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THE UNIFORMIZING FUNCTION FOR CERTAIN
SIMPLY CONNECTED RIEMANN SURFACES

HowARrD B. CURTIS, JR.

This paper contains a definition of a class of simply con-
nected Riemann surfaces, the determination of the type of a
surface from this class, and a representation of the uniform-
izing function and its derivative as infinite products of quo-
tients as well as quotients of infinite products.

Definition of the class of surfaces. Let {a,, .} and {b,};., be
two sequences of real numbers such that for n = 1,

0< oy < b?n—l < bzn

and b,,., < b,,. A surface F of the class to be discussed consists of
sheets S,,n =1, 2, 3, ---, over the w-sphere, where for S, a copy of
the w-sphere,
(a) S, is slit along the real axis from a, to b,.
(b) For n =1, S,, is slit along the real axis from a,, ; to b,, ,
and from b,, to + co.
(¢) For n=1, S,,., is slit along the real axis from a,,;, t0 by,4;
and from b,, to 4+ .
(d For mn=1, S, is joined to S,., along the slits to make the
b, coincide and to form first order branch points at the end-
points of the slits.

The uniformizing function. Because F' is simply connected and
noncompact, there exists a unique funection g which maps F' schlichtly
and conformally onto {|z| < R < o}, where for f(z) = ¢g7'(z), f(0) =
0e S, and f'(0) = 1. Two surfaces of hyperbolic type are obtained by
slitting each sheet of F along the uncut parts of the real axis, and
an application of the reflection principle to the uniformizing function
of one of these surfaces shows that f(z) is real for real z. Let
Sy) = @gpyy F(—BL) = by, f(72) = 0 €8, and Syiyy f(—7,) = 0 €8,
and f(d,) = 0€S,. The image of I in the z-plane satisfies the following
properties. The image of S, is a region which is symmetric about
the real axis. S, is mapped onto a domain containing the origin and
bounded by a simple closed curve C, which intersects the real axis at
—B, and a,. For n =2, S, is mapped onto an annular region about
the origin and bounded by two simple closed curves C,_, and C,, which
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are images of cuts. For n odd, C, intersects the real axis at —g,
and «,, while for n even, C, intersects the real axis at —3, and v,.
Furthermore, for £ = 1,

B < =B < =7 <0 < gy < 0y < Vg < Oy < gty

The approximating closed surfaces. Let F, be the surface
formed from the first 2n + 2 sheets of F' with the slit in S,,,, from
by, 1, to oo deleted, so that F, is a compact, simply connected surface.

NoTATION. a} =1 —z/a,, Bi=1+ z/5,,
vi=1—2,, 05=1—20,.

LEMMA 1. Let R, be the unique rational function which maps
the z-sphere one-to-one onto the simply connected compact surface F,
with R,(0)=0eS, R(0) =1, and R,(o) = € 8,,:5. Then

R = 12/ + )] TLoz || 1L vty ]

and

R = 11/ + 2T I et || 1L 62 /[ 1L 0r2e7] -

Proof. The representations of R, and R, must contain factors
shown and can contain no more. The ®yi1n, —Biins Yok aNd 0y,
which are ordered in the same manner as the «,,.,, —B:, Y, and 0,,
are images of a1, b;, oo, and 0, respectively, under R;'.

LeMMA 2. F is parabolic.

Proof. Suppose that F' is hyperbolic, and thus ¢g maps F' onto
{lz] < R< o}. If D, is the z-plane slit along the real axis from
—Banirm t0 —oo, then ¢ = () = g|R,(2)] defines a Schlicht mapping
of D, onto a simply connected region 4, of the (-plane bounded by
C2n+2 and the Segment (_an+27 —anﬂ)' If T,,(z) = Z(l - 2/4B2n+1,n)—2’
then { = +,| T,(z)] defines a properly normalized, Schlicht mapping of
{lz| < 4B,+1,.} onto 4, such that if the Koebe Distortion Theorem is
applied to this map, then B;,..,, = d(0, Cy,15) = R < oo, where d(0, C,,+,)
is the distance from ¢ = 0 to the curve C,,.,. Thus there exists a
subsequence {8,, s+un,t such that B, .., ;2 A=R as j— oo, and 4, s
is a Schlicht mapping of D,, onto 4,. If D is the z-plane slit along
the negative real axis from —A to — oo, then {v-, j} forms a family of
functions which is normal in D, and hence there exists a subsequence
{4;} such that as ¢ — oo, () — (2) uniformly on any compact sub-
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set of D. Because D,— D and () — (2) as ©— o, then 4;,—
{|#z] < R} and + maps D onto {|{| < R} in a one-to-one manner. ([1],
p. 18). Then R (z) = flvy(?)] — fly(2)] = H(z) uniformly on any com-
pact subset of D as ©— o, where H is meromorphic in D, while
H(z) # o because R;(0) = 0. H maps D onto F.

Now let D* be the z-plane slit along the real axis from —A to
+ 0. For ¢ sufficiently large, R/(z) assumes no negative real values
in any compact subset of D*, and thus {R;} is a family of functions
which is normal in D*. Therefore, there exists a subsequence {R,}
of {R;} such that as m — o, R,(2) — G(z) uniformly on any compact
subset of D*. H and G have a common domain of convergence, so
that G is the analytic continuation of H. Then w — G(2) defines a
mapping of the z-plane punched at z = A and < one-to-one and con-
formally onto an open doubly connected Riemann surface F'* of which
F' is a subsurface obtained by inserting some slits in F'* over the real

axis. This is impossible, as is clear from the definition of F. Hence
R = .

LemMMA 3. R,(2) — f(2) uniformly on any compact subset of the
z-plane as n — oo,

Proof. Because 4, —{|{]| < =} as n— <o, it follows ([1], p. 18)
that z = R;'[f ()] — ¢ = g[R.(?)] uniformly on any compact subset of
the ¢-plane as n— . Also, D,—{| 2| < <} and R,(2)— f(2) uni-
formly on any compact subset of the z-plane as n — co.

LEMMA 4- a2lc—1yn - azk—l’ Bkm - Bk; 72k,n - 72k7 and Bkm - ak as

n— oo,
Proof. This is a consequence of Hurwitz’s Theorem.

LeMMA 5. The infinite product

n(z) = [2/(L + z/7)] 11 [0 0% 1/ (V5)*]
converges uniformly on any compact subset of the z-plane.

Proof. Since v,,— o and 0, — o as k — oo, then for any R > 0,
there exists n, = ny(R) such that for k¥ = n,, 6, > R and 7v,, > E. Then
consider

ny+P

My(z) = kH [az*k 5;1:4»1/(’72*16)2] .

=g

M, is holomorphic for |z | < R and M,(z) # 0 for |2/ = R. A sufficient
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condition for the uniform convergence of M,(z) in E = {|z| = R} as
P — oo is the uniform convergence in E of

ny+p

3 log [0% 05/ (V)] as p— <o,

=

where each logarithm is the principal value. By the Cauchy criterion,
this last sequence converges uniformly in K provided for z<¢ E and for
any € > 0, there exists N(¢) > 0 such that for » > N(¢) and » > 0,

ny+n+

D
> log [05 05/(VE)]| < e.

k=np+n

Now since 8,, < 0,,4; and since v,, < Oy40 < 0Oy,43, then for m = 1 and
» >0,

ny+n+p

0<, > [1/()™ + 1/(0ae)™ — 2/(72)"] < 2/(Brngran)™

=ny+n

Then for all p > 0 and z€ E,

ny+n+p o ng+n+p
" tog 192 0%/ 1] = |~ S [emim] S 1(Wom) + (1/0%.) — 2/7m]
=ng+n m= =ny+n

= S RMI2/Gunyian)™] S 2 35 [RIGrngssn)]” = 2B/ Gongsn — B) -

Since 0p4y+20 — o 8s M — co, the Cauchy criterion is satisfied and M,
converges uniformly in E. Thus [I(z) converges uniformly in any
compact subset of the z-plane.

LEMMA 6. 7(2) = f(z).

Proof. As a consequence of Lemma 4, there exists 7 > 0 such
that R,(2)/# =0 and n(z)/# #«0 for |z| <r, while each of these
quotients defines a function which is holomorphic for |z | < r and takes
the value 1 at z = 0. Thus using the principal value of the logarithm,
for |z| <,

log [R,(2)/z] — log [n(2)/z] = log [R.(2)/m(2)] = log [(1 + 2/7)/(L + 2/7.,.)]
— S {S Whn.) + 5105 — 5 @50

— S.11Jo5) + (o5 — 2721} -
Therefore, for n, > 2, as n— oo,

7+l n
0= lim sup |33 (138, + 35 (1% 0.0
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— 3 @) — /605 + (1/o5,) — 2/73]

n+1 n n

= lim sup | 3% (1/03%,.) + > (1/050,.) — 25 (2/73,)
k k k
=g =mny =mng

— S 1o + (/o5 — 2/75]

e =ny

< lim sup |(1/03,,.) + (1/0%,41..) + (1/o5,) + (1/05, ..) |
= (2/05,,) + (2/0%,11) -

Since 0;,, — oo and 0y, 4, —  as My — oo, it follows that the limit as
n — oo of each coefficient of the preceding expansion of log [R,(z)/7(?)]
is zero. Furthermore, because as n — oo, {log [R,(2)/m(z)]};, converges
uniformly on {|z| < »}, then log [R,(?)/n(z)] —0 as n— . Thus
7(z) = lim R,(2) = f(z).

LEMMA 7. 1020;01/%0+1 < oo, gl/ﬁk < oo, él/m < oo, and
$1/0, < oo .
k=2

Proof. Again by Lemma 4, there exists » > 0 such that f'(z) =0
and R,(z) #= 0 for |z | < r. Since R,(z) — f(?), it follows that R/(z) —
f'(z) and thus log R)(z) — log f'(2) uniformly in {{z| < r} as n— oo,
Thus for |z | < r, log R}(2)

= S e ml| - 3 1ag,
2n+1

S (PR 21+ 33 | -

k=1

Hence, for m =1,

| n 2n+41 n
lim | — kzol/azkﬂ,n =+ kZ=1 1/Bu,n — 2/71,n + ;‘13/’7%,”

Nn—r00 =

<L oo,
Because 0 < v, < B, and 0 < Yy, < Qyi1,,, then
2n+1 n
0 < 2 1/Bewn + 35 2ot
kil 2am+1
< = B s+ 2 1Brn = 27
+ ;13/7216’” + 1/a1’” + 2/’71,71, o

Therefore, as n— oo,

2n+4-1 n
0 < lim sup I:kZ:l 1/Be,n + ]ch2/72k,n] <L oo,
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2n+1 n
lim sup > 1/8;,, < oo, and lim sup >} 1/va,, < oo .
k=1 k=1
Furthermore, because for

E=1, Yapm < Onprnn < Xopinyg < Ospran

lim sup Z 1/9,,, = lim supZ,Z/’ng w < 0

and
lln;quup Z /ey s, = hm sup Z 1Yo < o0 .
Hence
lim supZ, 1/, < o and lim sup Z 1/04,, < oo .

n—oo n—o0

For all N >0, as n— oo,

N N n
;01/a2k+1 = ,;{)lim 1/t 44,, = lim Sup’;)]-/azlﬁ—lyn < oo,

and thus Z 1l/at,,., < oo. The convergence of the other series is
estabhshed 1n a similar manner.

LEMMA 8. Each of the three infinite products in
P@) = [/ + 2] [ s 182/ 11 057 |
converges uniformly on any compact subset of the z-plane.
Proof. This is a consequence of Lemma 7.
LEMMA 9. f'(z) = [exp (02)]| P(z)] where 6 is real.
Proof. By Lemma 4, there exists » > 0 such that for |z| <7,
Ri(z) # 0 and f'(z) # 0. For m = 1, consider the coefficient of z™/m

in the Taylor expansion of log [R,(z)/P(z)] about z =0 for |z| <.
Because of Lemma 7, there exists M > 0 such that for all n = 1,

zz Uty < M and ki v, < M.

Then because of the ordering of the v,,, and 7, for each k < n,
k/Ver,n < M and k/v,, < M. Thus for each N > 1, as n — oo,
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lim sup ]i‘ vy . — ki 1/v%
i—1 —~1

< lim sup l,;N 1. — S 1e| = 207 51/,

which implies for m = 2, as n—
lim [z v, — 5 1/7;';.] ~0.
k=1 k=1

Similarly, the other terms in the coefficient of 2z™/m have a limit of
zero for m = 2, and the coefficient of z is real. Then as 7 — oo,
log [R}(2)/ P(z)] — log [ f'(2)/ P(2)] = 0z, and thus f'(z) = [exp (62)][P(2)].

LEMMA 10. 6 = 0.

Proof. Because the factors of P(z) are canonical products of genus
zero with real zeros, for ¢ >0 and 0 < p =|arg 2| =7 — p, Piz) =
Olexp (¢ |z ])] and 1/P(z) = O[exp (¢]#])]. Then if arg z satisfies the
preceding conditions and |z | is sufficiently large, then

exp[0Z(2) —e|z|] = |f'(2) [ = exp|0.2(z) + ¢|z]].

Let A, ={z|m/d <arg z = n/3} and 4, = {# | 21/3 =< arg 2z < 3rw/4}. If
0 > 0, then there exists @, > 0 such that for |z| sufficiently large
|f'2)| = exp(p,|2|) when z€A, and |f'(z)|=exp(—,[2]) When
z€ A,. Thus as z— <« in A4,, f'(z) — 0, and because f(z) = b,, > 0 for
z on the curve C,,, fe)— k=0 as z— o in A,. Thus for n suf-
ficiently large, b,, < k + 1. Since f’(z)dz > 0 in the positive sense on
the part of the curve C,,,, in A, by — Gy —> © @S M —> co, Where
Qgnis > 0 and thus b,,.,— o as n— ., Because b,,,, < b,,, a contra-
diction has been reached and ¢ ¥ 0. If 6 < 0, then there exists ¢, > 0
such that for |z| sufficiently large | f'(z)| = exp (@, |2 |) when z¢€ 4,
and | f'(z)| < exp(—@,|2|) when z€ A,. Similarly, ¢ < 0.

THEOREM. A Riemann surface of the class defined is parabolic
and its mapping function [ is given by
@) = (2L + 2] TL 133 05 /(i) ]

where
/@) = 1L + 2lvy)| T e 1T 62/11 0]
Furthermore,

2 1/t < ooy 1B < ooy 1Y < ooy and 310, < oo
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REMARKS. Lemmas 5 and 6 establish the representation of f(2)
as the product of quotients, while Lemmas 8 and 9 show a represen-
tation of f’(z) as a quotient of products. However, Lemma 7 can be
used to show that the representation of f(z) can also be considered as
the quotient of products.
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