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THE DISTRIBUTION OF CUBIC AND QUINTIC
NON-RESIDUES

JAMES H JORDAN

For a prime p = 1 (mod 3), the reduced residue system S3,
modulo p, has a proper multiplicative subgroup, C°, called the
cubic residues modulo p. The other two cosets formed with
respect to G°, say C1 and C2, are called classes of cubic non-
residues. Similarly for a prime J J Ξ I (mod5) the reduced
residue system S5, modulo p, has a proper multiplicative sub-
group, Q°, called the quintic residues modulo p. The other
four cosets formed with respect to Q°, say Q1, Q2, Q3 and Q4

are called classes of quintic non-residues. Two functions, fs(p)
and /5(p), are sought so that (i) if p = 1 (mod 3) then there
are positive integers di^C1, i = 1, 2, such that aι < /3(p), and
(ii) if p Ξ l (mod5) then there are positive integers α;eQ%
i = 1, 2, 3, 4 such that α; < /5(p). The results established in
this paper are that for p sufficiently large, (i) fs(p) = pa+s,
where a is approximately .191, and (ii) /5(p) = pβ+*, where
.27 < β < .2725.

Davenport and Erdos [3] raised the general question about the
size of the smallest element in any given class of kth power non-
residues. The special cases k = 3 and k = 5 are of primary concern
in this paper. They proved a quite general theorem of which two
special cases are:

THEOREM A. For sufficiently large primes p = 1 (mod 3) and
e > 0 each class of cubic non-residues possess a positive integer smaller
than p™ι™+\

THEOREM B. For sufficiently large primes p = 1 (mod 5) and
ε > 0 each class of quintic non-residues possess a positive integer
smaller than pmi396+\

In the same paper Davenport and Erdos used a result of de Bruijn
[2] to improve the constant of Theorem A to approximately .383.

Recently D. A. Burgess [1] succeeded in improving Polya's in-
equality concerning character sums. Burgess' result is

THEOREM C. If p is a prime and if χ is a nonprincipal charac-
ter, modulo p, and if H and r are arbitrary positive integers then
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I Σ X(™) < H1-ίlr+1p1'ir In p ,

for any integer n, where A < B is Vinogradov's notation for \A\<cB

for some constant c, and in this Theorem c is absolute.

The application of Theorem C to the arguments of Davenport and
Erdos cuts each of the exponents of p in half.

The achievement of this paper is to obtain the same result about
cubic non-residues by an argument which is independent of the de
Bruijn result, reduce the exponent on the result for quintic non-
residues by a similar argument, and indicate a method of obtaining
results for any primeth power non-residues.

2* Cubic Non-Residues*
A well known result about sums of inverses of primes is:

Π : ΣiVQ = lnlnx + K+ O(l/ln x) ,

where if is a positive constant.1

LEMMA 1. // 0 ^ v < 1/2 then

Σl/g=Γ l/ydy + O(l/lnx),
χl — v Jl—v

where the error term is independent of v.

The proof of Lemma 1 follows directly from II.

LEMMA 2. If 0 ̂ v < 1/2 then
Λ;ί~ »/?i r i/2 ri—y

Σ Σ l/ϊift = (yzy'dzdy + O(l/ln x) ,
3(1-10/2 qx J(l-<ιO/2 Jy

where qx and q2 run only over primes and the error term is in-
dependent of v.

Proof.

Σ Σ VQ1Q2 = Σ l/ffi (In In (x/q,) - In In q1 + O(l/ln x))
x(l-v)/2 qλ χ(l-v)f2

— Σ VQi (ln ln
 (X/QI) ~ ln I71 Qi) + O(l/ln x) .

Now by a well known summation Theorem,2

1 See for example LeVeque, Topics in Number Theory, Vol. 1, Th. 6-20, p. 108.
2 See for example LeVeque, Ibid, Th. 6-15, p. 103, with λn the nth prime, cn =

l/λn, and f(y) = lnln(x/y) — Inlny + 0(l/lnx).
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7 (Inlnt + K+ 0(l/ln x))ln x dt

— v)/2) + Inlnx + K

% x)){ln ((1 + v)/(l - v)) + O(l/ln x) .

If the change of variable t — xs is made then

Σ ΣΣ Σ 1/?!?. =
T? 1 2 d-»)/2 s ( l — δ) Jd-tθ/2 s ( l — δ)

- (In((1 - «)/2) + lnlnx + K

x)

t>)/2 S ( l — S)

+ Oilβn x)

S l/2 fl-i/

(yzy'dzdy + O(l/Zw x) .
(l-«)/2 Jv

For any positive integer r and primes p = 1 (mod 3) let a? =
4(^2py.+y3]# Let <̂ (αθ = Cj Π {m | 0 < m ^ a?}, i = 0, 1, 2, and

let N(Cj(x)) be the cardinality of Cj(x).
The following is a special case of a general theorem of Vinogradov

[4], [5].

LEMMA 3. N(C\x)) = xβ + O(x/ln x), j = 0,1, 2.

Proof. Formula I with H — x, and n = 0 reads as

Σ χ(m) < x 1- 1 / r +y / 4 r In p

^ (pwir)H(in*pγ+iγir+ipinr ι n p

= p1"+ll4r(ln*p)r-lnp

= p{1+1^ι\ln2p)r+1/ln p .

In other notation

J^ χ(m) = 0(x/ln x) .

Let χ3>:p be the cubic residue character for primes p = 1 (mod 3).
By the above there is an absolute constant, Ku such that

III: ^-1 A3,ί
TO = 1

Kxx\ln x .
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Set N(C'(x)) = x/S + TJf j = 0,1, 2. Notice that To = - 2\ - 2Γ,.
Let w = cos 2π/3 + ism 2π/3.

It now follows that

Σ
j=0

T2)3/2 + ΐ(2\ - Γ2)τ/"3/2

Now by III: | Γx + Γ21 < 2iΓ^/3 Zw £ and | Tλ - T2 \ < 2K&/VT In χm

These inequalities imply that | Tx | and | T2 \ are less than 2K1x/V/Ύ lnx»
Hence | To \ < AK^jVΎ In x completing the proof of the lemma.

THEOREM 1. Let d be the solution of

!

1 fl/2 Γl-y

Vydy+\ (yzY'dzdy.
1-v J(l-v)/2 Jy

For all sufficiently large primes p = 1 (mod 3) there is in each class
of cubic non-residues modulo p9 a positive integer smaller than
p<i-Λ>/4+.β ^ satisfies the inequality .234 < d < .235).

Proof. Given ε > 0 let r = [1/ε] + 1. Define x in terms of p as.
above and notice that as long as ε < d then

\ ( i _

for sufficiently large primes p.

It therefore suffices to prove that for sufficiently large primes,
each class of cubic non-residues contains a positive integer smaller
than x1-**-'.

Assume that Theorem 1 is false. Then, for some fixed ε > 0,
there are infinitely many primes p = 1 (mod 3) such that one of their
classes of non-residues fails to contain a positive integer less than
x1-*^. Let pλ be one such prime. Notice that x, C°, C1 and C2 are
defined in terms of pλ and will therefore be fixed in this argument.

Without loss of generality C2 can represent that class of non-
residues modulo p1 that has no positive integers less than xx~a+\ Since
C2 has this property it follows that C1 has no positive integer less than

xn-d+ε)i2 b e c a u s e α i n c1 implies a2 in C2.
Since C° is closed under multiplication, modulo pu an integer w

in C2(x) must have prime factors not in C°. If w has exactly one
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prime factor, q, not in C° then q must be in C\ If w has exactly
two prime factors, q1 and #2, not in C° then both q1 and q2 must be
in C°. Further w cannot have more than two prime factors not in C°
since the product of any three or more prime factors not in C° exceeds x.

A consequence of the above conditions on positive integers in C2(x)
is the following upper bound for N(C2(x)):

i v : s+9^^ +

 v^- ? wq^
where the q1 and q2 are taken only over primes β But

V l d +

<x(-ln((l-d + e)/(l - d)) +

+ \ \ (yxy'dzdy + KJln x
J(l-d)/2 Jy

- d)) + 1/3) + K2x/ln x ,

where K2 is a constant independent of x. But this inequality can
hold only for finitely many primes to be compatible with Lemma 3.

3* Quintic Non-Residues* It is helpful to adopt the following
notations: Let

7X = I 1/ydy
J (l-o)
ri/2 ri-y

h = \ \ {yz)-ιdzdy

r(i-»)/2 ri-ί/

Λ = \ {yz)~ιdzdy
J(l-v)/4 Jl-t -2/

S (l—1))/3 Γ(l—ΊJ—ϊ/)/2 Π - ί / - 2

\ I (yzu)-ιdudzdy
(1 — V)/4 Jί/ Jl—V —7/—2!

/5 = \ \ \ {yzu)~ιdudzdy

J ( l - z>)/4 J( l—»-»)/2 Jz

\ \ (yzu)~ιdudzdy

I7 = I \ \ \ (yzutyxdtdudzdy .

In the following summation the ĝ  run only over primes.

Σ

= Σ Σ
( l ) / 2 ff
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x(l-v)/2 x/q1

S3= Σ Σ VQΆ
x(l-v)/4 χl-vjQl

x(l-v)/3 </χ(l-v)ιQl xlQlq2

s*= Σ Σ Σ
( l ) / 4 l

a.(l-t;)/3 V^T^ a;/?!^

Σ Σ Σ

y i i2

S6= Σ Σ Σ
a;(l-t>)/3 ?i 92

4 _ 3 . .

S7= Σ Σ Σ
a.U-tO/4 ? ! g2 g 3

We can now restate

LEMMA 1. 7/ 0 <; v < 1/2 ίfce^ Si = Λ + O(l/ϊn a?), and

LEMMA 2. If 0 S v < 1/2 £/̂ w S2 = 72 + O(l/ln x), and similarly

LEMMA j + 1. If 0 ̂ v < 1/2 ίfee^ SΛ = /,- + O(l/Zw a?) /or i =
3, 4, 5, 6, 7.

The proofs of Lemmas 4, 5, 6, 7, and 8 are straight forward
generalizations of Lemmas 1 and 2 and are much too lengthy to be
exhibited here.

For any positive integer r and primes p == 1 (mod 5) let x =
5[p(1+1/r)/4(ί^2p)r+1/5]. Let Qj(x) = <y n {m 10 < m ̂  x}, j = 0,1, 2, 3, 4,
and let N(Qj(x)) be the cardinality of Qj(x).

The following is another special case of the general Theorem of
Vinogradov [4], [5]:

LEMMA 9. N(Q3(x)) - x/5 + 0(x/ln x), j = 0,1, 2, 3, 4.

Proof. Let χ6>p be the quintic residue character for primes
p = 1 (mod 5). By the argument in the proof of Lemma 3 there is an
absolute constant Kz such that

V:
m = l

<KBx/lnx.

Set N(Qj(x)) = x/5 + Tj9 j = 0,1,2,3,4β Notice that To = - Σ i = Λ
Let p — cos 2ττ/5 + i sin 2τr/5.

It now follows that
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ΣXsM = Σ(Φ + T,)pi
m = l j—0

= Σ Tip*

= Σ Tj(cos 2πj/5 - 1) + i Σ Tό sin 2πj/5 .

Now from V it follows that
(i) : I (Γx + T4)(cos 2τr/5 - 1) + (Γ2 + T3)(cos 4ττ/5 - 1) | < K3x/ln x

and
(ii) : I (T, - T4) sin 2ττ/5 + (Γ2 - Γ3) sin 4ττ/5 | < JSΓ8α?/Zw a?.

Notice that χ ^ is also a character and by the argument in the
proof of Lemma 3 of § 2 there is an absolute constant K4 such that

VI:

But on the other hand

t
.7=0

= Σ
j=0

< K^xjln x .

= Σ Γ i ( c o s 4 7 r i / 5 - 1) + * Σ Γy sin 4τri/5 .
3=1 3=1

Now by VI it follows that
(iii) : I (2\ + Γ4)(cos 4τr/5 - 1) + (Γ2 + Γ3)(cos 2ττ/5 - 1) |
(iv): I (Γx + T4) sin 4τr/5 + (Γ3 - Γ2) sin 2π/5 | < iΓ4x/ϊ^ x.
With a little manipulation of (i), (ii), (iii), and (iv) one can obtain

I Tj I < Kδxβn x, ^ = 0,1,2,3,4, where K5 is an absolute constant
independent of x, proving Lemma 9.

THEOREM 2. Let d denote the solution of 1/5 = Σ*=i ^
sufficiently large primes j ) = l (mod 5) ίfeere i s w eαc/i c ίαss o /

quintic non-residues, modulo p, a positive integer smaller than
p(i+d)/4+e (^ satisfies the inequality .08 < d < .09),

Proof. Given ε > 0 let r — [1/ε] + 1. Define x in terms of p as
above and notice as long as ε < d then α;1~d+ε < pt1-*w+β for sufficiently
large values of p. It will suffice to prove that for sufficiently large
primes p Ξ= 1 (mod 5) that each class of quintic non-residues modulo
p contains a positive integer less than ^1~<z+e.

Assume that Theorem 2 is false. Then, for some fixed ε > 0,
there are infinitely many primes p = 1 (mod 5) such that one of their
classes of non-residues fails to contain a positive integer less than x1'^*.
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Let px be one such prime. Notice that x, Q°, Q\ Q\ Qs and Q4 are
defined in terms of pλ and will therefore be fixed in this argument.

Without loss of generality Q4 can represent that class of non-
residues modulo Pi that has no positive integers less than a?1~d+e. Since
Q4 has this property it follows that Q1, Q2 and Q3 have no positive
integers less than x(1~d+e)/4 because a in Q1 or Q3 implies α4 in Q4 and
a in Q2 implies α2 in Q\

Since Q° is closed under multiplication, modulo plf an integer w
in Q4(x) must have prime factors not in Q°. One of the following
conditions holds depending on the exact number of primes, qiy not in
Q° that divide w.

( i ) There exists a prime q± such that q1 \ w and xι~a+t <; gx ^ x,
since QΊ is in Q\x).

(ii) There exist primes q1 and g2 such that qxq2 \ w and

(iii) There exist primes qu q2 and g3 such that qλq2q3 \ w and
χι-a+ε < qiq2q3 </ x > s i n c e qiq2q3 is in Q4(x).

(iv) There exists primes qu q2, g3, and g4 such that q^q^q^ \ w and
x1-^' < q^q^A < %, since q&iq&t is in Q4(α?).

It should be noticed that w cannot have more than four prime
divisors which are not in Q° since the product of any five or more
primes not in Q° would exceed x. The number of w's that could
possibly satisfy (i) is less than or equal to

Σ [*/?il
a i-ci+ε

The number of w's that could possibly satisfy (ii) is less than x(S2 + S3).
The number of w's that could possibly satisfy (iii) is less than
x(S4 + S5 + S6). The number of w's that could possibly satisfy (iv)
is less than xS7. Combining the above we have

N(Q\x))< ff [/ ΪJ Σ
l-d+ε i=2

77

[aj/</J + x Σ St
i l

χ

Σ
xl-d

- ε/(l — d)) + 1/5) + Kδx/ln x ,

where K6 is a constant independent of x. But this inequality can
hold only for finitely many primes to be compatible with Lemma 9.

4* Remarks* The techniques of the previous sections generalize
for Kth. power non-residues when if is a prime. In these cases the
definition of d involves (K2 — 3K + 4)/2 integrals ranging from multi-
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plicity 1 through K—l. There are K — 1 possible divisibility conditions
imposed on the elements of Aκ~\x). The upper bound for N{Ak~\x))
involves (K2 — 2K + 4)/2 summations ranging from multiplicity 1
through K—l. The contradiction is reached in the same manner.
The details are lengthy but straightforward. For example for seventh
power residues the results of Davenport and Erdos imply an exponent
of p equal to 959/3840. While using methods exhibited in § 3 one
obtains an exponent smaller than 25/104.

When K is composite the job is more difficult since the subgroup
of ifth power residues and the K—l cosets form a cyclic group of
composite order. These cyclic groups have proper subgroups. The
"without loss of generality" comment is no longer valid and some
arguments concerning the number of prime factors of K must be
called upon. The author intends to present these techniques at a
future date.
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