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THE BOREL SPACE OF VON NEUMANN ALGEBRAS
ON A SEPARABLE HILBERT SPACE

EDWARD G. EFFROS

Let (S, ,9^) be a Borel space (see G.W. Mackey, Borel
structures in groups and their duals, Trans. Amerβ Math.
Soc. 85, (1957) 134-165), Sίf a separable Hubert space, S the
bounded linear operators on Sίf with the Borel structure gene-
rated by the weak topology, and S/ the collection of von
Neumann algebras on §ίf. Afield of ^{f von Neumann algebras
on S is a map s-»9ϊ(s) of S into j>/\ We prove that there is
a unique standard Borel structures on S/ with the property
that s —» %(s) is Borel if and only if there exist countably many
Borel functions s-» Ai(s) of S into 8 such that for each s, the
operators A*(s) generate 5ί(s). This is a consequence of the
more general result that when iί is provided with a suitable
Borel structure, the space of weakly* closed subspaces of the
dual of a separable Banach space has sufficiently many Borel
choice functions.

We show that the commutant, join, and intersection
operations on j y are Borel. It follows that the Borel space
of factors is standard. The relevance of S>/ to the theory of
group representations is also investigated.

Essentially following von Neumann [9], we say that a field s —> 21 (s)
is Borel if there exist countably many Borel functions s —> A^s) of
S into 8 such that for each s the operators A^s) generate 5U(s).
This definition may be regarded as somewhat artificial. Rather than
state which maps of S into Sf are Borel, one would conjecture
that there is a standard Borel structure on j y for which this
characterization of the Borel maps of S into Ssf is then valid. In § 2
and § 3 we shall show that this is the case. The demonstration depends
on two results: a theorem in [4] showing that a certain Borel structure
on the closed subsets of a polonais space is standard, and Theorem 2
of this paper. In the latter we prove the existence of Borel choice
functions for the weakly* closed subspaces of the dual of a separable
Banach space.

The Borel space Sf is of importance in representation theory. If G
is a second countable locally compact group, and Gc(βίf) are the weakly
continuous unitary representions of G on ^f with the weak Borel
structure (see [8]), the map L —> L(G)f (prime indicates commutant) of

into j y is Borel. By proving in § 3 that the factors J?~ are
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a Borel subset of J ^ we obtain new proof in § 4 of Dixmier's result
that the factor representations Gf{£έf) form a Borel subset of G\^f).
We are also able to show that the quasi-equivalence relation is a Borel
subset of G\2ίf) x G\^f).

It is interesting to speculate about the isomorphism relation on J/" „
Conceivably, one might find an argument similar to those in [3] to
prove that the quotient space was not smooth, and thus in particular,
that there are uncountably many essentially distinct factors on ^f'.

We remark that an analogous problem of a "nonintrinsic" defini-
tion of structure, solved for sf below, exists in Spanier's definition of
a quasi-topology [12]. As is shown in [12], one must look for struc-
tures more general than topologies.

We are indebted to E. Alfsen and E. St^rmer, who enabled us to
simplify the proofs of Theorem 2 (by the convexity argument for the
continuity of L) and Theorem 5, respectively.

2. Separable Banach spaces. Let 36 be a separable real or
complex Banach space, X* the dual of X, *yKι(Jί) the norm closed sub-
spaces of X, and W~(l*) the weakly* closed subspaces of X*. We
wish to define a Borel structure on 5^(X*). As 2) —> 2)1 (the annihilator
of 2}) is a one-to-one correspondence between ^V($) and ^"(X*), it suffices
to find a Borel structure on ̂ V(£) and then to transfer it to 5^(3£*).

^ί^(V) is a subset of ^0(T)9 the collection of nonempty closed sub-
sets of the polonais space 36. In [4] we showed that convergence of
subsets in ^(X) defines a standard Borel structure on ^ 0 (£) Recal-
ling the procedure, if Fa is a net in ^0(%) let lim Fa be those x in.
X for which there is a net xa e Fa with xa—+x. Let lim Fa be those
x in ϊ for which there is a subnet Fao and xao e Fao with xan —> x.

P P P P

If F e ^0(X)? we say that Fa converges to the limit F, Fa —> F, if
F = }imFa = UmFa. If Σ g ^0(X), we let Σ be the limits of nets in
Σ9 and we say that Σ is convergence closed if Σ — Σ. The convergence
closed sets form a topology, and generate a standard Borel structure
on ^0(X) We let ^/K(Έ) have the relative Borel structure. It is
easily verified that ^Vi$) is convergence closed in ^{V), hence <yK(J)
and 5̂ ~(36*) have standard Borel structures.

If d is any metric on X compatible with the topology of X, x e X,
and Fe C^{H), define d(x, F) = gib {d(x, y): ye F}. For any positive c,

( 1 ) {Fe ^0(X): d(x, F) ̂  c)

is convergence closed. It follows that F —>d(x, F) is a Borel function
on ^ 0 (£) As in the proof of the first theorem in [4], sets of the
form (1) separate points in ^0(Ίί)9 and thus as ^(X) is standard,
generate the Borel structure. It follows that the Borel structure on
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is the weakest for which the functions F—> d(x, F) are Borel
(actually it would suffice to restrict to the x in a countable dense
subset).

Let d be the norm metric on X. Then for 2) e 5^"(X*), d(x, 2)^) =
| | ^ + ?)1II? the latter being the quotient norm in X/2)1-. As 2) is
weakly* closed, 2)-1 2), and we have a natural isometry (X/2)-1)* ^ 2).
The corresponding isometry of 36/2)x into 2)* is defined by a; + 2)1 —*&|2),
where #|2) in the restriction of #, regarded as an element of X**, to
2). We conclude:

THEOREM 1. Let 2i be a separable Banach space, W\T*) the
weakly* closed subspaces of X*. The Borel structure on ^'"(X*) is
standard, and may be described as the smallest structure for which
the functions

are Borel.
If X is a real or complex separable Banach space, the weak* Borel

structure on X* is that generated by the weak* topology. In other
words, it is the smallest structure for which the functions /'—> f(x),
x e ϊ are Borel. Although we shall not use this fact, we remark that
this structure is standard (see the proof of [8, Th. 8.1]).

Theorem 2 may be regarded as an elaborate form of the Hahn-Banach
Theorem. Recalling the usual argument, suppose that X is a real
Banach space, and that we wish to construct a function in the closed
unit ball Xf of X*. Suppose that / has been defined on a linear sub-
space 93 of X, and is in 93f. If we extend / to the space generated
by 93 and a vector x, we must insist that

(2) | / ( α ? + w ) \ ^ \ \ x + w\\

for all w e 95, i.e.,

- \ \ x + u\\- f{u) ^ f(x) ^ II x + v\\- f ( v )

for all u, v e 93. Let

L{f) = lub {- |i x + u || - f(u): u e 93} ,

M(f) = gib {|| x + v || - f(v): v e 93} .

These exist as for any u, v e 93,

f ( v - u) ^ \\v - u\\ ^ \\x + v\\ + \\x + u\\ ,

(4) i.e., - \\x + u\\ - f ( u ) ^ \\x + v\\ - f ( v ) .

Thus we may rewrite (2):
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(5) L(f) <Z f(x) <£ M(f) .

We shall assume below that 33 is finite dimensional, and let 53* have
the norm topology. The functions /—>L(/) and f—+M(f) are defined
on the closed unit ball 33?. As it is the least upper bound of convex
functions, /—•!/(/) is convex, and thus continuous on the interior of
of S3* (see [1, p. 92]). From

(6)

f—>M(f) is also continuous on the interior of 33?.

THEOREM 2β Let X be a separable Banach space, ^~(X*) the
weakly* closed subspaces of X*. There exist countably many Borel
choice functions fn: W"(£*)->%* such that for each 2) e ^~(X*), the
vectors /%(2)) are weakly* dense in the closed unit ball 2}x of 2).

Proof. Suppose that X is real. If 2) e ^"(X*), we may identify
2) with (X/2)-1)*, the norms and the weak* topologies will coincide.

For each sequence of real numbers t = (t1912, •) with 0 ̂  ^ ^ 1,
we shall construct a function ffe (X/2)±)f. Let xlf x2f be norm
dense in X, with x1 = 0. Let xj®) = xn + 2)x, and S3W(2)) be the linear
space spanned by ^(2)), , xn(%)) in X/^1. Define /^(0) = 0. Suppose
that we have defined ffv...,tn to be an element of 33w(ξ9)?. Letting
S3%(2)) = 33, ffίtm.mttn= f9 and a?%+i(2)) = a? in our previous discussion,
define

(7) fl tnH(x) = ta.,Mf) + (1 - K+1)M(f) .

If x e S3, letting w = v = — *, we have from (3), (5), and (7)

- f(u) £ L(f) 5£ fl...,t%+1(x) ^ M(f) £ - f(v),

i.e.,

Thus defining /ξ ί j i + i on S8,+1(?)) by

/? t,Jcx + w) = cfl tnJx) + f(w) ,

we obtain an extension of f\ tn to an element of 33Λ+1(D)*. As / =
/•̂  tn+1 satisfies (5), it readily follows that f% ,B + 1 is in 5BH+1(?))ί.
Define / f on the space spanned by the »„(?)) to be the union of the
functions ffv...,t . This extends by continuity to an element of

It is clear that any function in (ϊ/S)-1)? must have the form ff
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for some sequence t = (t1912, •). We claim that the countable family
of functions ff, r — (rl9 r2? •) with the r$ rational, and all but a
finite number equal to 0, are weakly* dense in (X/?)1)*. It suffices to
prove that for all n, the functions f¥v...,rn are weakly*, or equivalently,
norm dense in the interior of (%$n(W)ϊ This is trivial if n = 1. Sup-
pose that it is true for n. If g e 23%+1(2))* and || g || ^ 1, let / be the
restriction of g to 33%(2)). From our hypothesis and the earlier discus-
sion, we may select rationals r19 •••, rn with /^,...,r% close to / in the
norm topology, and L(ffv...,rJ and M(ffv...,rJ close to L(f) and M(f),
respectively. Thus by a suitable choice of rn+1, we obtain

close to
For any sequence (t19t2f •••) we have that %}—>ff(xn) is Borel

(regarding ff as an element of 2)). This is trivial if n = 1. Suppose
that it is true for k ^ n. Then

/?(a! . + 1 )/ξ tn+1(a;.
ί L ( / g t ) + (1 - tn+1)M(ff (

If 33M is the linear span of xl9 •• ,xn,

Hfl tJ = lub {- || xn+1 + u + ?)ΊI - /?(«): M e SSM} .

From Theorem 1 and the induction hypothesis,

is Borel for any u e SSU. Restricting to u that are rational linear
combinations of the xk for k g n9 2) —>L(/^,...,ί%) is the least upper
bound of a countable number of Borel functions, and is thus Borel.
From (6) and (8), 2) — f?(xn+1) is Borel. For any x e X, ?)—/F(») is
a limit of functions of the form ^)—*ff(xn)f and hence is Borel. Thus
2)->/F is Borel.

Finally, suppose that X is a complex Banach space. Letting %R be
the corresponding real Banach space, ^f"(3t) is a convergence closed
subset of ^r(X Λ ) . Define a map of ^~(X*) into 3^((XΛ)*) by S) ->Re 2),
where the latter consists of all real functions R e / with / e 2} (the
customary argument shows that /—»Re/ is an isometry of X* onto
(XΛ)*). For 3 £ ^"(X), Re (3 1 ) = 31? where annihilators are taken in
£* and (XΛ)*, respectively. It follows that 2)~-> Re 2) defines a Borel
isomorphism of ^"(X*) onto a Borel subset of ^^*((XΛ)*). Choose real
choice functions / . : 2 r ((XΛ)*H(XΛ)* with fn(ty) weakly* dense in ^
for each 2) e ^^((XΛ)*). Let gn: W~β*)->%* be the corresponding
complex functions, i.e., for 2)e ^ (X*) and aj e X, let
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Then Re gM) = Λ(Re 2)) e (Re2))x, implies ffn($) e 2)lβ Given an ar-
bitrary g e 2)1? a?!, , xk e X, and ε > 0, choose an fn with

for i = 1, , fc. Then as

flf(a ) = Re g(x) — ΐ Re g(ix) ,

we have

for i = 1, ••-,&. Thus the #%(2)) are weakly* dense in 2)le Clearly
the gn are Borel.

COROLLARY. If (S, S?) is a Borel space, then a map s —> 2)(s) of S
into W(&*) is Borel if and only if there exist countably many Borel

functions s—>fn of S into ϊ*, such that for each s, the vectors /* are
weakly dense in 2)(s)lβ

Proof. If s -^ 2)(s) is Borel, the functions /* are obtained by
composing this map with the choice functions of Theorem 2. Con-
versely, if such functions exist, we have from the isometry

2) (β) ^

=sup{ |/ £ ' (a?) | : i =

for each x e ϊ . Thus s—> || a? + ^(s) 1 || is Borel for each α e 3£, and
by Theorem 1, s—>2)(s) is Borel.

3. Von Neumann algebras* Let Sίf y S, J ^ , and _ ^ be as
in § 1. We have that S = (8*)*, where 8* is the separable Banach
space of ultra-weakly continuous functions on £ (or by a natural
identification, the trace class operators with a suitable norm-see [10]).
The ultra-weak and weak* topologies coincide on S. Thus letting
5^(8) be the ultra-weakly closed subspaces of 8, we may give it the

Borel structure described in § 2.
If 2) G 2^(8), write 2)* and ψ for the ad joints of elements in 2),

and the commutant of 2), respectively. The proof of the following
theorem is largely patterned after that of [6, Th. 2.8],

THEOREM 3. 2) —> 2)* and 2) —»2)' define Borel transformations of
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Proof. For / e S*, define / * e 8* by /*(A) = /(A*), the bar indica-
ting complex conjugate. This is an isometry of 8*, hence the trans-
formation S3 —»23* on ^//~(S) is a homeomorphism (in the sense of
convergence), and a Borel isomorphism. For 2) e 3^(8), (2)1)* = (ϊ)*) 1,
i.e., the adjoint operation on ^^(8*) is carried into that on 5^(8),
and thus is a Borel isomorphism on the latter.

From Theorem 2, we may let 2) —* Ap be Borel choice functions
on ^~(S) with Af ultra-weakly dense in 2)lβ We have

ψ = {5G 8: SAf - APS = 0 for % = 1, 2, • •}.

Let 3JΪ and 2JΪ* be the sequences (AJ and (/n) of elements in 8 and
£*, respectively, with sup {|| An\\: n = 1, 2, . •} < oo and χ- = 1 | | / J | < ^ ,
With the norms || (An) \\ = sup {|| A J | : w - 1, 2, ...} and [| (/J || =
Σ«=ill/» II, 271 and 2Ji* are Banach spaces, and defining (/n)((Aw)) =
Σr=iΛ(AJ, 3Ji may be identified with the dual of 3Ή*. We have

ψ = kernel T® ,

where T^: S -> 2Ji is defined by

Γ8(B) - (£Af - Af 5) .

we claim that T^ is continuous in the weak* topologies. If ( / J G S U Ϊ * ,

where gn(B) = fn(BA$ - A$B). The partial sums Σf=iff« a r e weakly*
continuous, and converge uniformly on the unit ball 2λ of S, as if

Σ II/JI.
l

It follows that B —> (fn)T®(B) is continuous on S1? and thus on S (see
[2, p. 41]). Define Γ®: 271*-+S* by

We have that (kernel T®)1- is the closure of the range of Tf. Thus
letting Bi be ultra-weakly dense in Sx and gj — (fi) be norm dense in
3Ji*, we have for any fe 8*,

11/ + ( ? i r II = gib {||/ + Γf(ffj) || , j = 1, 2, . •}

where
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| | / + Tl(ai) || = lub {{/(B.) + T^gMBt) |: i = 1, 2, •}

= lub {| /(£«) + ± MBtAf - AfBd |: i = 1, 2, •}.
1

As 2) — A? is ultra-weakly Borel, D — | | / + (2)')1 II is Borel, and as /
is arbitrary, we have from Theorem 1 that 2) —> 2}' is Borel.

COROLLARY 1. J ^ is α i?ore£ subset of W(W, and thus ^ stand-
ard under the relative Borel structure.

Proof, j y consists of the 2) e ^ " ( S ) invariant under the Borel
transformations 2) —> 2)* and 2) —> 2)". In general say that θ is a Borel
transformation of Borel space (S, 6^). If A is the diagonal of S x S,
and θ x c: S -> S x S is defined by 0 x φ ) = (0(s), s), we have

{s e S: θ(s) = s} = ( ^ x c)-\Δ) .

Thus if (S, 6^) is standard, A is a Borel subset of S x S, and the set
of fixed points of θ is Borel.

Given von Neumann algebras Sί and SB, we let 2ί V S3 denote the
von Neumann algebra generated by 21 and S3. Providing S/ x S^ with
the product structure,

COROLLARY 2. The maps of Stf x s/ into s^ defined by
(21, S3) — 21 Π S3 and (21, S3) — 21 V S3 are Borel

Proof. As 21 Π 33 = (21' V S3')', it suffices to prove the second as-
sertion. From Theorem 2, there exist Borel choice functions A^ S^—^2
with A;(2ί) ultra-weakly dense in 2I1? for each 2 l e j y . For each pair
(21,33)6 s/ x j y , let 9^(21,33) be the self-adjoint linear algebra
generated by the elements A (̂2I) and ^,-(33). Let £Λ(3I, S3) be an
enumeration of the finite complex rational combinations of finite
products of the elements A;(2ΐ), A, (S3) and their adjointsβ The Bk(ll9 33)
are norm dense in <gf (21, SB), hence defining B'k(Ά, S3) = 5fc(2ΐ? S3) if
|| JBfc(2T, S3) || ^ 1, and S;c(2I, S3) = 0 otherwise, the B£(&, SB) are norm
dense in ^ ( 2 I ? S3)le From the Kaplansky Density Theorem, the latter is
ultra-weakly dense in (21 V 33)^ As (21, 35)->5;c(2I, 33) are Borel, our
assertion follows from the corollary to Theorem 2.

COROLLARY 3. ^ is a Borel subset of jzf', and thus is standard
in the relative Borel structure.

Proof. Let $ be the von Neumann algebra on £ίf consisting of
complex multiples of the identity operator. Then J^ is the inverse
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image of the element $ under the Borel map of Szf into j y defined
by 21 -> 21 n SI'.

The argument used in the proof of Corollary 2 shows that a map
s —> 2X(s) of a Borel space (£, ^ ) into S/ is Borel if and only if there
exist Borel functions s —» A^s) of £ into S such that the A{(s) generate
2I(s). Thus we have recaptured the original definition of § 1.

In direct integral theory, it is of some importance to know that
various other subsets of S>/ are measurable (see [9, 11]). We suspect
that constructive procedures similar to that used in Theorem 2, would
enable one to show that many of these sets are Borel.

4* Representation spaces* Let §ίf, £, J ^ and j^~ be as above,
and G be a second countable locally compact group (an analogous theory
exists for separable C*-algebras). Let Gc(^f) be the weakly continuous
unitary representations of G on J%f, with the standard Borel structure
defined by Mackey (see [8]). Let Gf(£έf) be the subset of factor re-
presentations, i.e. those representations L e Gc{Sίf) with L(G)f a factor
von Neumann algebra.

If L, Me Gc(<^r), let 3Ϊ(L, M) be the ring of intertwining operators
for L and M, i.e., those Be2 with BL(t) = M(t)B for all teG. In
particular, 3ΐ(L, L) — L(G)'. As was the case for Theorem 3, the
following is simply a refinement of [6, Th. 2.8].

THEOREM 4. The map G\3Z?) x GG{^f) -> Gc(βέf) defined by
(L, M) -> 3t(L, M) is Borel.

Proof. Let tn be dense in G, and define 3Ji and 2JΪ* as in the
proof of Theorem 3. Defining S ^ ^ : 8-> 2Jΐ by

S"'">(B) = (BL(tn) - M(tn)B) ,

we have that

St(L, Λf) = kernel S{L>M) ,

and that S(z' i¥) is continuous in the weak* topologies. SiL>M) is the
adjoint of a map S{*'M): 931* —> S*, and choosing J5* ultra-weakly dense
in Si, and gό — (fj) norm dense in 301*, we have for any fe L*,

where

llZ+Si^'^) || = lub

+ Σ fj(BMtJ - M(t.)B{) |: ΐ = 1, 2f •} .
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(L, M)->f;(BiL(tn) ~ M(tn)Bi) is Borel when G\^f) x G\£ίf) is given
the product of the Mackey Borel structures, as any ultra-weakly
continuous function is a norm limit of weakly continuous functions.
It follows that (L, M) -> \\f + 91(1/, Af)1 || is Borel, and from Theorem
1, (L, Λf) -» 3t(L, Λf) is Borel.

COROLLARY 1. Tfce map G'G^)—> j y defined by L-*L(G)f is
Borel

COROLLARY 2. (This was first proved by J. Dixmier—see [5,
Theorem 1].) T%e set G*{3(f) of factor representation of G forms a
Borel subset of Gc(£ίf), and thus is standard under the relative
Borel structure.

Following Mackey (see [7]), if L, Me G\£ίf), we say that L is
covered by M, L < M, if very subrepresentation of L contains a sub-
representation that is unitarily equivalent to a subrepresentation of
M. L is quasi-equivalent to M, L ~ M, if L < M and M < L.

If E is a projection in L(G)', and E Φ Q, let LE denote the cor-
responding subrepresentation of G on the range of E. If there exists
a projection Ee L(G)' with £ 7 ^ 0 and LE < M, let C(L, M) be the
least upper bound of all such projections. Otherwise, let C(L, M) = 0.
C(L, M) is an element of L(G)' n

THEOREM 5. TAe map G\^f) x G\£ί?) ~-> S defined by (L, if) —>
C(L, Λf) is Boreί.

Proof. If A e 2 , let £7̂  and JF4 be the projections on the closure
of the range, and the orthogonal complement of the kernel of A. If
A e 3t(L, M), then FA e L(G)' and EA e M{G)r. If A Φ 0, and C7 is the
partial isometry in the polar decomposition of A with U*U — FAJ then
Z7 determines a unitary equivalence of LFΛ and ΛP^, and 2^ ^ C(L, If).
From Theorems 4 and 2, there exist Borel functions A^L, M) that are
ultra-weakly dense in the unit ball of 9ΐ(L, M) for each L and If.
We claim that

(9) C(L,M) = V F
Ai(ι,M),

ΐ = l

where on the right we have taken the least upper bound in the com-
plete projection lattice of L(G)f.

Suppose that there exist L and M with

F=C(L,M)-yFΛi{ZtM)Φ0.
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As 17 < M, there exists a projection Fo g F with Fo Φ 0 and
FQ= U*U where Ue$ϊ(L, M). Choosing ik for which Aik(L,M)-> U
ultra-weakly,

a contradiction.
The map of S into itself defined by A-+ FA is Borel. To see this,

note that A —> A*A is weakly Borel, as if x,y e Sίf\ letting xi be an
orthonormal basis we have

A*Ax°y = J£ ( ^ - ^ ( A T / O ^ J " .

A similar expansion shows that for positive integers n, A —»An is
Borel, hence for any polynominal p, A —» p(A) is Borel. Suppose that / is
a bounded real Borel function on the reals, and that there is a sequence
of real polynomials pn converging to / point-wise, uniformly bounded
on compact sets. If A is a self-adjoint element in S, we have from
spectral theory that pn(A)—*f(A) weakly. Thus A—>f(A) is Borel.
Letting g be the characteristic function of the open set (0, oo),
A -> FA = g((A*A)1'2) is Borel.

For all i, (L, M) —> FΛiiL,M) is Borel. If i*\, , Fn are propections,
then

F1 V β V Fn — F{Fi+...+F%) ,

hence

(L, M)^y F
Ai{L,M)

is Borel. As the projections \/i'=ιFAi{L,M) converge weakly to yr=iFΛiiL,M),
we conclude from (9) that (L, M) ~> C(L, ikf) is Borel.

Ernest remarked in the proof of [5, Prop. 2] that the quasi-
equivalence relation on G/(^g^) is a Borel subset of Gs(3f?) x Gs(£ίf).
The above theorem implies:

COROLLARY 1. The covering and quasi-equivalence relations are
Borel subsets of G\£έf) x

COROLLARY 2. The quasi-equivalence class [L] of a representa-
tion L in G\^tf) is a Borel subset of

Proof. Let πt: GC(^T) x G%Sίf) -> GC(^T), i = 1, 2, 6e the projec-
tions on the first and second co-ordinates. Then [L] = TΓ^TΓΓXL) Γi ~ ) ,
and as π2 is one-to-one on πϊ\L) Π ~ , and the latter is standard, [LI
is Borel.

It would seem likely that the unitary equivalence relation is also
a Borel subset of Gc(3ίf) x G\§{f). Presumably one must prove the



1164 EDWARD G. EFFROS

existence of a Borel choice function on spaces of the form 5R(L, M),
that selects a unitary operator when such exists. If unitary equi-
valence were a Borel set, it would follow that the representations
LeG^βέf7) with L{G)f finite was also Borel. It should be noted that
the unitary analogue of Corollary 2 above is true (see [3, Lemma 2.4]).

If G is the free group on countably many generators, the map
described in Corollary 1 of Theorem 4 is onto. As the given struc-
ture and the corresponding quotient structure on S/ must coincide,
a subset of Stf will be Borel if and only if the inverse image in GG(έ%f)
is Borel.
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