)B;) is Borel when G(57) x G*(5F) is given
the product of the Mackey Borel structures, as any ultra-weakly
continuous funection is a norm limit of weakly continuous functions.
It follows that (L, M) — || f + R(L, M)* || is Borel, and from Theorem
1, (L, M) — R(L, M) is Borel.

COROLLARY 1. The map GY(o7)— &7 defined by L — L(G) s
Borel

COROLLARY 2. (This was first proved by J. Dizmier—see [5,
Theorem 1].) The set G'(S7) of factor representation of G forms a
Borel subset of GYS7), and thus 1is standard under the relative
Borel structure.

Following Mackey (see [7]), if L, Me G(5#), we say that L is
covered by M, L < M, if very subrepresentation of L contains a sub-
representation that is unitarily equivalent to a subrepresentation of
M. L is quasi-equivalent to M, L ~ M, if L < M and M < L.

If E is a projection in L(G), and E == 0, let L” denote the cor-
responding subrepresentation of G on the range of E. If there exists
a projection Ke L(G) with F + 0 and L? < M, let C(L, M) be the
least upper bound of all such projections. Otherwise, let C(L, M) = 0.
C(L, M) is an element of L(G)Y N L(G)".

THEOREM 5. The map GY(o7) x GYI7) — & defined by (L, M) —
C(L, M) is Borel.

Proof. If Ac®, let E, and F, be the projections on the closure
of the range, and the orthogonal complement of the kernel of 4. If
AeR(L, M), then F,e L(G)Y and F,c M(GY. If A0, and U is the
partial isometry in the polar decomposition of A with U*U = F',, then
U determines a unitary equivalence of L"4 and M”4, and F', < C(L, M).
From Theorems 4 and 2, there exist Borel functions A,(L, M) that are
ultra-weakly dense in the unit ball of (L, M) for each L and M.
We claim that

(9) C(L, M) = V Fagno

where on the right we have taken the least upper bound in the com-
plete projection lattice of L(G)'.
Suppose that there exist L and M with

F=CL M)~V Fuuun#0.
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As LT < M, there exists a projection F, < F with F,+* 0 and
F, = U*U where Ue R(L, M). Choosing %, for which A, (L, M)— U
ultra-weakly,

0=A4,(L, M)F,— UF, = F,,

a contradiction.

The map of € into itself defined by A — F', is Borel. To see this,
note that A — A*A is weakly Borel, as if x, y € 57, letting «; be an
orthonormal basis we have

A*Ax-y = i (Ax-x)(Ay-x,)" .
i=1

A similar expansion shows that for positive integers =», A — A" is
Borel, hence for any polynominal p, A — p(A) is Borel. Suppose that f is
a bounded real Borel function on the reals, and that there is a sequence
of real polynomials p, converging to f point-wise, uniformly bounded
on compact sets. If A is a self-adjoint element in ¥, we have from
spectral theory that p,(4) — f(A) weakly. Thus A— f(A4) is Borel.
Letting ¢ be the characteristic function of the open set (0, <o),
A— F, = g((A*A)"*) is Borel.

For all ¢, (L, M) — F4,z,x is Borel. If F), ..., F, are propections,
then

Fv--VF,= F(F1+.--+Fn) ’
hence

(L, M) — \:/1 FAt(L,M)

is Borel. As the projections Vi ,F ,y converge weakly to V2. Fy,z,u),
we conclude from (9) that (L, M)— C(L, M) is Borel.

Ernest remarked in the proof of [5, Prop. 2] that the quasi-
equivalence relation on G’(5#°) is a Borel subset of G'(27) x G/(57).
The above theorem implies:

COROLLARY 1. The covering and quasi-equivalence relations are
Borel subsets of GA(S7) x G(S#).

COROLLARY 2. The quasi-equivalence class [L] of a representa-
tion L in G(S7) is a Borel subset of G(SF).

Proof. Let m;: GY(57) x GY(57) — G(57), © = 1, 2, be the projec-
tions on the first and second co-ordinates. Then [L] = 7 (a7 (L) N ~),
and as 7, is one-to-one on 77Y(L) N ~, and the latter is standard, [L]
is Borel.

It would seem likely that the unitary equivalence relation is also
a Borel subset of G°(27) x G(9#°). Presumably one must prove the
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existence of a Borel choice function on spaces of the form R(L, M),
that selects a unitary operator when such exists. If unitary equi-
valence were a Borel set, it would follow that the representations
Le G(27) with L(G) finite was also Borel. It should be noted that
the unitary analogue of Corollary 2 above is true (see [3, Lemma 2.4]).

If G is the free group on countably many generators, the map
described in Corollary 1 of Theorem 4 is onto. As the given strue-
ture and the corresponding quotient structure on .© must coincide,
a subset of &7 will be Borel if and only if the inverse image in G°(Z#)
is Borel.

BIBLIOGRAPHY

1. N. Bourbaki, Espaces vectoriels topologiques, Act. Sci. Ind., no. 1189, Hermann,
(1953).

2. J. Dixmier, Les algébres d’opérateurs dams lespace hilbertien, Gauthier-Villars,
Paris, 1957.

3. E. Effros, Transformation groups and C*-algebras, to appear.

4, , Convergence of closed subsels in a topological space, to appear.

5. J. A. Ernest, A decomposition theorem for unitary represeniations of locally compact
groups, Trans. Amer. Math. Soc. 104 (1962), 252-277.

6. G.W. Mackey, Induced representations of locally compact groups II, Ann. of Math.
58 (1953), 193-221.

7. — , The theory of group representations (notes by Fell and Lowdenslager),
Univ. of Chicago, Lecture Notes, 1955.

8. , Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85
(1957), 134-165.
9. J. von Neumann, On rings of operators. Reduction theory. Ann. of Math. 50
(1949), 401-485.

10. R. Schatten, A theory of cross spaces, Ann. of Math. Studies, no. 26, Princeton,
1959.

11. J. Schwartz, Type II factors in a central decomposition, Comm. Pure Appl. Math.
16 (1963), 247-252,

12. E. Spanier, Quasi-topologies, Duke Math. J. 30 (1963), 1-14.

COLUMBIA UNIVERSITY
UNIVERSITY OF OSLO
UNIVERSITY OF PENNSYLVANIA





