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This paper is concerned with the investigation of two closely
related questions. The first question is: What relationships
exist between G and nG where G is an Abelian group and n
is a positive integer?

It is shown that if G' and W are Abelian groups, n is a
positive integer and nG' = nH', then G = H where G' = S 0 G
and H' = T®Ή such that S and T are maximal ^-bounded
summands of Gf and Hf, respectively. A corollary of this is:
Every automorphism of nG can be extended to an automorphism
of G.

We define two primary Abelian groups G and H to be
quasi-isomorphic if and only if there exists positive integers
m and n and subgroups S and T of G and H, respectively,
such that pnG c S, pmH c T and S = T, the second question is:
What does quasi-isomorphism have to say about primary Abelian
groups? It is shown that if two Abelian p-groups G and H
are quasi-isomorphic then G is a direct sum of cyclic groups
if and only if H is a direct sum of cyclic groups, G is closed
if and only if H is closed, and G is a 2*-group if and only if
H is a i^-group.

In this paper the word "group" will mean "Abelian group/7 and
we shall use the notation in [5] except that a direct sum of groups
A and B will be denoted by A 0 5 . Also if aeA then Hp

A(ά) will
denote the p-height of a in A. (If it is clear which group or which
prime is referred to then either sub- or super-script may be dropped
or both.)

At a symposium on Abelian groups held at New Mexico State
University, L. Fuchs asked the question: What does quasi-isomorphism
(see Definition 3.2) have to say about primary Abelian groups? A
question posed by John M. Irwin that arises in the investigation of
this question is: What relationships exist between G and nG where
G is an Abelian groups and n is a positive integer? The purpose of
this paper is to investigate these two questions,,

First, we will begin by considering to what extent nG determines
G where G is a group and n is a positive integer. It will be shown
that if Gf and H' are groups, n is a positive integer, and nG' ~ nH',
then G~H where Gf = S φ G and H' = T 0 H such that S and T
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are maximal ^-bounded summands of G' and H', respectively. A
corollary to this is: Every automorphism of nG can be extended to
an automorphism of Gβ

In looking at quasi-isomorphism of primary Abelian groups, it is
shown that if two Abelian p-groups G and H are quasi-isomorphic then
G is a direct sum of cyclic groups if and only if H is a direct sum of
cyclic groups, G is closed if and only if H is closed, and G is a J^-group
if and only if H is a J^-group. Other related results are also obtained.

1* An isomorphism theorem*

LEMMA 1.1. Let G be a p-group and Br be a basic subgroup of
pnG. Then there exists a basic subgroup B of G such that pnB = B\

Proof. Write B' = χ λ e ^ {xλ}. Now there exists yλ e G, for all
λ e J , such that pnyλ = %λ. Let B* = J^λeA{yλ}. Now B* is pure in
G and [yλ : λ e A] is a maximal pure independent set with respect to the
property of J3* having no cyclic summand of order ^-p*. To see the
purity of B* first notice that (B*)[p] = (B')[p\. Let xe(B*)[p]. Now
HB\{x) — n Λ- HpnG(x) and if HpnG(x) — m, HG(x) = m + n and HB*n(x) =

m + n\ Hence HG(x) — HB*n(x), and Bn is pure in G. That B* is
maximal pure as above is clear. Thus Bt can be extended to a basic
subgroup B of G, and B = Sn 0 5* where pwSΛ = 0 (see p. 97 of [5]).
Hence pnB = B'.

Using the above notation note that G — Sn@Gn where Gn =
JBJ + pwG and Bt is basic in G%β This follows from a theorem of Baer's
(Theorem 29β3 in [5]). We shall continue using this notation and refer
to this decomposition as Baer's decomposition. From a theorem of
Szele's [Theorem 29O4 in [5]) it follows that Sn is a maximal ^-bounded
summand of G« From this it is easy to show that, if Hf is a group,
then H' = Γ φ ί ί such that T is a maximal ^-bounded summand
of H'.

THEOREM 1.2. Let G and H be p-groups such that pnG = pnH
(under an isomorphism φ) for some positive integer n. Then Gn =
Hn according to Baer's decomposition.

Proof. We may assume that G and H are reduced by Test Problem
I and Exercise 9 in [9]. Now pnGn = pnG ^ pnH = pnHn. Let pn(BGJ
be a basic subgroup of pnG such that BG% is a basic subgroup of Gn,
and let Bπ% be a basic subgroup of iJ% such that φ(pnBGJ — pnBH% a
basic subgroup of pnH. This is possible by the above lemma and the
fact that pnG ~ pnH under φ. From the proof of the above lemma it
is easily seen that there exists an isomorphism φ: BG —•* BH such that
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φ 1 pnBGn = Φ I pnBGn. We may write Gn = BGn + pnGn and Hn=Bffn + pnHn.
Define

ψ : Gn — Hn: gn = & + 2> ffni -> 0(6) + 0(2> flrni)

where 6 e I?0 Λ and g%l e Gn.

Suppose gn = b + png%l = V + p ^ % 2 , where 6, V e BG% and gnil g%2 e Gn.

Then & - &' = pn{g%2 - gn) implies b - 6' e p % £ ^ , and 0(6) -0(6')=0(6 - V) =

Φ(Pn9n2 ~ VnQn) = ^(Pw^2) ~ Φivn9n). Therefore

0(6) + Φ(vngni) = Φ(V) + φ{pngn) .

Hence ψ is well defined. Clearly f is a homomorphism.
Suppose gn e Gn and f{gn) = 0β Now gn = b + p ^ % l where 6 e BGn

and flfni G Gw, and f(gn) = ψ(b + pngn) = 0(6) + 0(pwff1l) = 0β Hence 0(6) =
-φ(pn9n) and b e pnGn. Thus φ(b) = 0(6) = φ{-png%) and 0(6 + Λ ) = 0.
Therefore gn = b + pw#%1 = 0 and ψ is one-to-one. If hn e Hn then An =
b + j>wΛΛl for some beBHn and hnie Hno Since 0 and 0 are onto, ψ
is onto.

COROLLARY 1.3. Let G be a p-group. Let B and Bf be basic
subgroups of G such that Gn = Bt + p"G α^ίί G'n = (B')ί + 2>ΛG.

COROLLARY 1.4. Let G and H be torsion groups such that nG = nH
for some positive integer n. Then G 0 Bλ = H 0 J32 where Bx and
B2 are groups of bounded order bounded by no

COROLLARY l β5. Let Gf and Hr be torsion groups and n a positive
integer. Write G' = S 0 G and Hf = TQ) H where S and T are
maximal n bounded summands of Gf and Hf, respectively. Suppose
that nG1 = nHf. Then G = H.

COROLLARY 1.6. Let G and H be p-groups such that pmG — pnHy

n> m. Then pn~mHm = Gm.

Proof. Now pm(pn-mH) ~ pmG implies (pn~mH)m = Gm by 1.2. By
Baer's Theorem H=Sm@Hm where Hm = B* + pnH. Thus pn~mH =
Pn~mSm 0 (pn~mB* + pn~m(pmH)). Also

p«-mH = pn~mSm 0 (pn-mBZ + pm(pn~mH))

since pn~m(Sm 0 Bt) is a basic subgroup of pn~mH. Thus (pn~mH)m ^
pn~m{Hm) and we have that Gm = pn~mHm.

A generalization of Theorem 1.2 is the following:
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THEOREM 1.7. Let Gr and Hr be groups such that nGf ~ nH\ for
some positive integer n. Write G' — S φ G and H' = TQ)H such
that S and T are maximal n-bounded summands of Gf and H\
respectively. Then G = H*

Proof. If Gf and Hf are torsion groups, we are done by 1.5. Thus
suppose that Gr and Hf are not torsion groups β It suffices to prove
the theorem for n = py a fixed but arbitrary prime. To see this write
n = p^ pi2 pk

m

m such that p/s are distinct primes. Let ^ be chosen
such that Pin{ — n. Observe that if p^n^G) ~ PiiriiH) implies that
n{G = n{H, then by finite induction G = H.

Suppose that pGf = pH' under the isomorphism σ. Write G' =
and Hf — T 0 H such that S and T are maximal p-bounded summands
of G' and if', respectively. Let Gt and Ht be the torsion subgroups
of G and H, respectively. Then pGt ~ pHt under the isomorphism
σ I pGt. By 1.5, Gt = Ht under an isomorphism σt such that σt \ pGt —
σ I pGt. Define a map

Φ: Gt + pG^Ht + pH: φ(t + g) = σt(t) + σ(g)

where t e Gt and g e pG. Note that φ is an isomorphism since
σ I Gt Π pG = σt \ Gt Π pG and σ(Gt Π pG) = Ht Π pi ϊ . (The proof of this
is similar to that in Theorem 1.2.)

Next we will show that there exists a pair (£>', φ') such that S' =
{Gt, pG, x} with xe G and a;?G ( + pG, Φf is an isomorphism from S' to
a subgroup of iϊ, and ^ | Gt + pG = ^. To this end let x e G such that
xί Gt + pG. Then aj is torsion free. Let ye H such that py =
Define

Φ'\ {Gt, pG, x] — {Ht, pH, y}\ Φ\t + g + wa?) = 0(ί + 9) + ny

such that (w, p) = 1 or w = 0, t e Gt and geG. Note that Hp(nx + £) = 0
for all ί e G t and (w, p) = 1. If there exists zeG such that pz—
nx + t then nx — pz — teGt + pG, a contradiction to the choice of x.
Thus iP(£ + g + WE) = 0 for (n, p) = 1, t e Gt and βr e pG. Suppose
that flf' + nx = g" + mx with flf', ^" e Gt + pG. Then ^'(^' + nx) =
Φ(gf) + ny and ^'(^" + ma;) = Φ{g") + m /̂. Now (n — m)x = ^" — g' e pG
since iP(&£ + 0 = 0, (&, p) = 1, for all t e Gt. For if p does not divide
(n — m), then ίP(α; + ί) > 0 for some t e Gt since g" — gf' = g — t such
that g e pG and t e Gt. Thus n — m — pnly and

Φ(g" - Qr) = Φ((n ~ m)x) = Φin.px) = nλpy = (n - m)y .

Hence ψ{gr) + ny — φ{g") + my, and the map is well defined. Now φ'
is clearly a homomorphism onto {Ht, pH, y). If φ'(z) — 0 for some
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z e {Gt, pGy x) then pz — 0 since φ' \ pG is one-to-one. Thus z e Gta But
φf I Gt is one-to-one and hence z — 0. Thus we have an extension (S', φr)
of (Gt + pG, φ).

Next let S/' be the set of all pairs (Sa, φa) such that Sa is a subgroup
of G containing Gt + pG and ^α is an extension of φo Partially order
6f as follows: If (Sa, φa), (Sβ9 φβ)e^ then (Sa, φa) ^ (Sβ, φβ) if and
only if Sa ZD Sβ and φa is an extension of ψβo Now y ^ 0 as shown
above, and every chain ^f has a least upper bound in Sf. To see this
let ίT = [(Sα, φa): a e A\. Let Sc = (J«e i & and φc be defined by 0c(sα) =
φβ(sa) for /9 ^ a,saeSa.

Clearly (Sc, φc) is the least upper bound and (Sc, Φc) e 6^. Therefore
by Zorn's Lemma there exists a maximal element (SM, φM)o Now SM —
G9 for otherwise there exists xeG such that x g SM, and we may extend
φM to {SM, x] as before. Thus we have an isomorphism φM from G into
ίίβ If ye H and xe G such that px — Φ~ι(py) then φM{x) — y — te Ht

which implies that y = φm(x) — te H9 Thus φM is onto and G and H
are isomorphic.

COROLLARY lo8β Let G' be a group and n a positive integer. Then
every automorphism of nGf can be extended to an automorphism of G\

This is actually a corollary to the proof of Theorem 1.1. For if
we write G' = S 0 G, where S is a maximal ^-bounded summand of
G\ every automorphism of nGf can be extended to an automorphism of
G, as the proof of Theorem 1.7 indicateso This together with any
automorphism of S gives the desired automorphism of GO

COROLLARY L9β Let G and H be groups and n a positive integer.
Suppose that nG = nH and the maximal n-bounded summands of G
and H are isomorphic. Then G ~ H.

COROLLARY 1.10. Let G' be a group and n a positive integer.
The only pure subgroups between G' and nG' are groups of the form
S ® G where S is a pure subgroup of Gf bounded by n and Gf =
S ' ® G such that Sr is a maximal n-bounded summand of Gf.

Proof. Let H' be a pure subgroup of G' such that G ' ^ H' Z) nG'.
Then G'/H' = T a group of bounded order bounded by n. By Theorem
5 in [9], G' = H'@ T' such that T' = T. Thus nG' = nH' 0 nT' =
nH'. By 1.7, H=G where H' = K@H with K a maximal ^-bounded
summand of H'. Since H is pure in G' and G'/H is bounded by n, H
is a summand of G' and G' = S' 0 if. Therefore H' ~ SφG where
S is a pure subgroup of G' bounded by n.
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COROLLARY 1.11. Let G be a group and n a positive integer. The
pure subgroups between G and nG are all isomorphic up to summands
of bounded order, bounded by n.

COROLLARY 1.12* Let G be a group and suppose that G — S φ G ; =
T 0 G" where S and T are maximal n-bounded summands of G.
Then Gf ~ G".

2. Some properties of G and nG. In this section we will be
concerned mainly with the question: If P is a property of a group,
does G have property P if and only if nG has property P where G is a
group and n is a positive integer? This question is of interest in itself,
but it is also of interest in looking at the question of Fuchs: What
does quasi-isomorphism have to say about primary Abelian groups? We
shall begin by proving a decomposition theorem.

THEOREM 2βlβ Let G be a group and n a positive integer such
that nG = Σ λ 6Λ G(

λ. Then G — Σ λ e ^ Gλ such that nGλ = G'λ.

Proof. Let a e A. Set Ha = G/ΣΛ* Gf

λ, where A' = A - a, for all
a e A, and observe that nHa ~ G^. Now Hλ = S* φ {Hλ)n where S^ is
a maximal ^-bounded summand of Hλ. Set G = 2 ^ (Hλ)n φ Sn (external
direct sum) where Sn is a maximal ^-bounded summand of G. Now
nG ~ nG. By 1.9, G = G. Therefore G = ΣΛGX where Gλ s (Hλ)n

for all λ G A except /S e J , and Gβ = (fl"β)w 0 £„« Also ^G λ = Gί.
Now nG = ΣΛ nGλ = ΣG'λ. Let ^ be an automorphism of nG such

that ψ(nGλ) = G^. By 1.8, we can extend φ to an automorphism of G,
say f. Thus we have G = Σf(Gλ) such that nψ(Gλ) =

THEOREM 2.2. Le£ G be a group. Let H be a pure subgroup of
nG, n a positive integer. Then there exists a pure subgroup K of
G such that nK = H and K[p] — H[p] for each prime p.

We will first prove two lemmas.

LEMMA 2.3. Let G be a p-group. Let Hr be a pure subgroup
of pnG. Then there exists a pure subgroup H of G such that pnH —
Hf and H[p] = H'[p\.

Proof. Let X=[ye Hf: HH,(y) = 0]. For each yeX let xyeG
such that pnxy — y. Let H = {[xy: yeX], H'}. Now

pnH = {[pnxy: y e X], p"H'} c H' .
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If x e Hf then either Hn,{x) = 00 or HHI{x) < co. If HH,(x) = 00 then
x e pnH' and x e pnίl. If HHf(x) = k < 00 then there exists ze H' such
that pkz = x, and there exists xze X such that pnxz — z. Thus p***^ =
x and a? 6 pnH. Therefore Hf c pΛίf, and pnH = H'. Now write H —
Sn 0 Hn according to Baer's decomposition. Let H = Hn. Clearly
pnH = H'. Also if|i>] = H'[p] and JET is pure in G. Now H[p] =
H'[p\ since if = Hn and thus if[p] = (pΉ)[p] = Hr[p\. To see that
H is pure in G suppose not; i.e., suppose that there exists ye H[p]
such that HH(y) < Hβ(y). Since H[p] = iP[p] and if' c if we may
assume that ##(2/) = & < co. Now HH,{y) — k — n, (k > n). Thus
HH(y) — H%(y) — k, a contradiction. Hence if is pure.

LEMMA 2.4. Let G be a torsion group. Let H be a pure subgroup
of nG, n a positive integer. Then there exists a pure subgroup K
of G such that nK — H and K[p] = H[p] for each prime p.

Proof. Write n = pi1 ptm, plf , pm distinct primes. Now by
Theorem 1 in [9], G = ΣP GV, p a prime and Gp the p-primary component
of G. Likewise H = ^ p Hp where Hp is a pure subgroup of nGp.
(Note that if (p, pt) = 1 for i = 1, , m then nGp — Gpo) If (p, p{) =
1, i = 1, , m, let iΓ^ = Hp. If (p, p )̂ ^ 1 for some i — 1, , m,
let Zp be a pure subgroup of Gp such that nKv = ίί^ and ifP[p] =
Bp[iP]. Such a Kp exists by 2.3. Now define K = ^PKP. Clearly K
is pure, K[p] = H[p] for all primes p and nK = H.

Now we are ready to prove Theorem 2.2.

Proof. If H is a torsion group we are done by 2.4. Thus suppose
that H is not a torsion group. Let Ge and Ht be the torsion subgroups
of G and if, respectively. Then Ht is pure in nGt — (nG)t, and by 2.4
there exists Kt, a pure subgroup of Gt, such that nKt — Ht and
Kt[p] — Ht[p] for all primes p. Now let U = [xe H:x is torsion free].
Let V=[xeU: H${x) = 0 for i = 1, , m]. For each a; e F let ̂  e G
such that fl#β = x. Let T7 = [T/,: X e V]. Define J£ = {Kt, H, {W}}.
Now K = Sn 0 iΓ where S^ is a maximal ^-bounded summand of Z,
and K is the desired group. To see this let Kt be the torsion subgroup
of K. Now

Thus ^iΓί = nKt —' Ht and Kt[p] — Ht[p] for all primes p. Hence Kt

is pure in Gt. Thus to check the purity of K, we need only check
torsion free elements in K. Let x e K such that o(x) = oo, and suppose
that there exists yeG such that pry — x. (We need only check
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divisibility for a power of an arbitrary prime p by p. 76 in [5].) We
will show that there exists z' e K such that przf = x9 Now there exist
nonnegative integers jι^k1,^-,jmS km such that n, = pi1 pt1 and
w, is the least positive integer such that njx e Ho We consider two
cases. First suppose that (p, p{) = 1 for all i = 1, , m. Then there
exists ze K such t h a t prnάz — ΠjX. Thus prz — x ~ kte Kt and

HEβt) ^ min (HS(pkz), Hn

θ(x)) ^ fc .

Thus since Kt is pure in Gt there exists fcj 6 Kt such t h a t prfcί = kt.
Hence pr(z — ftj) = x and 2' = z — k[ e if. Next suppose t h a t (p, p{) Φ 1
for some i = 1, , m, say i = v Then H&(nάx) ^ j i f l + r . lί x$H
then H'βinjX) g ά,o and hence there exists 2 e i f such t h a t p % 2 = wΛc.
Thus prz — x = kte Kt, and as before there exists k[e Kt such t h a t
pr(z - Jkί) = x and 2' = 2 = k[ e Ko It xeH, then H§(x) = Hp

π{x) + fcίo < r,
and hence again there exists zf e K such that prz' = χo Thus if is a
pure subgroup of G with the desired properties.

It is easily seen that another proof of Theorem 2.1 can be obtained
by using Theorem 2O2.

One might note at this point that if n is a positive integer and K
is pure in G then nK is pure in nG. Also Kι — f\nn\ K is pure in
G1 — f\nn\G (see p. 452 in [7]). We have just shown that if H is
pure in nG then there exists K in G such that K is pure in G and
nK — Ho The question then arises: If H is a pure subgroup of G1,
does there exist a pure subgroup K of G such that K1 — HI The
answer to this question is in the affirmative as will be seen in the next
theorerru First we need a lemma.

LEMMA 2O5O Let G be a group and K a pure subgroup of G.
Let EQ be the divisible hull of G and Eκ a Ea the divisible hull of
K. Then EκnG = K.

Proof. Clearly EκΓ\Gz)K. Let 0 Φ x e Eκ Π G. Then {x} Π K Φ
0 (see Lemma 20β3, p. 66 in [5]). Let n be the smallest integer such
that nx e K. Now since K is pure, there exists ye K such that ny =
nx. Observe that y e Eκ and thus x — ye Έκ. We shall show that
{x — y) Π K = 0, thus {x — y} — 0 and thus x — y e K. Suppose there
exists m such that 0 Φ m(x — y)e Ko Then clearly (m, n) — i < n and
there exist integers s and t such that ms + nt = i. Now mcc e if since
mx — my9 my e Ko Also msx + ?ιsίc = ix, and since msx, ^sx e K, we
have iίc e K. But i < n, and this contradicts the fact that n was the
smallest integer such that nx e Ko Thus {x — y] Π if — 0, and we have
x G if. Therefore EKΠG = if.

In [6] a high subgroup is defined to be a subgroup H of a group G



QUASI-ISOMORPHISM FOR INFINITE ABELIAN ^-GROUPS 33

maximal with respect to disjointness from G1.

THEOREM 2.6. Let G be a group with G1 = f\nn\G Φ 0. Let H
be a high subgroup of G. Let K be a pure subgroup of G1. Then
there exists a pure subgroup M of G such that M1 = K and H is
high in M.

Proof. Let φ be the natural homomorphism from G to G/H. Then
φ I G1 is an isomorphism. Thus φ(K) is pure in φ(Gι). Let E be the
divisible hull of Φ{Gι) in G/H (note that E = G/H), and let D be the
divisible hull of Φ{K) contained in E. Then D Π ΦiG1) = Φ{K) by 2.5.
Now define M = Φ~\D). Observe that H is pure in M, M/H = D, and
M/Ha G/H as a pure subgroup. Thus by Lemma 2 in [9], M is pure in G.
Now G1 Z) ilί1 =) i ί by construction, and M1 c K since 0(AF)c:Z) Π ^(G1) =
Φ(K). Hence ifcf1 = K. Also £Γ is high in M since flTl M1 = 0 and
{H, x} Π M1 Φ 0 for any as e M\iϊ. The latter statement is true since
if there exists an x e M\H such that {H9 x) Π M1 — 0, this would imply
that {H, x} Π G1 = 0 which would contradict the hypothesis that H is
high in G.

We will now show that several properties are possessed by a group
G if and only if they are possessed by pnGo We will only consider
primary groups.

THEOREM 2β7. Let G be a reduced p-group. Then G is closed if
and only if pnG is closed.

Proof. Suppose G is closed. Then G — B for some basic subgroup
B of G. Now B = Σί=i Bn9 pnΠBn = ΠpnB9 and thus pn(B) = ψB.
Therefore pnG is closed.

Suppose pnG is closed. If B is a basic subgroup of G then pnB is
a basic subgroup of pnG. Let B be a closed subgroup with basic subgroup
B and identify G with its pure subgroup between B and B (see p. 112
in [5])β Now p%5 = p%G since p%G and pnB are closed and have the
same basic subgroup B. Also (B)n ~ Gn by Theorem 1.2. Thus G ~ B
since they contain the same basic subgroup. Therefore G is closed.

DEFINITION 2.8. A -Γ-group is any group G all of whose high
subgroups are direct sums of cyclic groups, (see [6]).

THEOREM 2.9. Let G be a reduced p-group. Then G is a Σ-group
if and only if pnG is a Σ-group.
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Proof. Theorem 11, p. 1370 in [8], states that "Every subgroup
L of a torsion I'-group G with L1 = L Π G1 is a I^-group". Thus if G
is a J?-group then pnG is a I'-group since {pnGf = G1.

If pwG is a Jf-group and H is high in G then p" i ϊ is high in pnG
(see p. 1368 in [8]). Thus pnH is a direct sum of cyclic groups, and
hence H is a direct sum of cyclic groups. Therefore G is a J-group.

DEFINITION 2.10. A group G is a direct sum of countable groups
if and only if G = Σλ€Λ Gλ such that | Gλ | g Ko for all XeA.

THEOREM 2.11. A group G is a direct sum of countable groups
if and only if pnG is a direct sum of countable groups.

Proof. If G is a direct sum of countable groups then clearly pnG is.

Now suppose that pnG is a direct sum of countable groups. Write
G = Sn © Gn according to Baer's decomposition. Then pnG = pnGn =
Σ λ e * G ' λ such that | Gf

λ\ S Ko By Theorem 2.1, we may write Gn =
Σ λ e , Gλ such that pnGλ - G'λ. Now Gλ[p] = G'[p] and thus r(Gλ) =
r(Gλ[p]) = r(G'λ[p]) = r(G'k). Also | G λ | = r(Gλ) Ko and since r(Gx) =
r(G'λ) ^ ^o we have that | Gλ | g ^ 0 (see pp. 32-33 in [5]). Thus Gn

is a direct sum of countable groups. Since Sn is bounded, Sn is a direct
sum of cyclic groups and hence a direct sum of countable groups.

THEOREM 2.12. A p-group G is a direct sum of closed groups
if and only if pnG is a direct sum of closed groups.

Proof. Suppose that G is a direct sum of closed groups. Then
G — ΣλeΛ Gλ such that Gλ is closed for each XeA and pnG = χ λ 6 i l pnGλ.
By 2.7, pnGλ is closed for each XeA. Thus pnG is a direct sum of
closed groups.

Now suppose that pnG is a direct sum of closed groups. Then
PnG = ΣλeΛG'λ such that G'λ is closed for all λ e Λ . By 2.1, G =
ΣxβΛ Gλ such that pnGλ = G'λ. Thus by 2.7, G is closed for each λ e A.

DEFINITION 2.13. A group G is essentially indecomposable if G =
A 0 S implies that A or B is finite.

THEOREM 2.14. Suppose that the first n Ulm invariants of a
p-group G are finite, n a positive integer. Then G is essentially
indecomposable if and only if pnG is essentially indecomposable.
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Proof. The proof follows immediately from 2.1.

DEFINITION 4.14. A group G is "Fuchs 5" if and only if every
infinite (pure) subgroup of G is contained in a summand of the same
cardinality.

THEOREM 2.15, A p-group G is a Fuchs 5 group if and only
if pnG is a Fuchs 5 group.

Proof. First assume pnG is Fuchs 5. Let H be an infinite
unbounded pure subgroup of G. Then pnH is a pure subgroup of pnG.
Since pnG is Fuchs 5, pnH is contained in a subgroup K' of pnG such
that Kf is a summand of pnG and | pnH \ = | K'\. Thus pnG = K' © U.
Now Gn = KQ) L (where G = S% © Gn according to Baer's decomposition)
such that p*K = K' and pnL = 1/ (by 2.1). Write H = S* 0 Hw

according to Baer's decomposition0 Then pnHn is a pure subgroup of
pnK which is a pure subgroup of p"G. Let BII% be a basic subgroup
of Hn. Then p^-B^ is a basic subgroup of pnHn and can be extended
to a basic subgroup of pnK, say p%l? = p%l?' 0 pnBHn where £>%.B' = Σ{xi}.
For each cĉ  there exists yi e K such that pny{ = x{ and Ή.κ{y^) — 0.
Define £ ' = Σ{y^* Define groups B = B' © BΠn and M = {B, pnK}.
Notice that S is a direct sum of cyclic groups, B is pure in M and
M/B ~ (B + pnK)/B ~ pnK/(B ΓΊ pnK) ^ pnK/pnB a divisible group since
p%j3 is a basic subgroup of pnKa Hence B is a basic subgroup of M.
Now M ~ K, Hn c Λf, and G = S^ 0 i l ί φ Lo To see that ΛΓ ~ K notice
that p%J5 is a basic subgroup of pnK and thus p"Λf ~ {pnB, p2nK} = pnK.
By Theorem L2, if p%M = pnK then MΛ ̂  iΓa (where M = Sf 0 M,
and 1?= Si©uT n according to Baer's decomposition), and since M —
Mn and K = Kn, M = KB (M = Mn since B is a basic subgroup of ΛΓ
and JB is isomorphic to a basic subgroup of K.) Also Hn c Λf since
Hn = {B^, r i ϊ . l , S f f n c δ and pnHnczpnK. To see that G = S;?©M©L
we first observe that M[p] = (pnM)[p] = (pwiί)[p] = ur[rf and thus
Λf Π L = 0. Thus ikf 0 L is a direct sum and hence S° 0 (If 0 L) is
a direct sum since M®L~K@L. Clearly S ^ φ f φ L c G . Now
Gu = i i 0 L = {BK, pnK}@L where BK = B'@B" such that β" =
I'ίWί} and J5Hn=2r{2i} with pnw~pnzi (i.e., p Λ β" = pnB3J. Thus to show
that GaS^M®L, it suffices to show that each wi e S° © I φ L.
Now p ^ i = p X and thus w{ — 2< = s + fc + ί G S * φ j K " © L with
se Sn,ke K,te L, and o(/b), o(t) ^ p%. But J5" may as well have been
chosen such that its ίth generator was Wi — k, and thus we may assume
that Wi - zi = ί + s e L © Sf. Hence w* = ̂  + t + s e S° © l ί φ L.
Therefore G c Si © M © L and G = S%

σ φ M © L.

Now I pM3"n I = I p AΓI, (pnH)[p] = iϊn[p] and (pnΛf)[p] = Λf [p]. Thus
= \M\. Each GTO is an absolute summand of G and we may
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write G = S£(BGn such that S? is a summand of S?. Thus H =
S* 0 iJw c Sf © Λf, a summand of G and clearly | S f © Λf| = |£Γ|.
Therefore G is Fuchs 5β

Next assume G is Fuchs 5. Let H be a subgroup of pnG. Then
i ϊ is a subgroup of G and is contained in a subgroup K oί G such that
JSL is a summand of G and | £Γ| = | K|. Thus G = ϋΓ 0 L and pnG =
pnK@ pnL. Now Ha pnG and hence ί f c pnG ί l ϊ = £>%if by the purity
of X in G. Thus \H\^\p*K\^\K\ = \H\. Therefore p«G is Fuchs 5.

DEFINITION 2.16. A group G is a Crawley group if G contains no
proper isomorphic subgroups.

The existence of such groups has been shown by Peter Crawley in
[4]. For he has constructed a group C between B — X°Li (Cp1) and
B = T(Y[Γ=i Cip1)) (the torsion subgroup of the complete direct sum of
the C(p%) for i — 1, •••) which has no proper isomorphic subgroups.
This group can be chosen such that r(B/C) — 1. This fact was first
observed by R. A. Beaumont and R. S. Pierce in [3]. This group is
also essentially indecomposable. The fact that if r(B/C) = 1 then C is
essentially indecomposable was first proved (as follows) by John M. Irwin:
Suppose C = H@K. Then B = 2? 1 φϊ? 2 where HaB1 and KaB2.
Thus either H = Bι or K = B2 since rφlC) = 1. Suppose H = B,.
Then there exists a copy of BcB^ and thus a copy of C in j?1#

It seems that this class of groups will be quite important in the
study of ^-groups.

THEOREM 2.17. If C is a Crawley group then pnC is a Crawley
group. If pnC is a Crawley group and C is essentially indecomposable
then C is a Crawley group.

Proof. Suppose first that C is a Crawley group. Suppose that there
exists a group L §Ξ pnC such that L ~ pnC. Let U — [x e L: HL{x) = 0].
Then for each xe U there exists yeC such that pny = x. For each
x let yx G C such that pnyx = x. Let V = [#β: a? e U7]β Define CL = {F, L}.
Now pwC z = L. Let (Cz)n be a summand of Cz according to Baer's
decomposition and let Gr = Sn 0 (CZ)Λ where B = Sn@BZ,B a basic
subgroup of C and £w a maximal p71-bounded summand of B. Now
C £ C and p w C = L ^ p%C. Thus by 1.9, C = C. But this contradicts
the fact that C is Crawley.

Suppose pnC is Crawley. Then if C is essentially indecomposable
then C is Crawley. For if there exists L gΞ C such that C = L, then
p"C = p%L gi p^C which would contradict the fact that pnC is Crawley.

COROLLARY 2β18. There are at least fc$0 nonisomorphic Crawley
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groups C between B and B.

Proof. Observe that B ~ pnB and B ~ pnB for all n. Let ψ be an
isomorphism between B and pnB. Let C be a Crawley subgroup of B.
Then pnC is a Crawley subgroup of pnBy and pnC is not isomorphic to C.
Thus φ(pnC) is a Crawley subgroup of 5 which is not isomorphic to C.

3* Quasi-isomorphic p-groups* In a recent paper by R. A. Beau-
mont and Ro So Pierce (see [2]), it was shown that two countable
primary groups are quasi-isomorphic if and only if their basic subgroups
are quasi-isomorphic and their subgroup of elements of infinite height
are isomorphic. Also if two primary groups are quasi-isomorphic their
basic subgroups are quasi-isomorphic. In [3] they have considered
quasi-isomorphism in relation to direct sums of cyclic groups. We will
extend these results to closed p-groups.

In considering quasi-isomorphism, it is of interest to investigate
what properties of primary Abelian groups are preserved under quasi-
isomorphisnio It will be shown that if G and H are quasi-isomorphic
primary groups, then the statement that G has property P if and only
if H has property P is equivalent to

(1) property P is preserved under isomorphism,
(2) G has property P if and only if pnG has property P and
( 3 ) groups between G and pnG have property P if G does. This

reduces this problem to considering G, pnG, and groups between G and pnG.

DEFINITION 3.2. Let G and H be p-groups. Then G ^ H (quasi-
isomorphic) if there are subgroups SczG, TaH and positive integers
m and n such that f G c S , pnHa T, and S ~ T.

The following theorem (among other things) shows that if two
p-groups are quasi-isomorphic, then their subgroups of elements of
infinite height are isomorphic.

THEOREM 3.2. Let G and H he p-groups. If G and H are quasi-
isomorphic, then G/G1 is quasi-isomorphic to H/H1 and G1 = H1.

Proof. Now G and H quasi-isomorphic implies that for some positive
integers m and n there exists subgroups S and T of G and if, respectively,
such that G =) S z> pmG, H^TZD pnH and S ~ T. Now clearly G1 = S\
H1 ~ T1 and S1 ~ T1. Thus G1 ~ H\ Now S/S1 = Ύ\T\ Thus
pm{GIGx) ~ pmGjGι c S/G1 c G/G1 and p^H/H1) ~ pnH/H1d T/H'aH/H1.
Hence H/H1 is quasi-isomorphic to G/G1.

The converse of the above theorem is not true as can be seen from
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an example on pp. 134-135 in [ 5 ] .

PROPOSITION 3.3. Let p be a property of p-groups. Then t h e
following s ta tements are equivalent:

( 1 ) Let G and H be quasi-isomorphic p-groups. Then G has P
if and only if H has P.

( 2 ) Proper ty P is such t h a t for any p-group L :
(a) L has property P if and only if pnL has property P for

all positive integers n.
(b) Whenever L has property P and S is a subgroup of L such

that Lz) Sz)pnL then S has property P, and
(c) Property P is preserved under isomorphism.

Proof. First 2 implies 1: If G and H are quasi-isomorphic then
for some positive integers m and n there exist subgroups S and T of G
and if, respectively, such that Gz> Sz>pmG, Hz) Tz>pnH, and S = T.
If G has property P then S has property P by (b). Thus T has property
P by (c), and since pnS(zpnHcSyp

nH has property P by (b), and
H has property P by (a). By symmetry we have 2 implies 1.

Next 1 implies 2: Since G is quasi-isomorphic to pnG, we have (a).
Also G is quasi-isomorphic to any subgroup S such that G Z) S Z) pwG,
thus we have (b). Clearly (c) holds.

Using the above proposition, we can show that if G and H are
quasi-isomorphic p-groups, then G is a direct sum of cyclic groups if
and only if H is a direct sum of cyclic groups, G is a closed p-group
if and only if if is a closed p-group, and G is a ^-group if and only
if if is a IZ-group.

THEOREM 3.4. Let G and H he quasi-isomorphic p-groups. Then
G is a direct sum of cyclic groups if and only if H is a direct sum
of cyclic groups.

Proof. Now G is a direct sum of cyclic groups if and only if pnG
is, and any group between G and pnG is a direct sum of cyclic groups
(see p. 46 in [5]). Then by Proposition 3.3 the theorem is proved.

LEMMA 3.5. Let G be a reduced p-group. If G is a Σ-group
and S is a subgroup of G such that Gz) Sz) pnG, then S is a Σ-group.

Proof. Now S1 = G\ Thus, apply the theorem stated in the proof
of Theorem 2.9.

THEOREM 3.6. Let G and H be quasi-isomorphic p-groups. Then
G is a Σ-group if and only if H is a Σ-group.
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Proof. Apply Theorem 2.9, Lemma 3.5 and Proposition 3.3.

LEMMA 3.7. Let G be a closed p-group and G D S D p n G . Then
S is closed.

Proof. Let gu , gn, — be a Cauchy sequence in S. Then
9u ' * > 9ni β β is a Cauchy sequence in G. Since G is closed this sequence
converges to some g eGo Also g — gme pnG c S for m > n, and since
gme S we have # e S.

THEOREM 3.8. Let G and H be quasi-isomorphic p-groups. Then
G is closed if and only if H is closed.

Proof. An application of Proposition 3.3, Theorem 2.7 and Lemma
3.7 proves the theorem.

An important problem along these lines that seems to be a very
difficult one is the following: If G and H are quasi-isomorphic p-groups,
then is it true that G is a direct sum of countable groups if and only
if H is a direct sum of countable groups? By Proposition 3.3 and
Theorem 2.11 this problem is reduced to the following: If G is a direct
sum of countable p-groups and S is a subgroup of G such that pnG c S,
is S a direct sum of countable groups? We are able to answer two
special cases of this question in the following two theorems.

THEOREM 3.9» Let G be a direct sum of countable p-groups. Let
Kbe a subgroup of G such that G D Ki)pnG and KjpnG is countable.
Then K is a direct sum of countable groups.

Proof. Write K/p"G = Σ i e i ί^i + VnG} and pnG = χ λ 6 , pnGλ (where
G=ΣGλ) such that | Gλ | = « 0 . Then K = {{kj}jei, {pnG}λeΛ} = {{ks}dei9 pnG}.
Now kj G G and hence kj = Σ?=1 gλi such that gλι e Gλ (. Let Λf = [λ e A:
for some gλeGκ,gλ is a representative in some kj]. Let A" — A\Ar.
Then ίΓ={{fci}i6z,{pwGλ}λ6^}ΘΣλ6^"3>nGλ. Thus ΛΓ is a direct sum
of countable groups.

THEOREM 3.10. Let G be a direct sum of countable p-groups, and
let K be a subgroup of countable index. Then K is a direct sum
of countable p-groups.

Proof. Write G = X λ €^ Gλ. Now Gλ c K for all but a countable
number of λ e A since K is of countable index in G Let A! —
[XeA:GλdK]. Let K, = ΣλeΛ, Gλ and ίΓ2 = {[fce JSΓ: fceχλe^ Gλ]}.
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Then K — Kx 0 K2 such that K2 is countable and Kx is a direct sum
of countable groups.

The following theorem extends Beaumont and Pierce's results in
[1] and [2] to closed p-groups.

THEOREM 3.11. Let B and C be closed p-groups with basic
subgroups B and C, respectively. Then B = C if and only if B = C

Proof. If B ^ C then B ςk C by [2]. Thus suppose that B ± C.
Then there exist subgroups S and T of B and C, respectively, such
that S D pw.B, T z> p%C and S = T. Thus BZDSZ) pnB, Ci)f Z)pnC and
S = f since closed subgroups are completely determined by their basic
subgroups (see pβ 115 in [5]). Thus B = C.

4* Special cases of quasi-isomorphisiru In this section we will
impose some restrictions on the definition of quasi-isomorphism, and in
some cases we will be able to determine by just how much two quasi-
isomorphic groups with these restrictions differ.

DEFINITION 4.1. G = H (S.B. quasi-isomorphic, i.e., in the sense
of Schroeder-Bernstein) if there exist subgroups SaG,T(zH, and
positive integers m and n such that G= T, H = S, pmGd S, and pnH(Z T.

DEFINITION 4.2. Two p-groups G and H are purely quasi-isomorphic
if for some positive integers m and n there exist pure subgroups S and
T of G and H, respectively, such that Gz>Sz)pmG, HZD Tz)pnH and
S~ T.

DEFINITION 4.3. G = @H (summand quasi-isomorphic) if there are
subgroups SaG, Ta H, and positive integers m and n such that S = T,

^ G ^ O , and pnH, = 0.

DEFINITION 4.4. G ύ H (strongly quasi-isomorphic) if there are
subgroups SaG,Tc:H such that S = T, [G : S] < oo, and [H: T] < oo.

DEFINITION 4.5. G M ®H if there exists subgroups S c G , Γ c i ϊ
such that, G = Sξ&GuH= TφHλ and G, and J^ are finite.

DEFINITION 4.6. Two groups are strongly S.B. quasi-isomorphic if
there exist subgroups S and T of G and iϊ, respectively, such that
[G:S] < oo,[H: T] < oo, S ~ H and Γ s G.

DEFINITION 4.7. Two p-groups G and H are purely S.B. quasi-
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isomorphic if for some positive integers m and n there exists pure
subgroups S and T of G and ϋ , respectively, such that G ZD S D pmG,
Hz>T^pnH,G^ T and H ~ S.

Each of the above definitions yields an equivalence relation.
Definitions 4.2 and 4.3 are equivalent. It will be shown that Definitions
4.4 and 4.5 are equivalent, that Definition 4.6 is equivalent to Gn = Hn

for some positive integer n according to Baer's decomposition and that
Definition 4.7 implies the groups are isomorphic0 With this it will be
clear that each relation (excluding Definition 4.1) is no weaker than
the preceding one. Examples will be given to show that Definition 4O1
and 4.2 are stronger than Definition 3.1, and except for equivalent
definitions, each relation from Definition 4O2 to Definition 4.7 is stronger
than the preceding ones.

PROPOSITION 4.8. G M H if and only if G 'ύ ®U.

Proof. That G £k 0 i ϊ implies G ϊk H is clear. Thus suppose G'ύ H.
Let S x cG, T x c H such that S1 ~ 2\ and G/S, and HjT1 are finite.
A lemma of R. S. Pierce says: Let SΊ be a subgroup of a reduced
p-group G of unbounded order such that the index [G: Sλ] < oo. Then
there exists S2 c S1 such that [G: S2] < °° and G = S2 0 L. Thus there
exist subgroups S2a Su and T2 c T1 such that S2 is a direct summand
of finite index in G and T2 is a direct summand of finite index
in H. Let φ be an isomorphism of S1 onto Tx. Then S2 Π ̂ (T^) has
finite index in Slβ Again by the above lemma, there exists a subgroup
S of S2 Π ̂ (Ti ) such that S ^ S φ L where L is finite. Now S2 =
S 0 ( S 2 ί l L ) , where S2 n L is finite. Thus G = S 0 ( S 2 n L ) 0 I , where
(S 2 ΠL)0Λf is finite. Let T = Φ(S). Then Γ 1 =Γ©ίδ(L), where
T c T2. Consequently Γ2 = T 0 (^(L) Π Γ2), and J ϊ = Γ φ ( ^ L ) Π T2)@N,
where (^(L) n T2) 0 ΛΓ is finite. Since S ~ T, it follows that G ̂  ©Jff.

The following theorem shows that if two groups are strongly S.B.
quasi-isomorphic then they only differ (up to isomorphism) by summands
of bounded order.

THEOREM 4.9. Let G and H be strongly SOB. quasi-isomorphic
p-groupSo Then there exists a positive integer n such that Gn = Hn

according to Baer's decomposition.

Proof. Now G and H being strongly S.B. quasi-isomorphic implies
that there exist subgroups S and T of G and H, respectively, such that
[G: S] < oo, [H: T] < oo, G ~ T and H = S. By the lemma stated in
the proof of 4.8, there exist subgroups S1 c S and ϊ\ c T such that Sx

and 2\ are pure in G and H, respectively, [G: SJ < oo and [H: ΓJ < ©o.
Thus G = S, 0 S, where Sλ ~ G/S, and S, is finite, and H=T1QTί
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where Tλ = H/T1 and 2\ is finite. Choose n such that p*φύ = p^T,) = 0.
Now pnG = p ^ and p».ff = p»2\. Thus by Theorem 1.2, Gn = (SO
and fl"n s (TO,. Also pnS = p Sx and p Γ = p Γx, thus S. = (SX and
ΓΛ = (I^)*. Hence by the hypothesis we have that Gn~Tn~ (T,)n ^ Hn.

COROLLARY 4.10. IfG and H (as in Theorem 4.13) have isomorphie
basic subgroups, then G ~ H.

In the next theorem we will show that if G and H satisfy Definition
4.7, then G ~ H. First we need a lemma.

LEMMA 4.11. Let G and H be p-groups such that G ~
G 0 B2 where Bλ and B2 are groups of bounded order. Then G = H.

Proof. Now G = G © B10 B2 where B1 0 B2 is of bounded order.
Thus if we write G — Sn@Gn according to Baer's decomposition, where
pn(B, 0 B2) = 0, it is clear that Sn = Sn 0 B, 0 B2 = Sn 0 B2 by Ulm's
Theorem. Thus H = G 0 B2 ~ Gn 0 (Sn 0 B2) ~ Gn 0 Sn = G.

THEOREM 4.12. If G and H are purely S.B. quasi-isomorphic
p-groups, then G ~ H.

Proof. If S is a pure subgroup of G such that G/S is bounded,
then S is a summand of G by Theorem 5 in [9]. Thus G = S 0 Bx

where Bx is of bounded order. Also H — Γ 0 S 2 where B2 is of bounded
order. Thus G ~ H® B± and H = G 0 B2 and by 4.11, G ~ H.

Now to see that Definitions 4.1 and 4.2 are stronger than Definition
3.1, let G = C(p2) and H = C(p). Then G & H but G and i ί do not
satisfy either Definitions 4.1 or 4.2.

To see that Definition 4.4 is stronger than Definition 4.3, let G =

ΣΓ=i W ) and H - G 0 Σ^ o

 C(^)» N o w c l e a r 1 ^ G = ® ^ a n d b ^ U l m ? s

Theorem and 4β8, it is clear that G and H are not strongly quasi-
isomorphic.

Next we show that Definition 4.6 is stronger than Definition 4.5.
Let G = C(p) 0 C(p) and H = C(p). Now clearly G ^ ©if, but G and
if do not satisfy Definition 4.6.

Finally to see that Definition 4.7 is stronger than Definition 4.6,
let G = Σ * o C(p2) and H = G 0 C(p). Then clearly G and i ί satisfy
Definition 4.6 but not Definition 4.7.

5* Some related problems. Given a p-group G and a subgroup
if containing pnG, n a positive integer, the question arises: If B is
a basic subgroup of G, does there exist a basic subgroup Bf of if such



QUASI-ISOMORPHISM FOR INFINITE ABELIAN ^-GROUPS 43

that Bz)Br ZDpnBςl We will give an answer to a very special case of
this question in a corollary to the following theorem.

THEOREM 5.1. Let G be a p-group and H a subgroup of G con-
taining pnG. If N is a high subgroup of G, then there exists a high
subgroup M of H such that Nz) MzDpnN.

Proof. Let N be a high subgroup of G. Now pnN is a high
subgroup of pnG (see p. 1380 in [6]), pnN(Z H and pnN f] H1 = 0.
Thus let M be the maximal subgroup of H such that NZD MZD pnN
and MΠ H1 — 0. Then M is high in if. To see this suppose not,
iβe., suppose there exists xe H, x$ M, such that {x, M) Π H1 — 0.
Since JV is high in G, {x, N} Π H1 Φ 0. There exists yeN such that
pkx + y = hx e H1(h1 Φ 0). Now pkx, h±e H and hence yeH. Since
yeHf)N,yeM. Hence {&, Af} Π i ϊ 1 Φ 0, a contradiction.

COROLLARY 5.2. Let G be a p-group and H a subgroup of G
containing pnG. If G is a Σ-group and B is a basic subgroup of G
which is also a high subgroup of G, then there exists a basic subgroup
Bf of H such that B Z) Bf ZD pnB. Here Bf is a high subgroup of H*

The general question seems to be a little more elusive,, The following
two theorems are results related to this problem.

THEOREM 5.3. Let G be a reduced p-group and H a subgroup of
G such that H z> pnG. Let Br be a basic subgroup of H. Then there
exists a basic subgroup B of G such that B 3 Br.

Proof. We may write B' = Uϊ=i Sm, Sm = χr=i Bi9 and Br = ̂  B,
such that B{ - ΣC(p% Now H=Sm@Hm where Hm = (ΣΓ=m,i Bi9 pmH).
Thus Sm Π Hm = 0. Since Hm[p] = (pmH)[p\, Sm Π pmH = 0. Also since
pnG c H, Sm Π pn+mG = 0. Thus Sm is contained in a maximal pn+m

bounded summand of G, and therefore the height in G of any element
of Sm is bounded by n + m. By Kovacs' Theorem (p. 99 in [5]), Bf

can be extended to a basic subgroup B of G. Hence B! c ΰ a basic
subgroup of G.

THEOREM 5.4. Let G be a reduced p-group. Write G — SnQ) Gn

according to Baer's decomposition. Let T be a subgroup of Gn such
that T ZD pnG. Then there exists a basic subgroup Bτ of T such that
BT = ΣΓ=«+i Li with H&n(x) = i — 1 for all x e L^p].

Proof. To prove the theorem we will construct a basic subgroup
Bτ of T such that I?Γ = \JT=n+i Si where if x e Si+1[p] then HQ (x) ̂  i
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and Si+1 = Si 0 L<+1 such that if x e Li+1[p], HGn{x) = i. Note that Bτ

will have the desired properties.

Let ^ + 1 = [L: L is a summand of T and if x e L[p], HQ{x) — ri\.
If ^ + 1 = 0 let Sn+1 = 0 and if ^n+1 Φ 0 let Sn+1 be a maximal element
of S^n+1. (Clearly such a maximal element exists by Zorn's Lemma.)
Assuming that Si has been defined, define Si+1 as follows: Let S^i+1 ~
[L: L is a summand of T; S ^ c L ; if x e L, HG%{x) g i; and L — S< 0 £
such that if j/e £[#>] then HGn(y) = i] . Let S ί + 1 be a maximal element
of t5t+i which we will now show exists. Clearly some S^ Φ 0. Thus
partially order ^ t + 1 by set inclusion and let Lγ c L2 be a chain in
J?t+i. Put L = (JΓ=i •ί'i Then L is pure in Γ since each Lj is pure in T.
Also if X G L , then cc e L, for some j which implies that HGn(x) ^ i.
Hence L is of bounded order (with order bound ^pί+1) and thus L is
a summand of Tβ Clearly LZD SίΛ Note that Z^ is a summand of Lj+1

for all i = 1, 2, . Now I/y = Sw + 1 0 £y such that for x e Lj[p],
HQn{x) = i, and L y + 1 = Sn+1 0 L y + 1 such that for x e Li+1[p], HQn(x) = i.
To show that L — UΓ=i L3 e S^+1 we need only show that Lj+1 can be
chosen such that it contains Lj. Write L3 = Σ{xa} such that o(xa) =
na + 1. Now pW£*xα e Lj+1[p] since otherwise H&n(pn<*xa) < i. If ίcα e £ ί + 1

we are done. So suppose that xa $ Lj+1. Since xa e L J + 1, ccα = s + ya

where s e Sn+1, ί/α e £ J = 1 and pn»xa = p%Ω>i/α. By the purity of L3 in
Lj+1, Lj+1 — {7/α} + K, and thus we may rewrite Lj+1 as L i + 1 = Sn+1 0
({s + /̂α} 0 K) where our new Lj+1 — {s + ya} © K and hence contains
xa ~ s + ya. Since we may do this for any xa e Ljf we can choose
Lj+ί to contain £ i β Therefore L — (JΓ=i J î = S< 0 UΓ=i ^^ a n d Ĵ  has
the desired properties.

Next set Bτ = Ui°=^+i S<, and note that Bτ is pure in T and J5r

is a direct sum of cyclic groups (see Theorem 11.1 in [5]). We will
now show that TjBτ is divisible which will imply that Bτ is a basic
subgroup of T. To do this we will show that for all x e T[p] such
that x ί Bτ[p], Hτ}Bτ(x + Bτ) — oo. This is sufficient since, by Lemma 1
in [9], if x + Bτ e (T/Bτ)[p], there exists x' e T[p] such that x' + Bτ =
x + Bτ. Let x e T[p] such that x g Bτ[p], and suppose that HG%{x) = m.
Suppose that ί/"Γ(ίc) = fc, and let z e T such that pkz — x. Now a; 6 Sm + 1

which implies that either Sm+10{z} is not pure in T or that HGn(x-\-y)>m
for some yεSm+1[p] (by the maximality of Sm+1). If Sm+10{2;} is not
pure in T then there exists y1 e Sm+1[p] such that iϊr(^i + ») = h > k.
Let zxe Tsuch that p^zx = y1

J

Γx* Now H^ix + y^^m, and x + Vii Sw + 1

so that again either Sm + 1 0 {̂ } is not pure in T or HGn(x + y1 + j/) > m
for some j/6S m + 1 [p]. If S w + 1 © {sj is not pure in Γ then there exists
V* G S»+i such that £ΓΓ(^ + 2/i + 1/2) = fe > ki > k* Thus in either case
there exists ye Sm+1[p] such that H&n(x + y) — mι> m. Now clearly
τ + 7/ ί Sm +1, and by a similar argument there exist a yι e Sm + 1 such
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that HG%(x -i- y + y1) — m2 > mlΛ Continuing by induction we see that
the height of x + Bτ e T/Bτ is infinite.

It seems that an answer to the general question (asked at the
beginning of this section) would give useful information about the
structure of infinite p-groups.

Another question that arises is the following: If G and H are
p-groups such that G έ H and G/G1 ~ H/H\ then is it true that G~HΊ
It would be interesting to know the answer to this question at least
in the case G/G1 is a direct sum of cyclic groups.

It would also be of interest to know: If G is a direct sum of
closed p-groups, is a group S between G and pnG also a direct sum
of closed p-groups?
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