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QUASI-ISOMORPHISM FOR INFINITE
ABELIAN »-GROUPS

DoyLE O. CUTLER

This paper is concerned with the investigation of two closely
related questions. The first question is: What relationships
exist between G and nG where G is an Abelian group and »
is a positive integer?

It is shown that if G’ and H' are Abelian groups, n is a
positive integer and nG’ = nH'’, then G = H where G’ =SD G
and H' = T H such that S and T are maximal n-bounded
summands of G’ and H’, respectively, A corollary of this is:
Every automorphism of nG can be extended to an automorphism
of G,

We define two primary Abelian groups G and H to be
quasi-isomorphic if and only if there exists positive integers
m and n and subgroups S and T of G and H, respectively,
such that p"G c S, p»H c T and S = T, the second question is:
What does quasi-isomorphism have to say about primary Abelian
groups? It is shown that if two Abelian p-groups G and H
are quasi-isomorphic then G is a direct sum of cyclic groups
if and only if H is a direct sum of cyclic groups, G is closed
if and only if H is closed, and G is a X-group if and only if
H is a 3-group.

In this paper the word “group” will mean “Abelian group,” and
we shall use the notation in [5] except that a direct sum of groups
A and B will be denoted by A@ B. Also if ac A then H3(a) will
denote the p-height of @ in A. (If it is clear which group or which
prime is referred to then either sub- or super-script may be dropped
or both.)

At a symposium on Abelian groups held at New Mexico State
University, L. Fuchs asked the question: What does quasi-isomorphism
(see Definition 3.2) have to say about primary Abelian groups? A
question posed by John M. Irwin that arises in the investigation of
this question is: What relationships exist between G and nG where
G is an Abelian groups and #» is a positive integer? The purpose of
this paper is to investigate these two questions.

First, we will begin by considering to what extent nG determines
G where G is a group and 7 is a positive integer. It will be shown
that if G’ and H’ are groups, » is a positive integer, and nG’ = nH’,
then G = H where G’ =S@G and H' = TP H such that S and T
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are maximal n-bounded summands of G’ and H’, respectively. A
corollary to this is: Every automorphism of »G can be extended to
an automorphism of G.

In looking at quasi-isomorphism of primary Abelian groups, it is
shown that if two Abelian p-groups G and H are quasi-isomorphic then
G is a direct sum of cyclic groups if and only if H is a direct sum of
cyclic groups, G is closed if and only if H is closed, and G is a Y-group
if and only if H is a Y-group. Other related results are also obtained.

1. An isomorphism theorem.

LEMMA 1.1. Let G be a p-group and B’ be a basic subgroup of
p"G. Then there exists a basic subgroup B of G such that p*B = B'.

Proof. Write B' = S e {2,}. Now there exists y,eG, for all
ne A, such that p™y, = x,. Let B = Ses{¥:). Now B} is pure in
G and [y, : € 4] is a maximal pure independent set with respect to the
property of B} having no cyclic summand of order <p". To see the
purity of B} first notice that (B})[p] = (B)[p]. Let ze (B})[pr]. Now
Hy () = n + Hyng(w) and if Hyng(x) = m, Hy(x) = m + n and Hy () =
m + n. Hence Hy(x) = Hyp(x), and B, is pure in G. That B} is
maximal pure as above is clear. Thus B} can be extended to a basic
subgroup B of G, and B = S, @ B where p"S, = 0 (see p. 97 of [5]).
Hence p"B = B’.

Using the above notation note that G =S, @ G, where G, =
B} + p"G and B} is basic in G,. This follows from a theorem of Baer’s
(Theorem 29.3 in [5]). We shall continue using this notation and refer
to this decomposition as Baer’s decomposition. From a theorem of
Szele’s [Theorem 29.4 in [5]) it follows that S, is a maximal p™-bounded
summand of G. From this it is easy to show that, if H' is a group,
then H' = TE@ H such that 7 is a maximal n-bounded summand
of H'.

THEOREM 1.2. Let G and H be p-groups such that p"G = p"H
(under an isomorphism ¢) for some positive integer n. Then G, =
H, according to Baer’s decomposition.

Proof. We may assume that G and H are reduced by Test Problem
I and Exercise 9 in [9]. Now p"G, = p"G = p"H = p"H,. Let p"(Bq,)
be a basic subgroup of p"G such that B, is a basic subgroup of G,,
and let B, be a basic subgroup of H, such that ¢(p"B; ) = p"Bg, a
basic subgroup of p"H. This is possible by the above lemma and the
fact that "G = p"H under ¢. From the proof of the above lemma it
is easily seen that there exists an isomorphism @: B¢, — By, such that
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¢ | "By, = ¢|p"By,. We may write G, = B, +"G, and H,=B, +p"H,.
Define

¥:G,— H,: g, =0b+ p'g, — &D) + 6(p"g,)

where be B, and g, €G,.

Suppose g, = b + p"g,, = b’ + p"g,,, where b, b’ € B; and g, , 94, € Gye
Thenb —b'= p"(g,, — ¢.,) impliesb — b' € p"B; , and $(b) —p(b') =$(b—b") =
(DG, — D"9s) = $(D"9,,) — $(0"9,,). Therefore

$(b) + o(p"g,) = () + #("g.,) .

Hence + is well defined. Clearly + is a homomorphism.

Suppose ¢, € G, and v(g,) =0. Now g, =b + p"g, where be B,
and g, € G,, and v(g,) = ¥(b + p"g,) = $(b) + ¢(p"g,) = 0. Hence ¢(b) =
—¢(p"g,,) and be p"G,. Thus $(b) = ¢(b) = ¢(—p"g, ) and ¢(b - p*g,) =0.
Therefore g, = b + p*g,, = 0 and 4 is one-to-one. If h,€ H, then h, =
b+ p"h,, for some be By, and h, € H,. Since ¢ and ¢ are onto, 4
is onto.

COROLLARY 1.3. Let G be a p-group. Let B and B’ be basic
subgroups of G such that G, = Bf + "G and G, = (B")} + p*G. Then
G, =@G,.

COROLLARY 1.4. Let G and H be torsion groups such that nG=nH
for some positive integer n. Then GPH B, = HP B, where B, and
B, are groups of bounded order bounded by n.

COROLLARY 1.5. Let G’ and H’ be torsion groups and 1 a positive
integer. Write G =SB G and H = TH H where S and T are
maximal n bounded summands of G' and H', respectively. Suppose
that nG' = nH'. Then G = H,

COROLLARY 1.6. Let G and H be p-groups such that p"G = p"H,
n >m. Then p»"H, =@G,.

Proof. Now p™(p~~"H) = p™G implies (p""H), = G, by 1.2, By
Baer’s Theorem H = S, @ H,, where H,, = B + p"H. Thus p""H =
p*"S,, D (p* "B} + p»(p"H)). Also

pn~mH — pn~mSm @ (pn—mB:; + pm(pn——mH))
sinee p"~™(S,, @ B}) is a basic subgroup of p*~"H. Thus (p""H), =
p~~™(H,) and we have that G, = p~"H,.

A generalization of Theorem 1.2 is the following:
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THEOREM 1.7. Let G' and H' be groups such that nG' = nH’, for
some positive integer n. Write G =SB G and H = TPH H such
that S and T are maximal n-bounded summands of G and H’,
respectively. Then G = H.

Proof. If G’ and H’ are torsion groups, we are done by 1.5. Thus
suppose that G’ and H’ are not torsion groups. It suffices to prove
the theorem for n = p, a fixed but arbitrary prime. To see this write
n = piepk2 ... pkn such that p,’s are distinet primes. Let n; be chosen
such that pmn; = n. Observe that if p,(n,;G) = p,(n,H) implies that
n,G = n;H, then by finite induction G = H.

Suppose that pG’ = pH' under the isomorphism o. Write @ =SHG
and H' = T H such that S and T are maximal p-bounded summands
of G’ and H’, respectively. Let G, and H, be the torsion subgroups
of G and H, respectively. Then pG, = pH, under the isomorphism
o|pG,. By 1.5, G, = H, under an isomorphism o, such that o, ] pG, =
o | pG,. Define a map

$:G, + pG— H, + pH: ¢(t + g) = 0,(t) + o(g)

where te G, and gepG. Note that ¢ is an isomorphism since
o|G,NpG =0,G,NpGand o(G, N pG) = H, N pH. (The proof of this
is similar to that in Theorem 1.2.)

Next we will show that there exists a pair (S’, ¢') such that S’ =
{G,, pG, x} with x€ G and 2 ¢ G, + pG, ¢’ is an isomorphism from S’ to
a subgroup of H, and ¢'|G, + pG = 6. To this end let x € G such that
xé G, + pG. Then x is torsion free. Let ye H such that py = ¢(px).
Define

¢":{G,, G, x} — {H,, pH, y}: ¢'(t + g + nx) = ¢ + ¢) + ny

such that (n, p) =lorn =0,te G, and g€ G. Note that H"(nx + t) = 0
for all te G, and (n,p) = 1. If there exists z€ G such that pz =
nx + t then nx = pz — t€ G, + pG, a contradiction to the choice of x.
Thus H™(t + g +nx) =0 for (n,p)=1,teG, and ge pG. Suppose
that ¢ + ne = ¢"” + ma with ¢, ¢”"€G, + pG. Then ¢'(¢" + nx) =
#(g') + ny and ¢'(¢"” + mx) = ¢(g") + my. Now (n —m)x = ¢"”" —g' € pG
since H*(kx +t) = 0, (k, p) = 1, for all t€ G,. For if p does not divide
(n — m), then H?(x + t) > 0 for some te G, since ¢’ — ¢’ = g — t such
that ge pG and t€ G,. Thus » — m = pn,, and

Hg" — g') = ¢((n — m)x) = ¢(n,px) = WPy = (n — M)y .

Hence ¢(¢9’) + ny = ¢(¢"") + my, and the map is well defined. Now ¢’
is clearly a homomorphism onto {H,, pH, y}. If ¢'(z) =0 for some
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z€{G,, pG, x} then pz = 0 since ¢’ | pG is one-to-one. Thus z€ G,. But
4’| G, is one-to-one and hence z = 0. Thus we have an extension (S’, ¢')
of (G, + pG, 9).

Next let . be the set of all pairs (S, ¢.) such that S, is a subgroup
of G containing G, + pG and ¢, is an extension of ¢. Partially order
& as follows: If (S,, ¢a), (Sg, ¢p) € & then (S,, ¢.) = (Sg, ¢p) if and
only if S, D S; and ¢, is an extension of ¢z, Now .o # 0 as shown
above, and every chain & has a least upper bound in .&7 To see this
let & = [(S,, go): e 4], Let S, = Uares S and ¢, be defined by ¢.(s.) =
pp(s,) for B8 = «, s, € S,.

Clearly (S., ¢,) is the least upper bound and (S,, ¢.) € .5~ Therefore
by Zorn’s Lemma there exists a maximal element (S, ¢,). Now S, =
G, for otherwise there exists « € G such that x ¢ Sy, and we may extend
oy to {Sy, 2} as before. Thus we have an isomorphism ¢, from G into
H. If ye H and € G such that pax = ¢~'(py) then ¢, () —y =te H,
which implies that ¥ = ¢,(x) — te H. Thus ¢, is onto and G and H
are isomorphic.

COROLLARY 1.8. Let G' be a group and n a positive integer. Then
every automorphism of nG’ can be extended to an automorphism of G'.

This is actually a corollary to the proof of Theorem 1.7. For if
we write ¢ = S@ G, where S is a maximal #n-bounded summand of
G’, every automorphism of nG’ can be extended to an automorphism of
G, as the proof of Theorem 1.7 indicates. This together with any
automorphism of S gives the desired automorphism of G'.

COROLLARY 1.9. Let G and H be groups and n a positive integer.
Suppose that nG = nH and the maximal n-bounded summands of G
and H are isomorphic. Then G = H.

COROLLARY 1.10. Let G’ be a group and n a positive integer.
The only pure subgroups between G' and nG' are groups of the form
SDG where S is a pure subgroup of G bounded by n and G =
S' P G such that S’ is a maximal n-bounded summand of G'.

Proof. Let H' be a pure subgroup of G’ such that G' D H' D nG’.
Then G'/H’ = T a group of bounded order bounded by n. By Theorem
5in [9], G = H' @ T’ such that 7" = T. Thus G’ = nH' @ nl' =
nH'. By 1.7, H = G where H' = K@ H with K a maximal n-bounded
summand of H’. Since H is pure in G’ and G'/H is bounded by n, H
is a summand of G’ and G’ = S’" P H. Therefore H = S@ G where
S is a pure subgroup of G’ bounded by =.
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COROLLARY 1.11. Let G be a group and n a positive integer. The
pure subgroups between G and nG are all isomorphic up to summands
of bounded order, bounded by n.

COROLLARY 1.12. Let G be a group and suppose that G = SP G =
TP G where S and T are maximal n-bounded summands of G.
Then G' = G".

2. Some properties of G and nG. In this section we will be
concerned mainly with the question: If P is a property of a group,
does G have property P if and only if nG has property P where G is a
group and % is a positive integer? This question is of interest in itself,
but it is also of interest in looking at the question of Fuchs: What
does quasi-isomorphism have to say about primary Abelian groups? We
shall begin by proving a decomposition theorem.

THEOREM 2.1. Let G be a group and n a positive integer such
that nG = Saes Gr. Then G = 3\es Gy such that nG, = Gi.

Proof. Let acd., Set H,= G/>.» G}, where 4 = A4 — «, for all
ac 4, and observe that nH, = G,. Now H, = S (H,), where S is
a maximal n-bounded summand of H,. Set G= > (HY, B S, (external
direct sum) where S, is 2 maximal n-bounded summand of G. Now
nG = nG. By 1.9, G = G. Therefore G = 3,,G, where G, = (H,),
for all e 4 except Be 4, and Gy = (Hp), P S,. Also nG, = Gi.

Now nG = >, nG, = 2G}. Let ¢ be an automorphism of »G such
that ¢(nG,) = G.. By 1.8, we can extend ¢ to an automorphism of G,
say 4. Thus we have G = Z+4(G,) such that ny(G,) = ¥(nG,) = Gi.

THEOREM 2.2. Let G be a group. Let H be a pure subgroup of
nG, n a positive integer. Then there exists a pure subgroup K of
G such that nK = H and K[p] = H[p] for each prime p.

We will first prove two lemmas.

LEMMA 2.3. Let G be a p-group. Let H' be a pure subgroup
of p"G. Then there exists a pure subgroup H of G such that p"H =
H’ and Hlp] = H'[p].

Proof. Let X =[ye H': Hy(y) = 0]. For each ye X let z,eG
such that px, = y. Let H = {[z,:ye X], H'}. Now

p”ﬁ: {[px,:ye X, p"H'} C H' .
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If ® € H' then either Hy.(x) = o or Hy(x) < co. If Hy(x) = « then
xep"H and x € p"ﬁ. If Hy(x) = k < oo then there exists ze H’ such
that p*z = =, and there exists x, € X such that p"x, = z. Thus p**"x, =
x and xe p"H. Therefore H' C p"H, and p*H = H'. Now write H =
S, @ H, according to Baer’s decomposition. Let H = H,. Clearly
p"H = H'. Also H[p] = H'[p] and H is pure in G. Now H[p] =
H'[p] since H = H, and thus H|[p] = (p"H)[p] = H'[p]. To see that
H is pure in G suppose not; i.e., suppose that there exists ye H[p]
such that Hy(y) < Hg(y). Since H{p] = H'[p] and H'C H we may
assume that Hy(y) =k < . Now Hy(y) =k —n,(k > n). Thus
Hy(y) = Hi(y) = k, a contradiction. Hence H is pure.

LemMA 2.4. Let G be a torsion group. Let H be a pure subgroup
of nG, n a positive integer. Then there exists a pure subgroup K
of G such that nK = H and K[p] = H|p] for each prime p.

Proof. Write n = pf1 -« pkm, p,, -+, p,, distinet primes. Now by
Theorem 1 in [9], G = 3}, G,, p a prime and G, the p-primary component
of G. Likewise H = Y\, H, where H, is a pure subgroup of nG,.
(Note that if (p, p;) =1for 1 =1, ---, m then nG, =G,.) If (p,p;) =
1,7=1,---,m, let K, = H,. If (p,p;) 1 for some ¢t =1, -+, m,
let K, be a pure subgroup of G, such that nK, = H, and K,[p] =
H,[p]. Such a K, exists by 2.3. Now define K = >, K,. Clearly K
is pure, K[p] = HJ[p] for all primes p and nK = H.

Now we are ready to prove Theorem 2.2.

Proof. 1f H is a torsion group we are done by 2.4. Thus suppose
that H is not a torsion group. Let G, and H, be the torsion subgroups
of G and H, respectively. Then H, is pure in nG, = (n@),, and by 2.4
there exists K,, a pure subgroup of G, such that nK, = H, and
K,[p] = H,[p] for all primes p. Now let U = [x ¢ H: « is torsion free].
Let V=[xeU:.H)(x) =0fori=1,---,m]. Foreachzxe Viety,eG
such that ny, =x. Let W =[y,:xe V] Define K ={K,, H, {W}}.
Now K = S, @ K where S, is a maximal n-bounded summand of K,
and K is the desired group. To see this let K, be the torsion subgroup
of K. Now

Kt:Sn@Kt:Sn@Kt'

Thus nK, = nK, = H, and K,[p] = H/[p] for all primes p. Hence K,
is pure in G,. Thus to check the purity of K, we need only check
torsion free elements in K. Let € K such that o(x) = oo, and suppose
that there exists yeG such that py =x. (We need only check
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divisibility for a power of an arbitrary prime p by p. 76 in [5].) We
will show that there exists 2’ € K such that p2’ = 2. Now there exist
nonnegative integers j, < k,, ++-, J.. < k,, such that n; = pj1 -+ p}™ and
n; is the least positive integer such that n,xe H. We consider two
cases. First suppose that (p, p,) =1 foralli =1, ---, m. Then there

exists z¢ K such that pn;z = n;xz. Thus pz — ¢ = k, e K, and
H{ (k) = min (Hg(p*z), Hyw)) = k .

Thus since K, is pure in G, there exists k;c K, such that »k, = k..
Hence p"(z — ki) = v and 2" = 2z — k;e K. Next suppose that (p, p;) = 1
for some ¢ =1, ---,m, say © = %,. Then Hz(nx) =g, +r. If v¢eH
then Hy(n;x) < k,, and hence there exists z¢ K such that pn;z = nix.
Thus p2 —x =k, K,, and as before there exists k' c K, such that
p'(z — ki) =xand 2’ =z=Fk e K. If ve H, then Hj(x) = Hylx) + k; <,
and hence again there exists 2’ ¢ K such that p'2’ = x. Thus K is a
pure subgroup of G with the desired properties.

It is easily seen that another proof of Theorem 2.1 can be obtained
by using Theorem 2.2.

One might note at this point that if » is a positive integer and K
is pure in G then nK is pure in nG. Also K'= ), n! K is pure in
G' =M. n! G (see p. 452 in [7]). We have just shown that if H is
pure in nG then there exists K in G such that K is pure in G and
nK = H. The question then arises: If H is a pure subgroup of G',
does there exist a pure subgroup K of G such that K'= H? The
answer to this question is in the affirmative as will be seen in the next
theorem. First we need a lemma.

LEMMA 2.5, Let G be a group and K a pure subgroup of G.
Let E, be the divisible hull of G and E.C E; the divisible hull of
K. Then E. NG = K.

Proof. Clearly EcNGDOK. Let0=~x2ecE:NG. Then{x}N K+
0 (see Lemma 20.3, p. 66 in [5]). Let n be the smallest integer such
that nwe K. Now since K is pure, there exists y € K such that ny =
nx. Observe that ye E; and thus ¢ — ye E,. We shall show that
{* —y} N K =0, thus {# — y} = 0 and thus « = ye K. Suppose there
exists m such that 0 = m{(x — y)€ K. Then clearly (m,n) =1 <n and
there exist integers s and t such that ms + nt = 7. Now ma € K since
mx — my, myc K. Also msx + nsx = ix, and since msz, nsx € K, we
have ix ¢ K. But ¢ < n, and this contradicts the fact that n was the
smallest integer such that nxe K. Thus {x — y} N K = 0, and we have
xe K. Therefore E. NG = K.

In [6] a high subgroup is defined to be a subgroup H of a group G
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maximal with respect to disjointness from G'.

THEOREM 2.6. Let G be a group with G* =), n! G =* 0. Let H
be a high subgroup of G. Let K be a pure subgroup of G'. Then
there exists a pure subgroup M of G such that M' = K and H 1is
high in M.

Proof. Let ¢ be the natural homemorphism from G to G/H. Then
¢ |G is an isomorphism. Thus ¢(K) is pure in ¢(G'). Let E be the
divisible hull of ¢(G") in G/H (note that F = G/H), and let D be the
divisible hull of ¢(K) contained in E. Then D N ¢(G") = ¢(K) by 2.5.
Now define M = ¢~(D). Observe that H is pure in M, M/H = D, and
M/HC G/H 2s a pure subgroup. Thus by Lemma 2 in [9], M is pure in G.
Now G*' o> M* D K by construction, and M'c K since ¢(M)YC DN ¢(G") =
#(K). Hence M'= K. Also H is high in M since HN M*' =0 and
{Hyx} N M+~ 0 for any x€ M\H. The latter statement is true since
if there exists an x e M\H such that {H, «} N M* = 0, this would imply
that {H, 2} N G* = 0 which would contradict the hypothesis that H is
high in G.

We will now show that several properties are possessed by a group
G if and only if they are possessed by p"G. We will only consider
primary groups.

THEOREM 2.7. Let G be a reduced p-group. Then G is closed if
and only if p*G is closed.

Proof. Suppose G is closed. Then G = B for some basic subgroup
B of G. Now B = 3\,B,, p"lIB, = IIp"B, and thus p"(B) = p"B.
Therefore p"G is closed.

Suppose p"G is closed. If B is a basic subgroup of G then p"B is
a basic subgroup of p"G. Let B be a closed subgroup with basic subgroup
B and identify G with its pure subgroup between B and B (see p. 112
in [5]). Now p"B = p"G since p"G and p"B are closed and have the
same basic subgroup B. Also (B), = G, by Theorem 1.2. Thus G = B
since they contain the same basic subgroup. Therefore G is closed.

DEFINITION 2.8. A X-group is any group G all of whose high
subgroups are direct sums of cyclic groups. (see [6]).

THEOREM 2.9. Let G be a reduced p-group. Then G is a X-group
if and only if p"G is a X-group.
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Proof. Theorem 11, p. 1370 in [8], states that “Every subgroup
L of a torsion X-group G with L'= L NG"' is a Y-group”. Thusif G
is a X-group then "G is a S-group since (p"G)' = G

If p"G is a XY-group and H is high in G then p"H is high in p"G
(see p. 1368 in [8]). Thus p"H is a direct sum of cyclic groups, and
hence H is a direct sum of eyclic groups. Therefore G is a Y-group.

DEFINITION 2.10. A group G is a direet sum of countable groups
if and only if G = S, G, such that |G| < W, for all he 4.

THEOREM 2.11. A group G is a direct sum of countable groups
if and only if p"G is a direct sum of countable groups.

Proof. If G is a direct sum of countable groups then clearly »"G is.

Now suppose that p"G is a direct sum of countable groups. Write
G =8, G, according to Baer’s decomposition. Then »"G = p"G, =
Sine1Gh such that |GL| = N,. By Theorem 2.1, we may write G, =
Snes Gy such that p"G, = Gi. Now G,[p] = G'[p] and thus »(G,) =
r(G\[p]) = 7(Gi[p]) = r(G)). Also |G,|=1r(G)) R, and since 7(G,) =
(G) = W, we have that |G,| = W, (see pp. 32-33 in [5]). Thus G,
is a direct sum of countable groups. Since S, is bounded, S, is a direct
sum of cyclic groups and hence a direct sum of countable groups.

THEOREM 2.12. A p-group G is a direct sum of closed groups
if and only if p"G is a direct sum of closed groups.

Proof. Suppose that G is a direct sum of closed groups. Then
G = >ses G, such that G, is closed for each A e /£ and p"G = ¢, p"Gs.
By 2.7, p"G, is closed for each ne 4. Thus p"G is a direct sum of
closed groups.

Now suppose that p"G is a direct sum of closed groups. Then
p"G = SesGh such that G} is closed for all ne 4. By 2.1, G =
Saes Gy such that "G, = G}. Thus by 2.7, G is closed for each 1 € 4.

DEFINITION 2.13. A group G is essentially indecomposable if G =
A @D B implies that A or B is finite.

THEOREM 2.14. Suppose that the first n Ulm invariants of a
p-group G are finite, n a positive integer. Then G is essentially
indecomposable if and only if p"G is essentially indecomposable.
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Proof. The proof follows immediately from 2.1.

DEFINITION 4.14. A group G is “Fuchs 5”7 if and only if every
infinite (pure) subgroup of G is contained in a summand of the same
cardinality.

THEOREM 2.15. A p-group G is a Fuchs 5 group if and only
if "G is a Fuchs 5 group.

Proof. First assume p"G is Fuchs 5. Let H be an infinite
unbounded pure subgroup of G. Then p"H is a pure subgroup of p"G.
Since p"G is Fuchs 5, p"H is contained in a subgroup K’ of »"G such
that K’ is a summand of p*G and |p"H | = | K'|. Thus p"G =K' @ L' .
Now G, = K L (where G = Sf P G, according to Baer’s decomposition)
such that p"K = K’ and p*L =L’ (by 2.1). Write H=S*P H,
according to Baer’s decomposition. Then p"H, is a2 pure subgroup of
p"K which is a pure subgroup of p"G. Let B; be a basic subgroup
of H,. Then p"Bj is a basic subgroup of p"H, and can be extended
to a basic subgroup of p"K, say p"B = p"B’' D p"By;, where p"B’ = Y{x,}.
For each x; there exists y;e K such that p"y, = «; and H(y,) = 0.
Define B’ = 3{y;}. Define groups B = B' @ B, and M = {B, p"K}.
Notice that B is a direct sum of cyeclic groups, B is pure in M and
M/B = (B + p"K)/B = p*"K/(B N p"K) = p"K/p"B a divisible group since
p"B is a basic subgroup of p*K. Hence B is a basic subgroup of M.
Now M=K, H,.c M, and G =S P MEPB L. To see that M = K notice
that p"B is a basic subgroup of p"K and thus p"M = {p"B, p""K} = p"K.
By Theorem 1.2, if p*"M = p"K then M, = K, (where M = SY & M,
and K = S K, according to Baer’s decomposition), and since M =
M, and K=K, M= K. (M= M, since B is a basic subgroup of M
and B is isomorphic to a basic subgroup of K.) Also H,C M since
H,={By, p"H,}, B;,cB and p"H,Cp"K. To see that G=S7@MOD L
we first observe that M[p] = (p"M)[p] = (p"K)[p] = K[p] and thus
MNL=290, Thus M L is a direct sum and hence S{H (M P L) is
a direct sum since MP L= KP L. Clearly S MPLcG. Now
G, =K@ L ={Bg, K} DL where By = B & B” such that B’ =
X{w;} and B, =3{z;} with p"w;=p"2; (i.e., p"B"” = p"By ). Thus to show
that G S P M P L, it suffices to show that each w,; e S P M P L.
Now p"w, = p"2; and thus w;, — 2, =s+k+teS{P KP L with
seSf ke K, te L, and o(k), o(t) < p". But B” may as well have been
chosen such that its 7th generator was w; — k, and thus we may assume
that w;, — 2z, =t +se L@ S Hence w,=2+t+secSIHGMOD L.
Therefore GC SIPMP L and G =S P MD L.

Now |p"H,| =|p"M|, (p"H)[p] = H,[p] and (p"M)[p] = M[p]. Thus

|H,| =|M|. Each G, is an absolute summand of G and we may
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write G = S¢ P G, such that SZ is a summand of Sf Thus H =
SEPH,cSEP M, a summand of G and clearly |SZP M| =|H|.
Therefore G is Fuchs 5.

Next assume G is Fuchs 5. Let H be a subgroup of p"G. Then
H is a subgroup of G and is contained in a subgroup K of G such that
K is a summand of G and |H| =|K|. Thus G= K@ L and p"G =
p"K @ p"L. Now HC p"G and hence HC p"G N K = p"K by the purity
of KinG. Thus |H| < |p"K| = | K| = | H|. Therefore p"G is Fuchs 5.

DEFINITION 2.16. A group G is a Crawley group if G contains no
proper isomorphic subgroups.

The existence of such groups has been shown by Peter Crawley in
[4]. For he has constructed a group C between B = >\, (Cp') and
B = T(T1=. C(p%)) (the torsion subgroup of the complete direct sum of
the C(p*) for ¢ =1, ---) which has no proper isomorphic subgroups.
This group can be chosen such that (B/C) = 1. This fact was first
observed by R. A. Beaumont and R. S. Pierce in [3]. This group is
also essentially indecomposable. The fact that if #(B/C) = 1 then C is
essentially indecomposable was first proved (as follows) by John M. Irwin:
Suppose C = HP K. Then B =B, @ B, where Hc B, and KC B,.
Thus either H =B, or K = B, since »(B/C)=1. Suppose H = B,.
Then there exists a copy of B B, and thus a copy of C in B,.

It seems that this class of groups will be quite important in the
study of p-groups.

THEOREM 2.17. If C is a Crawley group then p"C is a Crawley
group. If p"C is a Crawley group and C is essentially indecomposable
then C 1s a Crawley group.

Proof. Suppose first that C is a Crawley group. Suppose that there
exists a group L & »"C such that L = p*C. Let U =[x e L: H(x) = 0].
Then for each x € U there exists y € C such that p"y = x. For each
x let y, € C such that p*y, = 2. Let V =[y,: € U]. Define C, ={V, L}.
Now p"C,= L. Let (C.), be a summand of C, according to Baer’s
decomposition and let G’ = S, B (C;), where B =S, P B}, B a basic
subgroup of C and S, a maximal p"-bounded summand of B. Now
C' &< C and p"C’' = L = p*C. Thus by 1.9, C’ = C. But this contradicts
the fact that C is Crawley.

Suppose p"C is Crawley. Then if C is essentially indecomposable
then C is Crawley. For if there exists L & C such that C = L, then
p"C = p*L & p"C which would contradict the fact that p”C is Crawley.

COROLLARY 2.18. There are at least W, nonisomorphic Crawley
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groups C between B and B.

Proof. Observe that B = pB and B = p"B for all n. Let ¢ be an
isomorphism between B and p"B. Let C be a Crawley subgroup of B.
Then p*C is a Crawley subgroup of p"B, and p"C is not isomorphic to C.
Thus ¢(p"C) is a Crawley subgroup of B which is not isomorphic to C.

3. Quasi-isomorphic p-groups. In a recent paper by R. A. Beau-
mont and R, 8. Pierce (see [2]), it was shown that two countable
primary groups are quasi-isomorphic if and only if their basic subgroups
are quasi-isomorphic and their subgroup of elements of infinite height
are isomorphic. Also if two primary groups are quasi-isomorphic their
basic subgroups are quasi-isomorphic. In [3] they have considered
quasi-isomorphism in relation to direct sums of cyclic groups. We will
extend these results to closed p-groups.

In considering quasi-isomorphism, it is of interest to investigate
what properties of primary Abelian groups are preserved under quasi-
isomorphism. It will be shown that if G and H are quasi-isomorphic
primary groups, then the statement that G has property P if and only
if H has property P is equivalent to

(1) property P is preserved under isomorphism,

(2) @ has property P if and only if p"G has property P and

(3) groups between G and p"G have property P if G does. This
reduces this problem to considering G, "G, and groups between G and p"G.

DEFINITION 3.2. Let G and H be p-groups. Then G = H (quasi-
isomorphie) if there are subgroups S C G, T'C H and positive integers
m and » such that p"GC S,p*HC T, and S = T.

The following theorem (among other things) shows that if two
p-groups are quasi-isomorphic, then their subgroups of elements of
infinite height are isomorphiec.

THEOREM 3.2. Let G and H be p-groups. If G and H are quasi-
isomorphic, then G/G' is quasi-isomorphic to H/H' and G' = H'.

Proof. Now G and H quasi-isomorphic implies that for some positive
integers m and » there exists subgroups S and T of G and H, respectively,
such that G D Sop"G, HO Top"Hand S = T. Now clearly G' = S,
H=T" and S'= T Thus G'= H. Now S§/S'z= T/T*. Thus
»™(G/G) = p"G/G* < S/G' < G/G* and p(H/H") = pH/H'< T/H'C H/H".
Hence H/H' is quasi-isomorphic to G/G".

The converse of the above theorem is not true as can be sesn from
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an example on pp. 134-135 in [5].

ProrosiTiON 3.3. Let p be a property of p-groups. Then the
following statements are equivalent:
(1) Let G and H be quasi-isomorphic p-groups. Then G has P
if and only if H has P.
(2) Property P is such that for any p-group L:
(a) L has property P if and only if p”L has property P for
all positive integers n.
(b) Whenever L has property P and S is a subgroup of L such
that L oS> p"L then S has property P, and
(¢) Property P is preserved under isomorphism.

Proof. First 2 implies 1: If G and H are quasi-isomorphic then
for some positive integers m and n there exist subgroups S and T of G
and H, respectively, such that GO SO p"G, HDO T D p"H, and S = T.
If G has property P then S has property P by (b). Thus T has property
P by (c), and since p"Scp"HC S, p"H has property P by (b), and
H has property P by (a). By symmetry we have 2 implies 1.

Next 1 implies 2: Since G is quasi-isomorphic to p"G, we have (a).
Also G is quasi-isomorphic to any subgroup S such that G o S > "G,
thus we have (b). Clearly (c) holds.

Using the above proposition, we can show that if G and H are
quasi-isomorphic p-groups, then G is a direct Spm of eyclic groups if
and only if H is a direct sum of cyclic groups, G is a closed p-group
if and only if H is a closed p-group, and G is a 2-group if and only
if H is a 2-group.

THEOREM 3.4. Let G and H be quasi-isomorphic p-groups. Then
G 1s a direct sum of cyclic groups if and only +f H is a direct sum
of cyclic groups.

Proof. Now G is a direct sum of eyclic groups if and only if p"G
is, and any group between G and p"G is a direct sum of eyclic groups
(see p. 46 in [5]). Then by Proposition 3.3 the theorem is proved.

LeMMA 3.5. Let G be a reduced p-group. If G is a X-group
and S is a subgroup of G such that G DS D p"G, then S is a Z-group.

Proof. Now S!'=G'. Thus, apply the theorem stated in the proof
of Theorem 2.9.

THEOREM 3.6. Let G and H be quasi-isomorphic p-groups. Then
G is a T-group if and only if H is a Z-group.
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Proof. Apply Theorem 2.9, Lemma 3.5 and Proposition 3.3.

LeMMA 3.7. Let G be a closed p-group and G DS D p*G. Then
S is closed.

Proof. Let g, +++,9, - be a Cauchy sequence in S. Then
gy, ***, 0., -+ is a Cauchy sequence in G. Since G is closed this sequence
converges to some geG. Also g — ¢g,€p"GC S for m > n, and since
9. €S we have ge S.

THEOREM 3.8. Let G and H be quasi-isomorphic p-groups. Then
G 1s closed if and only 1f H 1is closed.

Proof. An application of Proposition 3.3, Theorem 2.7 and Lemma
3.7 proves the theorem.

An important problem along these lines that seems to be a very
difficult one is the following: If G and H are quasi-isomorphic p-groups,
then is it true that G is a direct sum of countable groups if and only
if H is a direct sum of countable groups? By Proposition 3.3 and
Theorem 2.11 this problem is reduced to the following: If G is a direct
sum of countable p-groups and S is a subgroup of G such that p"Gc S,
is S a direct sum of countable groups? We are able to answer two
special cases of this question in the following two theorems.

THEOREM 3.9. Let G be a direct sum of countable p-groups. Let
K be a subgroup of G such that G D> KD p"G and K/p"G is countable.
Then K is a direct sum of countable groups.

Proof. Write K/p"G = >jer{k; + p"G} and p"G = > e, p"G) (Where
G=2G,) such that |G\ |=¥N.. Then K={{ki}ier, {p"Ghes = {ki}ier, p"G}.
Now k;e G and hence k; = 3., g,, such that g,, € G,,. Let 4" =[re 4:
for some g, € G,, g\ is a representative in some k;]. Let 4" = /4.
Then K = {{k}ier, {0"Gahres} DB Sner »"Gre Thus K is a direct sum
of countable groups.

THEOREM 3.10. Let G be a direct sum of countable p-groups, and
let K be a subgroup of countable index. Then K is a direct sum
of countable p-groups.

Proof. Write G = 3.e4Gyr. Now G, K for all but a countable
number of AMed since K is of countable index in G. Let 4 =
[Med:GyC K]. Let K, = 3her Gy and K, ={[kec K:ke Syenn Gil}.
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Then K = K, @ K, such that K, is countable and K, is a direet sum
of countable groups.

The following theorem extends Beaumont and Pierce’s results in
[1] and [2] to closed p-groups.

THEOREM 3.11. Let B and C be closed p-groups with basic
subgroups B and C, respectively. Then B = C if and only if B = C.

Proof. If B=C then B = C by [2]. Thus suppose that B = C.
Then there exist subgroups S and T of B and C, respectively, such
that SO p"B, To>p*Cand S= T. Thus BoS>p"B,C> T>p"C and
S = T since closed subgroups are completely determined by their basic
subgroups (see p. 115 in [5]). Thus B = C.

4, Special cases of quasi-isomorphism. In this section we will
impose some restrictions on the definition of quasi-isomorphism, and in
some cases we will be able to determine by just how much two quasi-
isomorphic groups with these restrictions differ.

DEFINITION 4.1. G £ H (S.B. quasi-isomorphic, i.e., in the sense
of Schroeder-Bernstein) if there exist subgroups Sc G, Tc H, and
positive integers m and n such that G = T, H= S, p»GC S, and p"Hc T.

DEFINITION 4.2. Two p-groups G and H are purely quasi-isomorphie
if for some positive integers m and n there exist pure subgroups S and
T of G and H, respectively, such that G2 SD>»p"G, HD T > p"H and
S=T.

DEFINITION 4.3. G = @H (summand quasi-isomorphie) if there are
subgroups S G, T C H, and positive integers m and » such that S = T,
G=SPG,H=T®H, p"G, =0, and p"H, = 0.

DEFINITION 4.4. G = H (strongly quasi-isomorphic) if there are
subgroups SC G, TC Hsuch that S= T,[G:S] < oo, and[H: T] < co.

DEFINITION 4.5. G = @H if there exists subgroups Sc G, Tc H
such that, G =SS G, H=T@ H, and G, and H, are finite.

DEFINITION 4.6. Two groups are strongly S.B. quasi-isomorphic if
there exist subgroups S and T of G and H, respectively, such that
[G:S]< oo, [H:T]< o,S= H and T=QG.

DEFINITION 4.7. Two p-groups G and H are purely S.B. quasi-
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isomorphic if for some positive integers m and » there exists pure
subgroups S and T of G and H, respectively, such that G D S D p™G,
HO>ToOp"HG=T and H=S.

Each of the above definitions yields an equivalence relation.
Definitions 4.2 and 4.3 are equivalent. It will be shown that Definitions
4.4 and 4.5 are equivalent, that Definition 4.6 is equivalent to &G, = H,
for some positive integer » according to Baer’s decomposition and that
Definition 4.7 implies the groups are isomorphic., With this it will be
clear that each relation (excluding Definition 4.1) is no weaker than
the preceding one. Examples will be given to show that Definition 4.1
and 4.2 are stronger than Definition 3.1, and except for equivalent
definitions, each relation from Definition 4.2 to Definition 4.7 is stronger
than the preceding ones.

PROPOSITION 4.8. G = H if and only if G = DH.

Proof. That G = (PH implies G = H is clear. Thus suppose G = H.
Let S,c G, T,c H such that S, = T, and G/S, and H/T, are finite.
A lemma of R. S. Pierce says: Let S, be a subgroup of a reduced
p-group G of unbounded order such that the index [G: S;] < «. Then
there exists S, S, such that [G: S,;] < ~ and G = S, L. Thus there
exist subgroups S, S,, and T, T, such that S, is a direct summand
of finite index in G and T, is a direct summand of finite index
in H. Let ¢ be an isomorphism of S, onto T,. Then S, N ¢~*(T,) has
finite index in S,. Again by the above lemma, there exists a subgroup
S of S,N ¢ (T,) such that S, = S L where L is finite. Now S, =
S @ (S; N L), where S, N L is finite. Thus G = SEH (S, N L)E M, where
(S:NLYPH M is finite. Let T = ¢(S). Then T, = T ¢(L), where
Tc T, Consequently T, = T@H(HL)NT,), and H=TD(H(L)NT)DN,
where (#(L) N T,) D N is finite. Since S = T, it follows that G = PH.

The following theorem shows that if two groups are strongly S.B.

quasi-isomorphic then they only differ (up to isomorphism) by summands
of bounded order.

THEOREM 4.9. Let G and H be strongly S.B. quasi-isomorphic
p-groups. Then there exists a positive integer n such that G, = H,
according to Baer’s decomposition.

Proof. Now G and H being strongly S.B. quasi-isomorphic implies
that there exist subgroups S and T of G and H, respectively, such that
[G:S] < oo, [H:T] < o0,G=T and H=S. By the lemma stated in
the proof of 4.8, there exist subgroups S, S and T, T such that S,
and T, are pure in G and H, respectively, [G:S;] < « and [H: T|] < .
Thus G = S, @ S, where S, = G/S, and S, is finite, and H = T, P T,
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where T, = H/T, and T, is finite. Choose % such that p*(S,) = p*(T,) = 0.
Now p"G = p"S, and p"H = p"T,. Thus by Theorem 1.2, G, = (S,).
and H, = (T),. Also p"S = p"S, and p"T = p"T,, thus S, = (S,), and
T,=(T),. Hence by the hypothesis we have that G, = T, =(T,), = H,.

COROLLARY 4.10. IfG and H (as in Theorem 4.13) have isomorphic
basic subgroups, then G = H.

In the next theorem we will show that if G and H satisfy Definition
4.7, then G = H. First we need a lemma.

LEmMMA 4.11. Let G and H be p-groups such that G= HPB,, H=
G @ B, where B, and B, are groups of bounded order. Then G = H.

Proof. Now G = G B, B, where B, P B, is of bounded order.
Thus if we write G = S, P G, according to Baer’s decomposition, where
p»(B, P B,) =0, it is clearthat S, =S, B, S B, =S, P B, by Ulm’s
Theorem. Thus H=GPHB. =G, DS, PB,) =G, DS, =G.

THEOREM 4.12. If G and H are purely S.B. quasi-isomorphic
p-groups, then G = H.

Proof. If S is a pure subgroup of G such that G/S is bounded,
then S is a summand of G by Theorem 5 in [9]. Thus G =S B,
where B, is of bounded order. Also H = T P B, where B, is of bounded
order. Thus G=H® B, and H= G® B, and by 4.11, G = H.

Now to see that Definitions 4.1 and 4.2 are stronger than Definition
3.1, let G =C(p*) and H = C(p). Then G = H but G and H do not
satisfy either Definitions 4.1 or 4.2.

To see that Definition 4.4 is stronger than Definition 4.3, let G =
S C(p') and H = G @ S, C(p). Now clearly G = PH, and by Ulm’s
Theorem and 4.8, it is clear that G and H are not strongly quasi-
isomorphie.

Next we show that Definition 4.6 is stronger than Definition 4.5.
Let G = C(p) @ C(p) and H = C(p). Now clearly G = B H, but G and
H do not satisfy Definition 4.6.

Finally to see that Definition 4.7 is stronger than Definition 4.6,
let G =3 C®) and H= G C(p). Then clearly G and H satisfy
Definition 4.6 but not Definition 4.7.

5. Some related problems. Given a p-group G and a subgroup
H containing p"G, n a positive integer, the question arises: If B is
a basic subgroup of G, does there exist a basic subgroup B’ of H such
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that BO B D p*B? We will give an answer to a very special case of
this question in a corollary to the following theorem.

THEOREM 5.1. Let G be a p-group and H a subgroup of G con-
taining p*G. If N is a high subgroup of G, then there exists a high
subgroup M of H such that N2> M D p"N.

Proof. Let N be a high subgroup of G. Now p"N is a high
subgroup of p*G (see p. 1380 in [6]), »»NC H and p"NN H' = 0.
Thus let M be the maximal subgroup of H such that N> M>p"N
and MN H*'=0. Then M is high in H. To see this suppose not,
i.e., suppose there exists xe H,x¢ M, such that {x, M}N H'=0.
Since N is high in G, {x, N} N H*# 0. There exists y € N such that
p*x + 1y = h,e H'(h, # 0). Now p'x, h,e H and hence ye H. Since
ye HN N,ye M. Hence {x, M} N H' +# 0, a contradiction.

COROLLARY 5.2. Let G be a p-group and H o subgroup of G
contarning p*G. If G is a X-group and B is a basic subgroup of G
which is also a high subgroup of G, then there exists a basic subgroup
B’ of H such that B> B Dp"B. Here B' is a high subgroup of H.

The general question seems to be a little more elusive. The following
two theorems are results related to this problem.

THEOREM 5.3. Let G be a reduced p-group and H a subgroup of
G such that H D p*G. Let B’ be a basic subgroup of H. Then there
exists a basic subgroup B of G such that BD B,

Proof. We may write B = Uy, S,., S, = >, By, and B'= 32, B,
such that B; =2YC(p*). Now H=S, @ H,, where H,, ={3\,... B;, p"H}.
Thus S, N H, =0. Since H,[p] = (»"H)[p], S, N p"H = 0. Also since
pGC H,S,, N p**™G = 0. Thus S, is contained in a maximal p"*"
bounded summand of G, and therefore the height in G of any element
of S, is bounded by #» + m. By Kovaes’ Theorem (p. 99 in [5]), B
can be extended to a basic subgroup B of G. Hence B'C B a basic
subgroup of G.

THEOREM 5.4. Let G be a reduced p-group. Write G =S,PD G,
according to Baer’s decomposition. Let T be a subgroup of G, such
that T D p*G. Then there exists a basic subgroup By of T such that
By = 32,0 Ly with Hg (x) =t — 1 for all xe L[p].

Proof. To prove the theorem we will construct a basic subgroup
By of T such that By = Uz, Si where if € S, ,[p] then He (v) =1
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and S;i, = S; @ L;., such that if x e L;, [p], Hs (v) = 7. Note that B,
will have the desired properties.

Let &, = [L: L is a summand of 7T and if xe L[p], He(x) = n].
If .., =01let S,;;, =0 and if &4, # 0 let S,., be a maximal element
of .&.,. (Clearly such a maximal element exists by Zorn’s Lemma.)
Assuming that S; has been defined, define S;,, as follows: Let &4, =
[L: L is a summand of T; S;C L; if xe L, Hs (%) = %; and L = §; @ L
such that if y e L[p] then H, (y) =1]. Let St+1 be a maximal element
of &4, which we will now show exists. Clearly some & = 0. Thus
partially order .&4,, by set inclusion and let L,C L, --- be a chain in
. Put L= U, L;. Then L is pure in T since each L; is pure in T,
Also if xe L, then we L; for some j which implies that Hg (x) < <.
Hence L is of bounded order (with order bound =<p**') and thus L is
a summand of T. Clearly L O S;. Note that L; is a summand of L;,,
for all =1,2,---. Now L, = S,MEBL, such that for zel; il»l,
H; (v) =1, and L,~+1 =8, P L;,, such that for z ¢ LHl[p], Hg (%) = 1.
To show that L = U7, L;€ &7, we need only show that L., can be
chosen such that it contains L;. Write L; = {x,} such that o(x,) =
n, + 1. Now prex, € Ej+1[p] since otherwise Hq (p"2x,) < 1. If x,€ L
we are done. So suppose that x,¢ L;,,. Since x2,€ Lj,, 2, =8 + Y,
where se S, yaeI:j=1 and p ex, = p"*y,. By the purity of Ej in
Lji, Ly = {¥.} + K, and thus we may rewrite L;., as L., = S,.. D
({s + 9.} @ K) where our new L., = {s + Y.} @ K and hence contains
Xy = 8 + Y,. Since we may do this for any xaef,,-, we can choose
L., to contain L;. Therefore L = U, L; = S; @ U, L;, and L has
the desired properties.

Next set Br = U..1 S;, and note that B, is pure in T and B,
is a direct sum of cyclic groups (see Theorem 11.1 in [5]). We will
now show that T/B, is divisible which will imply that B, is a Dbasic
subgroup of 7. To do this we will show that for all xe T[p] such
that « ¢ By[pl, Hrp,(* + Br) = c. This is sufficient since, by Lemma 1
in [9], if ® + By e (T/By)|p], there exists 2’ € T[p] such that &' + By =
x + By. Let we T[p] such that x ¢ B,[p], and suppose that H, (v) = m
Suppose that Hy(x) = k, and let ze T such that p*2 = 2. Now xe S,
which implies that either S,,.,(D{z} is not pure in T or that Hy (z+y)>m
for some y € S,,..[p] (by the maximality of S,.). If S,.. D {z} is not
pure in T then there exists y, € S, ..[p] such that H.(y, + x) =k, > k.
Let 2, € T such that p™1z, =y, + . Now Hg (x+y)<m, and x+y, € Spws
so that again either S,,., @ {2,} is not purein T or Hy (* + ¥, +9y) > m
for some ye S,..[p]. If S,. D {2} is not pure in 7T then there exists
Y, € S,pts such that Hy(x + y, + ¥,) =k, >k, > k. Thus in either case
there exists y € S,...[p] such that He (v + y) = m, > m. Now clearly
v+ yeS, ., and by a similar argument there exist a y'€ S, ., such
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that He (x + y + ¥') = m, > m,. Continuing by induction we see that
the height of x 4+ Bre T/B, is infinite.

It seems that an answer to the general question (asked at the
beginning of this section) would give useful information about the
structure of infinite p-groups.

Another question that arises is the following: If G and H are
p-groups such that G = H and G/G* = H/H*, then is it true that G = H?
It would be interesting to know the answer to this question at least
in the case G/G' is a direct sum of cyclic groups.

It would also be of interest to know: If G is a direect sum of

closed p-groups, is a group S between G and p"G also a direct sum
of closed p-groups?
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