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FIXED POINTS IN A TRANSFORMATION GROUP

HSIN CHU

In this paper, the following result is proved: "Let (X, T, π)
be a transformation group, where X is a Peano continuum
with an end point fixed under T. If the group T is one of
the following two types: (1) It contains a subgroup Rn such
that G/Rn is compact or (2) It contains a s subgroup Z-Rn

such that GI(Z-Rn) is compact, where Z is isomorphic to the
discrete additive group of all integers, then T has another
fixed point."

Professor A. D. Wallace, in [4], proved the following: "Let (X, Z, π)
be a transformation group, where Z~ the discrete additive group of
all integers. If X is a Peano continuum with a fixed end point under
Z, then Z has another fixed point." An interesting question, (See [5])
has been raised by Wallace: "Can one reach the same conclusion about
either compact groups or abelian groups"? In the case of compact
groups, Professor H. C. Wang answered the question in the affirmative
(See [6]). We also give an affirmative answer to the question in the case
of abelian groups when the abelian group is of the type either Rn K or
Z'Rn'K where Rn is a vector group of dimension n and k is a compact
abelian group. Actually, we also cover the case of non-abelian groups.
The same conclusion can be reached if the group, (?, is one of the
following two types:

(1) It contains a subgroup Rn such that G/Rn is compact or
(2) It contains a subgroup Z*Rn such that G/(Z Rn) is compact.

2* We divide that proof of our main result into several steps*

LEMMA 1. Let (X, T, π) be a transformation group, where X is
an arcwise connected Hausdorff space with an end point e fixed under
T. If X has a closed invariant set A under T which does not contain
e then T has another fixed point. Let l(ί), 0 g t ^ 1, be an arc
connecting e and some point x in A such that 1(0) = e and 1(1) = x.
All the points which separate e and A lie on l(t). Let S be the set
of all those points. S is not empty. Introduce a linear ordering in
l(t), 0 ^ t S 1, by the natural linear ordering of t. Then the upper
limit point of S is a fixed point, other than e, under T.

Proof. The first part of the lemma is an equivalent statement of
a theorem, in [6], of Professor H. C. Wang. Under the same assumption
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as our lemma, Wang's conclusion is that T has no other fixed point if
and only if, given any neighborhood U of e, the orbit UT under T
coincides with the whole space X. We notice that if S is a closed
invariant set under T which does not contain e, then U — X — S is a
neighborhood of e and UT — U which does not coincide with the whole
space X and vice versa.

The proof of the second part of this lemma can be obtained from
the proof of Wang's theorem. (See [6]).

LEMMA 2. Let (X, Z, π) be a transformation group. If X is a
compact, connected, Hausdorff space which is more than a point and
has a fixed end point e, then there is a closed set HaX — e, which
is invariant under Z.

Proof. This is a theorem by Wallace, See [4].

By Lemma 1 and Lemma 2, we obtain Wallace's result.

LEMMA 3. Let (X, Z, π) be a transformation group. If X is a
Peano continuum with a fixed end point e under Z, then Z has another
fixed point.

LEMMA 4. Let (X, T, π) be a transformation group. If X is a
Peano continuum with a fixed end point e under T and T contains
a syndetic subgroup Z (i.e. T contains a integer group Z such that
T/Z is a compact set), then T has another fixed point. If, furthermore,
T is connected, then the assumption on the given end point being
fixed under T is not necessary.

Proof. Consider the transformation group (X, Z, π) induced by
(X, T, π). From Lemma 3, we know that there is another fixed point
p under Z. Since Z is syndetic, there is a compact subset K in T
such that T — Z-K. Consequently, p T — (pZ)K = pK which is compact
and therefore, is closed. It is clear that e £ pK. We know pK is
closed and invariant under T. By Lemma 1, X has another fixed point
q under T.

If T is connected, it is easy to see that every end point is fixed
under T (See [5]). Suppose e is an end point and e Φ et for some te T.
Then, because e is an end point and eT is connected, there is seeT
such that s separates e and et. Consequently, there exists some t' e T
such that 8 — et'. It follows that as t' is a homeomorphism of X, etf

is also an end point as well as a cut point. A contradiction!

As a direct consequence of Lemma 4, we have:
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LEMMA 5. Let (X, R, π) be a transformation group. If X is a
Peano continuum with an end point, then R has another fixed point.

LEMMA 6. Let (X, Rn,π) be a transformation group where n is
a positive integer. If X is a Peano continuum with an end point e,
then Rn has another fixed point.

Proof. By Lemma 4, we know that the end point e is fixed under
Rn for all n. The proof of this lemma is by induction. Suppose the
statement is true for n — k. Consider n = k + 1. Let (x19 , xk9 xk+1)
be a coordinate system of Rk+1. Let A and B be the closed subgroups
determined by xx — 0 and x2 = 0 respectively. Then A = B = Rk. Let
the transformation groups (X, A, π) and (X, B, π) both be induced by
(X, Rk+1, π). By the inductive assumption, we know there are two
points p and q such that p is invariant under A and q is invariant
under B. Both p and q are distinct from e. Let Cx be the subgroup
of Rk+1 determined by x2 — 0, •••, xk+1 = 0. Let C2 be the subgroup
of Rk+1 determined by x1 — 0, x3 = 0, , xk+1 = 0. Then C1 = C2~R
and, as direct products Rk+1 = C^A — C2 J3. Consider the orbit, (p)Rk+\
of p under Rk+1 and the orbit, (q)Rk+1, of q under Rk+1. It is clear
that (p)Rk+1 = (pjd and (q)Rk+1 = (<?)C2, where (pjd and (g)C2 both
are connected.

We know both cl((p)C^} and cl((q)C2) are invariant under i?/<;+1

β If
e is not in either cl{(p)C^) or cl{{q)C2), then, by Lemma 1, i?^ 1 has
another fixed point. Suppose e is in both cϊ((p)d) and cl{(q)C2). This
implies that every neighborhood of e contains points from both {p)C1

and (q)C2.

Let Ϊ7β be a neighborhood of e such that {p,Q} Π U€ = φ. Since
β is a fixed end point, there exists xe Ue such that I - x = I 1 U l 2

for some sets X1 and X2 with the properties:

Xλ n c£(X2) = ci(Xi) n X2 = 0 a n d e G ^ c ^ .

Consequently, {p, q} c X2. Notice that Xx is open in X. It follows
that X1 contains points from both (p)C1 and (q)C2. Since both (p)C1

and (q)C2 are connected, it follows that x e (p)C1 Π (q)C2. Since i2/<:+1 is
abelian, we have p — q and p is a fixed point under Rk+1 other than e.
Complete the proof by Lemma 5.

LEMMA 7. Let (X, Z-Rn, π) be a transformation group. If X is
a Peano continuum with a fixed end point e under Z Rn, then Z Rn

has another fixed point.

Proof. If n — 0, the statement of this lemma is the same as
Lemma 3. Let n > 0. Let (X, A, π) be a transformation group induced
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by (X, Z-Rn, π) where A = Z R"-1 is a subgroup of Z-Rn. Let B = R
be a subgroup of Z-Rn such that Z-Rn — A B. Prove this lemma by
induction on n. Suppose (X, A, π) has a fixed point, p, other than β,
under A. Consider the orbit (p) (Z-Rn). It is clear that (p) (Z-Rn) =
(p)JB, which is connected. The orbit-closure cl((p)(Z Rn)) is a connected
compact Hausdorff space. Obviously, cl((p)(Z Rn)) is invariant under
Z Rn. If e is not in cl((p)(Z Rn)), then, by Lemma 1, Z Rn has
another fixed point. Suppose ee cl((p)(Z Rn)). Let Zf be an integer
group of B. Then β is a fixed end point of the transformation group
(cl((p)(Z-Rn)), Z', π). By Lemma 2, there is a Z'-invariant closed subset
Hot cl((p)(Z-Rn)) such that egi ί . Consider the transformation group
(X, Z', π), induced by (X, Z Rn, π). Choose a point ge Hand connect
0 and q by an arc l(ί), 0 g ί ^ 1 on which 1(0) = β and 1(1) = q. Let
S be the set of all points which separate e and H. By Lemma 1 the
upper limit point, r, of S is a fixed point, other than e, under J2Γ\
Since cl((p)(Z-Rn)) is connected, we have Sccϊ((ί>)(^ -BΛ)). Conse-
quently, re cl((p)(Z-Rn)). Since the points in (p)(Z-Rn) are fixed under
A, the points in cl((p)(Z*Rn)) are also fixed under A. It follows that
r is fixed under both A and Z'. Let B — Zf Kf for some compact set
iΓ. Then (r)(Z-Rn) = (r)ίΓ' which is compact. It is obvious e $ {r)Kf.
By Lemma 1, (Z Rn) has another fixed point. Complete the proof by
induction.

THEOREM. Let (X, T, π) be a transformation group. If X is a
Peano continuum with a fixed end point under T and T is one of the
following two types:

(1) It contains a subgroup Rn such that G/Rn is compact or
(2) It contains a subgroup Z*Rn such that G/Z Rn is compact.

Proof. Complete the proof by Lemma 1, Lemma 6, Lemma 7 and
a similar method used in the proof of Lemma 4.

COROLLARY 1. Let (X, T, π) be a transformation group. If X
is a Peano continuum with an end point and T is locally compact,
connected, abelian group, then T has another fixed point.

We have the following application in Topological Dynamics. (See
[1]). The proof is similar to the one used for the theorem.

COROLLARY 2. Let (X, T, π) be a transformation group. If X is
arcwise connected, Hausdorff with a fixed end point e and a regularly
almost periodic point p, other than e, then T has another fixed point.

Proof. By the definition of regularly almost periodic point, for
a closed neighborhood U of p such that e £ U, there exists a syndetic
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subgroup A of T such pA c U. It follows that cl(pA) c U, and thereby,
e £ cl(pA). It is clear that cl(xA) is invariant under A. By Lemma 1,
we have another fixed point q under A. Since A is syndetic, there
exists a compact set K such that T — A-K. From qT — (qA)K = qK,
we know gT is compact and, therefore, is closed and eiqT, Since qT
is invariant under T, by Lemma 1 we have another fixed point under
T. The theorem is proved.
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