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DERIVATIONS AND INTEGRAL CLOSURE

A. SEIDENBERG

Let d? be an integral domain containing the rational num-
bers, Σ its quotient field, D a derivation of Σ, and &1 the ring
of elements in Σ quasi-integral over &. It is shown that if

£? then Dέ?f c &'.

According to a lemma of Posner [4], which is also used by him
in a subsequent paper [5], if 6? is a finite integral domain over a
ground field F of characteristic 0 and D is a derivation over F sending
έ? into itself, then D also sends the integral closure of έ? into itself.
The proof of this in [4] is wrong, but the statement itself is correct
and a proof is here supplied. More generally it is proved that if &
is any integral domain containing the rational numbers and D is a
derivation such that Z λ ^ c ^ , then Dέf'aέ?', where &' is the ring
of elements in the quotient field Σ of έ? that are quasi-integral over
< .̂ The theorem is not true for characteristic p Φ 0, but if one uses
the Hasse-Schmidt differentiations instead of derivations, one gets the
corresponding theorem for a completely arbitrary integral domain £?.

Let & be an arbitrary integral domain containing the rational
numbers, and let & be the integral closure of d?. The question
whether D& c & implies Dέ?c έ? is related to the question whether
the ring of formal power series <^[[t]] is integrally closed. Thus
consider the statements:

A. For every έ?, D^a έ? implies Dέ7<z. d?, and
B. For every έ?, έ?[[t]] is integrally closed. We show that A

and B are equivalent statements. (We also show: C. If έ?[[t\] is in-
tegrally closed, then D^aέ? implies D^aέ?.) Now according to
the last exercise in Nagata's book Local Rings, [3; p. 202, Ex. 5],
B is a true statement, but we give a counter-example, which also
leads to a counter-example for A.

2* Criticism of Posner's proof* Posner purports to prove that
if P is a place of the quotient field Σ of & that has F as residue
field and is finite on d? and if g e Σ is finite at P, then Dg is
finite at P. This is not so, as the following example shows. Let
& — F[X, Y] be polynomial ring in two indeterminates over F. Let
D = d/dX. Let Pλ be the place of F(X, Y) over F(Y/X) obtained by
mapping X into 0, let P2 be the place of F(Y/X)/F obtained by
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168 A. SEIDENBERG

mapping Y/X into any element of F, and let P be the composite
place. Then X, F, Y/X are finite at P, but d(Y/X)/dX = -Y/X2 is
not.1

One reason that Posner's proof fails is that there are no parameters
such as those of which he speaks, except in the case that the degree
of transcendency of d7/F is 1. In that case, Posner's argument yields
a proof.

3* A generalization* Let έ?he an arbitrary domain, with quotient
field Σ. An element ae Σ is said to be quasi-integral over έ? if all
powers of a are contained in a finite ^-module contained in Σ, or,
what comes to the same, if there is a d e ^ , d Φ 0, such that dap e &,
p — 0,1, , (see [2]). If έ? is a Noetherian domain, then the con-
cepts of integral dependence and quasi-integral dependence (for ele-
ments in Σ) become the same; but it is the concept of quasi-integral
dependence, rather than that of integral dependence, which is adapted
to our considerations. The elements in Σ that are quasi-integral over
έ? form a ring &\ which in the case ^ is Noetherian is the integral
closure & of &. The base field F plays little role, and it will be
sufficient to assume that έ? contains the rational numbers.

THEOREM. Let & be an arbitrary integral domain containing
the rational numbers, let &f be the ring of elements in the quotient
field Σ of έ? quasi-integral over &, and let D be a derivation of Σ.
Then: if D ^ c ^ , then Ώ&1 at?'.

Proof. Let Σ[[t]] be the ring of formal power series in a letter
t over Σ and let Σ((t)) be its quotient field. The mapping left—>
Σ(Dci)ti

1 i Ξ> 0, CiβΣ, is a derivation of Σ[[t]] into itself and extends
D; it has a unique extension to Σ((t))> which will also be denoted D.
Let E be the expression 1 + tD + (f/2l)D2 + ••• ( = etD). Then a +
tDa + (tf/2l)D2a + •••, to be denoted Ea, has a meaning for every
^ e ^ [ [ £ ] L i eM the partial sums converge in the topology defined by
powers of (t); and the mapping a—>Ea is an isomorphism of Σ[[t]\
into itself, as one easily verifies.2 Its unique extension to Σ((t)) will

1 Far from all, or even infinitely many, valuation rings S3 centered at (X, Y)
being sent into themselves by D — dldX, there is one and only one. In fact, re-
stricting oneself to valuation rings % centered at (X, Y), if DS c 93, then XI Yφ S3,
since D{XjY) = 1/Yφ S3. Hence YjXe®, and therefore D(Y/X), D*(Y/X), etc. are
also in S3. Since D^-^Y/X) = cnY/Xn (cneK), v(Y)^n v{X) for % = 1, 2, •••, where
v is the valuation corresponding to S3. Thus S3 could not be other than the ring of
the valuation in which v(X) is infinitely small with respect to v(Y); and for that
ring one checks that DS3 c S3.

2 We only use that α -> Ea is a monomorphism, but it is actually onto Σ[[t]] as
one sees from the identily etD(e~tDa) = a.
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also be denoted E. Since D^a^, one has D^[[t]] c £?[[£]], and
since έ? contains the rationale, E^[[t]] c ^[[t]\.

Let α be quasi-integral over ^, and let d e ^ be such that
<tap G ̂ , p = 0,1, . . Then E(dap) = Ed(Eaf e έ?[[t]], p = 0,1, .
Hence dEd(Ea — α)pe ̂ [[t]], p = 0,1, •; here we use that eZ and
2£<Z are in £?[[£]]. The coefficient of tp in dEd(Ea - α)p, i.e., the
leading coefficient, is d2(Da)p; and this coefficient, as well as all the
others, are in &. Hence Da is quasi-integral over έ?.

COROLLARY. Ifdeέ?and aeΣ are such that da1 eέ?,i = 0,1, ,ρ,
then d\Day e έ?, i = 0,1, , p.

Let K = {c I c e £?, c ^ ' c ^'}; then S is an ideal, which in the
case £?' is the integral closure ^ of έ? is called the conductor of &.

COROLLARY. If D^a^, then DKcK. In other words, & is a
differential ideal for any derivation (or any family of derivations)
sending & into itself.

Proof. If CGK and α e ^ ; , then (Dc)a = D(ca) - cDaeέ?, so
that also (Dc)έ?' c &'.

The last corollary can sometimes be used to prove that a given
integral domain έ? is integrally closed (see [4]). We first restrict
ourselves to a class of integral domains & such that & — &*', for ex-
ample, the class of Noetherian domains. Then we restrict ourselves
further to a class ^ of domains έ? such that έ? has a conductor
< ^ : ^ ^ ( 0 ) , or equivalently, such that ^ i s contained in a finite έ?-
module (contained in Σ), for example, the class of finite integral
domains (see [7; p. 267]), or quotient rings thereof, or the class of
complete local domains (see [3; p. 114]). (For examples of Noetherian
domains not having this property, see [3; p. 205 ff]; for an example
in characteristic 0, see [l])β Then we can state:

COROLLARY. Let & he an integral domain belonging to a class
& defined just above, let έ? contain the rational numbers, and let
{D} be a (finite or infinite) family of derivations of & into itself.
Then, if & is differentiably simple under {D} (i.e., has no differential
ideal other than (0) or (1)), then & is integrally closed.

4* Extension of D to ^ The above is a simplification of our
original proof for a finite integral domain. The idea was that since
E sends έ?[[t]] into itself, it also sends the integral closure of
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into itself. It was then sufficient to prove that έ?[[t]] is integrally-
closed; in fact, we have the following theorem for any integral domain
έ? containing the rational numbers.

THEOREM C. If έ?[[t]] is integrally closed and D^aέ?, then
?. (Here έ? is the integral closure of #.)

Proof. If aeΣ,a = c/d, c,de^, then Ea = Ec/Ed, so Ea is in
the quotient field of ^[[t]]. If a is integral over #>, then Ea =
a + tDa + is integral over £?[[*]], hence in έ?[[t]], whence Da e έ?.

Our proof that ^[[t]] was integrally closed for έ? a finite integral
domain depended on the following observation, which holds for an
arbitrary domain £?.

THEOREM. If & is completely integrally closed (i.e., if' 0" = &),
then so is έ?[[t]]. More generally, for any έ?, (£?[[*]])'c £

Proof. Let a(t) be quasi-integral over <£?[[*]]. Then there is
a d e έ?[[t]], d = d(t) Φ 0, such that dap e έ?[[t\], p = 0,1, . Since
ord d + p ord a ^ 0, p = 0,1, , one first observes that a e Σ[[t]]. Let
d = d8t

s + d8+1t
8+1 + , d8 Φ 0, and let a = α rί

r + <*r+1Γ
+1 + . Since

the leading coefficient of ctap is in &, we have ώ8α? e ^ , whence α r is
quasi-integral over £?. Now α — α rί

r is quasi-integral over ^[[t]],
whence ar+1 is quasi-integral over &\ and in this way one sees that
all the coefficients of a are quasi-integral over &.

If & is Noetherian, then so is <^[[t]]. Hence:

COROLLARY. // <?7 is an integrally closed Noetherian domain,
then so is

This is Nagata's (47.6) in [3; p. 200].

Finally, if & is a finite integral domain, then so is ^ whence in
this case ^[[t\] is integrally closed. Recalling that έ? is a finite < -̂
module (see [7; p. 267]), one sees that ^[[t]] is even the integral
closure of ^[[t]] in accordance with the following:

THEOREM. Let έ? he an integral domain whose integral closure
is Noetherian and is a finite ^-module. Then the integral closure
of έ?[[t]] is <?[[t]].

Proof. Let & = ^ + + ^w,. Then
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whence έ?[[t]] is a finite ^[[ί]]-module and thus integral over

Let d be a common denominator of the w4 when written as quotients

of elements in £?. Then ete?[[ί]] c ^[[t]], whence ^[[ ί]] and £?[[*]]

have the same quotient field. As we have already seen that έ?[[t\] is

integrally closed, the proof is complete.

Although not necessary for our considerations, we mention the
following:

THEOREM. If & is a Noetherian domain, then £?[[<]] is integrally
closed, where t abbreviates a set tu , tn of n distinct letters.

Proof. & is a Krull ring (see [3; p. 118]), hence from the defini-

tion [3; p. 115], &v is a Noetherian valuation ring for every minimal

prime ideal p of έ?. Moreover ^ = Π ^ , where the intersection is

taken over the minimal prime ideals of έ? (see [3; p. 116]). Since

έ?P[[t]] is integrally closed, also έ?[[t]] = Π &p[[i\] is integrally closed.
Now consider the statements A and B mentioned at the beginning.

We say that A and B are equivalent. Recall that we are assuming
that & contains the rational numbers.

B=> A. This follows at once from C, the first theorem of this
section.

A => B. Let a be in the quotient field of &[[t]] and integral over

έ?[[t]\. Then ae Σ[[t\], a — aQ + att + . From an equation of in-

tegral dependence for a on έ?[[t]], by placing t — 0, one sees that

aQ e έ?. Now apply A to the ring έ?[[t]] and the derivation D — d/dt.

Then daldt,d2a/dtf, ••• are integral over ^[[t]]f whence all the coef-

ficients of a are in έ?.

Now according to the last exercise in Nagata's Local Rings, B
is a true statement; however, we will show that this is incorrect.

THEOREM. If ^ is an (integrally closed) integral domain con-
taining a field and there is a nonunit be & such that Π φp) Φ (0),
then ^[[t]] is not integrally closed.

Proof. Let p be the characteristic and n > 1, an integer such
that n Ξ£ 0(p). Then bn + bn~2t has an nth root a = b[l + (t/tf)]1{n =
6[1 + φ/b2) + c2(t2/b4) + •] in ^[[ί]], where cu c2, are in the prime
field of Σ and cxφQ. If ae Π (bp) and a Φ 0, then aaeέ?[[t]], so
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that a is in the quotient field of ^[[t]]. Now a is integral over
but is not in ^[[t]]. Hence ^[[t\\ is not integrally closed.

THEOREM. Let 95 be a (proper) valuation ring containing a field.
Then 95[[ί]] is integrally closed if and only if 95 is of rank 1, i.e.,
if and only if there is no chain 0 < px < p0 < 95 of prime ideals.

Proof. If 95 is of rank 1, then it is well-known and can be
checked at once, that 95 is completely integrally closed. Hence 95[[ί]]
is completely integrally closed, hence integrally closed.

On the other hand, if 95 is of rank > 1 and 0 < px < p0 < 95 is a
chain of prime ideals in 95 and bep0 — pu then ^ c Π (&p), whence
95[[£]] is not integrally closed.

To get a counter-example to Nagata's last exercise, one has but
to take έ? to be a valuation ring of rank > 1 that contains a field.3

To get an example of a ring έ? and derivation D such that D& c &
but Dέ?<£ έ7, let 93 be a valuation ring of rank 2 containing the
rational numbers, let έ? — 95[[£]] and D — d/dt. Let b be a nonunit
in 95 such that Π (bp) Φ (0), and let

a = (62 + ί)1'2 -

where c19c2, ••• are rational numbers. Then a is integral over έ? =
S3[[ί]] but Z>α is not.

Concerning the proof spoken of at the beginning of this section,
the author is obliged to Professor Mumford for the remark in context
that if D is a derivation, then eD, formally at any rate, is an isomor-
phism. The introduction of the parameter t on the one hand prevents
the computations from collapsing into meaninglessness, and on the other

5. The case of characteristic p Φ ()• For p Φ 0, the theorem
of § 3 is not true, even for curves. Thus consider the curve given
by Yp - Xp - Xp+1 = 0. One checks that Yp - Xp - Xp+1 is irre-
ducible (over the ground field F). Let (x, y) be a generic point of
the curve over F. Let I) be a derivation of F(y)/F with Dy — 1;
since x is separable over F(y), D can be extended uniquely to a deri-
vation, still to be denoted D, of F(y, x). One finds — (p + l)xpDx = 0,
hence Dx = 0. Let £ ? = F[x, y]. Then D^a έ?. Now y/x is integral

3 In reference to the exercise, Nagata [3; p. 221] cites Sugaku, Vol. 9, No. 1
(1957), p. 61, which we have not been able to locate; and while he notes that the
proof there is not complete, he remarks that "a supplement is expected to appear
soon'7.
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over ^ , since (y/x)p — 1 + x, but D(y/x) — 1/x is not, as otherwise it
would be integral over F[x].

However, if one uses the Hasse-Schmidt differentiations [6] instead
of derivations, one gets the corresponding theorem.4 Recall that a differ-
entiation D of a field Σ into itself is a sequence D — (δ0, δu δ2, •) of
mappings of Σ into itself with δQ — 1 and satisfying the properties:

δi(x + y) = δiX + δty

By D^d g? we now mean δ ^ c ^ for every i. Then

still yields an isomorphism and can be used instead of our previous E
to get the conclusion Dέ?' c έ?'. (After obtaining δ^έ?' c £?' as be-
fore, we argue that d*Ed{Ea - a - ^ x a ) p e έ?[[t\], (0 = 0,1, , whence
ώ4(δ2α)pe ^ , (O = 0, 1, , and δ2a is quasi-integral over < ,̂ etc.) In
the case of characteristic 0, the same argument shows one can drop
the assumption that 6? contains the rationale (Le., if one uses differ-
entiations instead of derivations).

The corollaries of the theorem of § 3 also have easily stated gener-
alizations, with similar proofs.

REMARK. Since (1 + (1 + 4£)1/2)/2 e Z[[t\], the last two theorems
of §4 hold without the field condition.
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