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COMMUTATIVE F-ALGEBRAS

MELVIN ROSENFELD

We extend several theorems for commutative Banach al-
gebras to topological algebras with a sequence of semi-norms
(F-algebras). The question of what functions "operate" on
an F-algebra is considered. It is proven that analytic func-
tions in several complex variables operate by applying a
theorem due to Waelbroeck. If all continuous functions
operate on an F-algebra, then it is an algebra of continuous
functions. However, unlike the situation for Banach algebras
[6], it is not true that if V operates the algebra is C(Δ).
This will be shown by an example. A theorem due to Curtis [4],
concerning continuity of derivations when the algebra is regular
is extended to F-algebras. The result is applied to an algebra
of Lipschitz functions to show that it has only a trivial
derivation.

Preliminaries* Throughout this paper the letter A will stand

for a commutative i^-algebra. An F-algebra is a topological algebra

with topology determined by a sequence of algebraic semi-norms. The

nth semi-norm of an element x in A will be written || x \\n. We may

and shall always assume that for all x in A, \\x\\ntί | |$IL+i. ^ +

will denote the topological space of all continuous multiplicative linear

functionals on A with the weak* topology. A will denote A+ minus

the zero functional with the relativized topology. For x in A, x will

be the function in C(/l+) (the continuous functions on A+ with the

compact-open topology) defined by x{φ) = φ{x). A will be called re-

gular if given φ0 in A and V a neighborhood of φ0, there is an element

x in A such that φo(x) — 1 and φ{x) — 0 for φ $ V. A will be called

semi-simple if x — 0 implies x = 0.

A basic device in the study of F-algebras is to represent A as

the inverse limit of a sequence of Banach algebras {An} where An is

the completion of A\In with norm ||flc + i» | | = ||aj|L and In is the

ideal of all x in A such that | |a?| |Λ = 0. The homomorphism πmtn\

An —> Am for m ^ n is defined as the completion of the mapping

x + In —• x + Im. This representation enables one to construct an ele-

ment in A by constructing a sequence {xn} such that for each n,
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xne An and τrm>nxn = xm. The homomorphism πn: A —* An is defined as
x—>x + In. Then TΓ*: (multiplicative linear functionals in An)—+A+ is
continuous and one-to-one and so its range, which we shall denote by
A+ is a compact subset of A+. If K is an arbitrary compact subset
of A+, there is an integer n such that K £ At [9].

The following theorem, due to Silov, is also valid for F-algebras.
If C is a closed and open subset of A+ and the zero homomorphism
is not in C, then there is an idempotent e in A such that
C = {φe A+: φ(e) = 1}. The extension to F-algebras is proven via the
device of the previous paragraph. With the aid of Silov's theorem
the proof that if A is regular, then A is normal is essentially the
same as for Banach algebras.

Since so many of the theorems true for Banach algebras are also
true for F-algebras with almost the same proofs, it is perhaps appro-
priate to remark that the difficulties introduced by the sequence of
semi-norms are sometimes quite subtle. For example such a seemingly
innocuous question as whether a multiplicative linear functional is
necessarily continuous is still unanswered.

Functions that operate on a commutative semi-simple F-
algebra* A function /: D g C —> C is said to "operate" on an F-algebra
A if foχe A whenever xe A and the range ΐ g ΰ . It is not difficult
to adapt Katznelson's proof in [5] to show that if every continuous
function operates on A, then A — C{Δ). However another theorem
due to Katznelson which states: If A is a self-adjoint Banach al-
gebra and V operates on the positive functions in A, then A — C(A)
is no longer true for F-algebras; as the following example shows.

Let H be the subalgebra of l°° consisting of those sequences {αj
for which there is a number, a such that | an — a \lln —»0. Let Hr be
the subalgebra of H consisting of those sequences for which a = 0.
Let τ be the linear transformation from H' to the entire functions
defined by r({αft})(λ) = Σ?=o <̂ λΛ For each integer N and for {an} e Ht

defined || {an} \\N = sup [| r({αn})(λ) | : | λ | ^ N]o || — ||^ is evidently a
vector space norm. It is also algebraic; for suppose {αj and {bn} e H\
f = τ{{an}), g - τ{{bn}) and F = τ({anbn}). Then

F(X) = (l/2πi) ( f(ιv)g(X/w)dwlw .
J\w\=M

Hf is a complete .F-algebra under the sequence of norms defined above
and H is the F-algebra obtained by adjoining a unit to H\

For n = 0,1, 2, , define zn as the sequence which is 1 in the
nth coordinate and 0 in all the other coordinates. These elements
generate Hf (since the polynomials are dense in the entire functions)
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and together with the unit of H generate H. A(H) is homeomorphic
to the one-point compactiίication of the integers, the point correspond-
ing to the integer n being the functional sending zn into lβ

It is evident that H is a self-ad joint subalgebra of C(A(H)), and
that H is semi-simple and regular. Yet, although 1/ operates on
the nonnegative elements of H, H Φ C(A(H)).

For U an open subset of Cn let H(U) be the i^-algebra of all
holomorphic functions on U with the compact-open topology. For σ
an arbitrary subset of Cn, let H(σ) be the direct limit of the i^-algebras
H(U) for U ranging over open sets containing σ directed as follows:
H(U)^H(V) if UQV.

Let a19 , an be elements of a commutative F-algebra, say A, with
unit. For ψeA = A(A)9 let σ(φ) be the point in Cn {φ{a^, - - , φ{an))
and let σ — {σ(φ) : φ e A}.

THEOREM. There is a continuous homomorphism τ from H(σ) to
A such that φ(τf) — f(σ(φ)) for every φ in A and every f in H{σ) and
z(z{) — ai9 i = 1, , n. {Evidently fe H(σ) defines a function on σ.)

Proof. Waelbroeck, in [11], proved that such a continuous homo-
morphism exists for even more general topological algebras providing
the elements, a19 "-,an are regular, i.e. have compact spectrum. An
element of an _F-algebra needn't be regular, but an element of a
Banach algebra is of course regular. We will apply Waelbroeck's
theorem to each of the Banach algebras As where A is the inverse
limit of {A,}.

For every integer k let σk be defined as above for πka19 * ,πkan,
let τk be the continuous homomorphism from H(σk) to Ak. V&: σk £Ξ σ
and there is a continuous homomorphism vk\ H{σ) —+ H(σk). The essence
of the proof is that the sequence {fk} where fkeAk is defined as
?k°Vk{f} satisfies πSitft = fs for s ^ t. For then the sequence {fk}
defines an element τf in A.

If each Ak were semi-simple, then it would follow that π8ftft = fs

for s ^ t. For Waelbroeck's theorem implies that (π ̂ t/ί) 7 ^ = /,. How-
ever, even if A is semi-simple, it does not follow that each Ak is
semi-simple.

Let s and t be two fixed integers with s g ί . We shall examine
the construction of f8. Let b{ = πsa{ for i = 1, , n. fe H(σ) may
be considered as a function holomorphic in a neighborhood, say W, of
σ and, therefore, of σs. The following assertions are proven in [11].

(1) σs is convex in the following sense. There is a finite set of
polynomials in n variables, say pl9 , pr and neighborhoods Dl9 , Dn

of the spectrum of bu , bn respectively and neighborhoods Dn+l1 , Dn+r
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of the spectrum of bn+1 = px{bu , bn), , bn+r = pr(blf ••-,&„) res-
pectively such that the following two facts are true:

(a). σsS-DQ W where D = {\eD1x x Dn : p<(λ) 6 D Λ + i for
i = 1, r}.

(b). If # = A x x Dn x . . . x D Λ + r and X = {(λ, ^(λ), ,
pr(λ)): λ e D}, then the restriction mapping, p, from £7 to X is a con-
tinuous open homomorphism of H(E) onto H(X) with kernel the ideal
generated by {zn+k - pk(zu , zn): k = 1, , r}. By (a), / is a holo-
morphic function on D and determines a function FeH(X) where
F(λ, j)(λ)) is defined to be /(λ) (i.e. F depends only on the first n
coordinates). By (b), F = ρ(G) where GeH(E).

(2) Define a: H(E) — As by

a(H) = (l/2πi)*+' \

(X+r — ftn + r ) " 1 ^ ! * d\n+r

where Γi is a rectifiable curve in D{ including in its interior the spec-
trum of bι for ΐ = 1, , ?ι + r. α is a continuous homomorphism
and a(Zi) = 64 for i = 1, , n + r. Thus, by (b), if ^(Gy = |θ(G) = F,
then α(G0 = α(G). f. is defined as α(G).

(3) If the system of polynomials p19 , pr and the neighborhoods
Du , Dn+r are replaced by another system which meets the condition
os S D S ^ then the same element /, 6 As arises.

Let {plf . . ,p r , A , * ,i5Λ+r} be a system used to to define ft.
Suppose Ci = πtα< for i = 1, - , n and cn+k = p^Cj, , c j for A; =
1, , r. Then

*..*/. = π.ft(l/2πi)»+' j j GίλXλ, - cO"1

. (λ,+ r - c . ^ ) - 1 ^ . dXn+r - (l/2πί)%+r

J J G(\)(\ - 6,)-1 (κ+r - K+r^

- ° ° dXn+r — fs .

For the system {pl9 •• ,ί?Λ, A , φ ',Dn+r} may be used to define /,:
spφi) gΞ sp(^) g A for i = 1, , w + r and ffsg(7(gl)£ TΓ. Thus
τ/ is well defined.

If φ G z/, then φ& Δk for some integer &, say <p = TΓ*^ for ψ e Λ(Ak),
then /(σ(φ)) = f(σk(ψ)) = ψ(/fc) = φ(r/) τ ^ = α<, since (^)s = π.α*
for every integer s, for i — 1, , no τ is continuous, since fa—^fo^
for all & vkfa—>Vkfo=* for all & τkovkfa-+τk*vkf0 (i.e. for all A?
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This theorem, except for continuity of the operational calculus,
is also proven in [1] via the Arens-Calderon theorem [2].

Continuity of derivations* A derivation on an algebra A is a
linear operator D satisfying D(xy) ~ xDy + (Dx)y for every x and y in
A. If A is a commutative jP-algebra, a linear transformation D: A—*C(A)
satisfying D(xy) — xDy + (Dx)y will be called a derivation into C{A).
It is conjectured that a derivation on a Banach algebra must be con-
tinuous. Curtis [4] proved that if a Banach algebra is regular, then
any derivation is continuous, in fact any derivation from the algebra
to C(A) is continuous. This theorem will be extended to allow the
algebra to be an i^-algebra. It will then be applied to some .F-algebras
to determine all derivations in these algebras.

The following lemma is a modification of one in [3] and its proof
is essentially the same.

LEMMA. Let t be an algebraic homomorphism from a commuta-
tive F-algebra A to a semi-normed algebra B. Let {gk} and {hk} be
two sequences of elements in A such that for all n: gnhn = gn and
if m Φ n, then hnhm — 0. Then it is not possible that for all n

HίflUI >n\\gn\\n\\K\\n.

COROLLARY. If D is a derivation from a regular commutative
semi-simple F-algebra A to C(Δ), then D is continuous.

Proof. Let {Ak} and {Ak} be defined as in the preliminaries. Since
every compact subset of A is contained in some ΔN, it suffices to prove
that if xn —> 0, then Dxn —> 0 uniformly on each ΔN. The procedure will
be to show:

(1) for all N there is an at most finite set FN s AN such that
Dxn —> 0 uniformly on the closure of [AN\FN];

(2) if φ is isolated in Δ, then Dx(φ) = 0 for every x in A; and
(3) if φ e AN is isolated in Δm for every m ^ N, then φ is isolated

in A. (1), (2), and (3) imply that Dxn(φ) —* 0 for every φ and this
together with (1) implies that Dxn —»0 uniformly on AN. This is
basically the some proof as in [4]. The third step is the only novel
point in the proof. It does not follow from the fact that every com-
pact set is contained in some ΔN. The example of Arens' ([7] problem
2Έ) shows this. (3) may be proven as follows: Suppose φeAN is
isolated in Δm for all m ^ N. By Silov's theorem, for each m ^ N,
there is an idempotent em e Am such that φ(em) = 1 and φ'(em) = 0 if
φf e Am and φ' Φ φ (identifying Δm with A(Am)). Then, because each
em is an idempotent and (τr r,βeβ)/ v= er for N ^ r ^ s, πr,se8 = er for
N ^ r ^ s (two idempotents in Ar equal modulo the radical are iden-



164 MELVIN ROSENFELD

tical). Thus {em} defines an idempotent e in A such that φ(e) — 1 and
φ'(e) = 0 f or φ' Φ <p and <p' e Δ

Steps (1) and (2) will be sketched. Proof of (1): Let B be the
semi-normed algebra which as an algebra is A, but with semi-norm
|| a; || = II x 11̂  + II Dx \\N. Let F = {φ e ΔN : x —• Dx{φ) is not a con-
tinuous linear functional}. Since A is an .F-space, the principle of
uniform boundedness applies. Since for each x in A {Dx(φ): φ e ΔN\F}
is bounded (by || Z>α? Ĥ -), Dxn—>0 uniformly on ΔN\F. F is a finite
set. If not, then there is an infinite sequence {φn} gΞ F with mutually
disjoint neighborhoods. Since the algebra is by hypothesis regular,
there are sequences {yn}, {zz} such that yn(φn) = 1, ynzn = yn and
s«s» = 0 if mΦ n. Then since φn e F, there is an xn in A such that

Dxn(φn) \> n\\xn\\n \\yn\\n-\\zn \\n. Thus letting gn = xnyn and hn =

zn, we have \\gn\\ ^ || Dgn \\N > n \\ gn | |n || few | |n and this contradicts the
previous lemma. Thus we may let F be FN. Proof of (2): Let φe Δ
be isolated. Choose, by Silov's theorem an idempotent e such that
φ(e) = 1 and ^/(e) = 0 for φf — φ. Then De(φ) = 0 and, by semi-
simplicity, ex = <p(x)e for any α? in A. Hence

0 = D(ex)(φ) = x(φ)De{φ) + Dx{φ) = Zte(9>)

for any a; in i .
By the closed graph theorem and the previous corollary, if D is a

derivation on a regular commutative semi-simple F-algebra, then D is
continuous.

Let C°°(R) be the algebra of infinitely differentiable functions on
the real line. For / in C°°(R), let

11/II. = Σ2=o sup [|/<*>(t) I : - n ^ t S n]/k ! .

C°°(R) is a regular semi-simple F-algebra. If D is a derivation on
C°°(R) and a? is the function mapping t into t, then for any polynomial
p in x, Dp(x) = p\x)Dx. Since the polynomials in cc are dense in
C°°{R) and since Z> is continuous, Df = /'Zto for any / in C°°(i?).

As a second application of the previous corollary, we show that
the following algebra of Lipschitz functions has no nontrivial derivations.

Let a ^ 1. Let La be the subalgebra of C(R) consisting of functions
of period 1 with finite norm || — ||α where | | / | | α is defined to be

sup[|/(t) \:teR] + sup[|/(s + h) - /(β)|/| h \a :seR,hΦ0].

Let 1« = {/e La; ΪEm[| f(s + h) - /(s) |/| fc |α — 0 : A — 0] for s e R}. For
α < 1, La is a Banach space, l α a closed subspace, and La is isomor-
phic to 1** [8]. Let an = 1 — 1/τι and L be Πl/«Λ with the sequence
of algebraic norms {|| — | | α J . L may also be defined as the inverse
limit of {LaJ. LUn+l £Ξ l t t j i g Lα% and so L is also the inverse limit
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of {laj. This implies that L — L**, however even more is true: A
bounded subset of L must have compact closure, i.e., L is a Montel
space. For let S be a bounded set in L S l«w. 1«Λ is isometrically
isomorphic as a Banach space with a subspace of C(W*) where W*
is a compact set obtained as follows: Let U — {t e R: 0 g t g 1}, F =
{(r, s): 0 ^ r ^ 1, 0 < r - s g 1/2} and W = U U F, then W is a locally
compact space and W* is its one-point compactification. The isomor-
phism / - > / is defined by /(oo) = 0, f(t) = /(*), and

To see that S is precompact in L it suffices to show that S is pre-
compact in each lttn or, equivalently, that S is equicontinuous. This
follows from the fact that there is a number K such that

feS=>\\f\\an+i<LK.

The representation of la% as C(W*) is due to DeLeeuw [8].
A derivation D on L must map every element into 0. For L is

a regular, commutative, semi-simple F-algebra and so it suffices to
show that if fe L, then φ{Df) = 0 for any φ e zί(L). D(f - φ(f)) =
X)/ and / — <£>(/) is in the kernel, M, of φ. So it suffices to show
that D[M] s M". Since Λf is an ideal, D[M2] S ΛΓ. M2 ^ Λf, but Λf2

is dense in ikf and so, since D must be continuous, D[M] £ M. (Any
maximal ideal M must be the set of all functions in L vanishing at
some t0 where 0 ^ ί0 < 1. The function sin ([t — tQ]/2π) is in M but
not in ikP. Sherbert [10] proved that M2 is dense in M for the
Banach algebra lα, in fact for algebras of Lipschitz functions on more
general spaces than the unit interval. His proof works as well for L.)

The author would like to thank Professors P. C. Curtis, Jr. and
R. Arens for their kind help during the preparation of this paper.
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