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APPROXIMATION THEOREMS FOR MARKOV
OPERATORS

JAMES R. BROWN

Let (X, ̂  ,m) be a totally (/-finite measure space. A
Markov operator (with invariant measure m) is a positive

operator T on L^X, v ^ r , m) such that Tl = 1 and f Tfdm =

1 fdm for all feLi(X, ^ , m) n Loo(X, ̂ ~, ra). If φ is an in-

vertible measure-preserving transformation of (X, ̂ ", m), then
φ determines a Markov operator Tφ by the formula Tφf(x) =
f(φx). The set Λf of all Markov operators is convex and each
Tφ is an extreme point.

In case (X, ̂ ~,m) is a finite, homogeneous, nonatomic
measure space, M may be identified with the set of all doubly
stochastic measures on the product space (X X X, J^~ X J^",
m x m). The main result of the present paper is that M is
compact in the weak operator topology of operators on
L2(X,j^,m) and that the set Φ of operators ΎΨ is dense in
M. It follows that M is the closed convex hull of Φ in the
strong operator topology. We shall further show that Φ is
closed in the uniform operator topology and that the closure
of Φ in the strong operator topology is the set Φx of all (not
necessarily invertible) measure-preserving transformations of

We shall denote LP(X, <^~, m), 1 g p ^ ©o, more briefly by Lp.
The operators Tφ arising from invertible measure-preserving transfor-
mations are in certain respects the most pleasant of all Markov
operators (in particular, they are unitary). Therefore, it seems worth-
while to determine what role they play in the structure of M.

Interest in special cases of this problem is indicated by the atten-
tion which has been devoted to the solution of Birkhoff's Problem 111,
which is concerned with the case of a denumerable space X with a
measure m uniformly distributed on the points of Xo Thus J. R. Isbell
[4], B. A. Rattray and J. E. L, Peck [12] and D. G. Kendall [6]
have given approximation theorems for doubly stochastic matrices in
terms of convex combinations of permutation matrices. A second type
of solution has been given by Kendall [6] and by Isbell [5]. They
have shown that the set of permutation matrices coincides with the
set of extreme points of M. Still a third type of solution has been
offered by P. Revesz [13], who has shown (essentially) that every
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doubly stochastic matrix is an integral over the set of permutation
matrices.

In the case of the real line X with Lebesgue measure m, Peck
[11] has given a solution of the first type above for the set M of
what he calls doubly stochastic measures. He also alludes to the cor-
responding result for the unit interval with Lebesgue measure. In § 3
we shall show that, for finite measure spaces,' the set of doubly
stochastic measures can be identified with the set of Markov operators.
This is not the case for a nonfinite measure space. However, approxi-
mation theorems for Markov operators always imply the corresponding
approximation theorems for doubly stochastic measures or matrices.

In this paper we shall restrict our attention to finite measure
spaces. The σ-finite case is more complicated and will be considered
at a later time.

In § 4 we give a solution of the above-mentioned problem (Theorem 1)
for the case of a nonatomic, finite measure space. This is an approxi-
mation theorem like that of Peck [11], but is a stronger result in that
the convex closure of the set Φ of invertible measure-preserving
transformations of (X, ^~, m) is replaced by the closure of Φ. The
topology on M is the weak operator topology for operators on L2.
Simple examples can be constructed to show that the second and third
types of solutions mentioned above for doubly stochastic matrices do
not extend to doubly stochastic measures on a nonatomic measure
space. The Choquet representation theorem can be invoked to give
solutions of the third type as integrals over the set of extreme points
of M. These extreme points have recently been characterized by
Jo Lindenstrauss [7], but this approach will not be pursued here.

In § 5 we consider the closure and the convex closure of Φ in the
strong operator topology and the uniform operator topology. The
results of that section are obtained directly from Theorem 1 and an
interesting geometric characterization (Theorem 5) of the operators Tψ

arising from measure-preserving transformations.
The author would like to express his gratitude to Prof. S. Kakutani

and Prof. R. M. Blumenthal for valuable discussions of the problem
considered in this paper. In particular, acknowledgement is made of
certain observations of Prof. Blumenthal which led to considerable
simplification in the proof of Theorem 1.

2* Markov operators* A Markov process with discrete time
parameter and state space (X, ^) is determined (cf. [1], p. 190) by a
stochastic transition function P(x, B), i.e. a nonnegative function of
xe X, Be &~ such that

( i ) P(x, B) is a probability measure in B for each fixed xe X;
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(ii) P(x, B) is a measurable function of x for each fixed B e / ' .
We assume, in addition, that m is an invariant measure for P(x, B)
in the sense that

(iii) ί P(x, B)m{dx) = m(B) ,

Under these conditions P(x, B) defines a bounded linear operator
T on Loo by the formula

( 2 ) Tf(x)=^f(y)P(x,dy).

The operator T clearly has the properties:

( 3 ) /^0-Γ/^O

( 4 ) Γ l = l

( 5 ) f Tf(x)m(dx) = \ f(x)m(dx) , / e L w .
Jx Jx

For instance, equation (5) follows from condition (iii) when / is a
characteristic function of a measurable set and more generally by an
approximation argument. Likewise, (4) follows from (i). We shall
refer to any linear operator T on L^ which satisfies (3), (4) and (5) as
a Markov operator with invariant measure m, or simply a Markov
operator.

It follows from (3) and (4) that T is a positive operator on L^
with || T|!oo = 1 and from (5) that T may be uniquely extended to a
positive operator on hx with || T\\x — 1. This extension is again given
by (2). According to the Riesz convexity theorem, T is a contraction
operator on Lp for each p, 1 ̂  p fg °o# That is, T is a positive
operator with || T\\p ^ 1.

The adjoint Γ* of Γ defined by

( 6 ) (Γ*/f g) = (/, Tg) = [ f(x)Tg(x)m(dx)

for fe Lp, ge Lq, 1 ̂  p, q ̂  oo, l/j> + 1/g = 1, is also a Markov
operator. Indeed, equation (5) is equivalent to

(5*) Γ*l = 1 .

Thus equations (3), (4) and (5*) may be taken as the definition of a
Markov operator.

In general, a Markov operator can not be defined in terms of a
stochastic transition function. However, under suitable separability
restrictions on (X, ^ , m) there will always exist a stochastic transition
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function P{x,B) such that (2) holds almost everywhere for each fe L«>
(cf. [1], pp. 29 ff).

A measurable transformation (function, mapping) φ from (X, ^ )
into itself is said to be measure-preserving if

(7) miφ-'B) = m(B) , B e jF~.

It follows that φ is essentially onto, he. the complement of its range
has measure zero. As usual we shall identify functions which are
equal almost everywhere. Hence we may assume that φ is onto. If
it is also one-to-one and if φ"1 is measurable, we shall say that φ is
an invertible measure-preserving transformation. It follows that φ"1

is also measure-preserving.

The correct notion for our purposes is actually that of a measure-
preserving set function from JΓ into ^ . However, for the measure
spaces that we shall be considering in this paper, namely, products of
the unit interval with the product Lebesgue measure, every measure-
preserving set transformation ψ is given by a measure-preserving point
transformation φy ψ{B) — φ~\B).

Let us denote by Φ the set of all invertible measure-preserving
transformations of (X, J^, m) (or rather all equivalence classes of such
transformations modulo null transformations) and by M the set of all
Markov operators. Then Φ may be identified with a subset of M by
the correspondence φ—>Tφ where

(9) Tφf(x)=f(φx), feLp.

We shall show in § 4 that, subject to a homogeneity condition on
(X, ^~, m), Φ is dense in M in the weak operator topology.

3. Doubly stochastic measures. It is well known that any
finite measure space (X, j^~, m) with m(X) = 1 which is nonatomic
and for which there exists a countable class ^ of measurable sets
that generates ^ is measure-theoretically equivalent to the unit
interval. That is, there exists a one-to-one mapping (modulo sets of
measure zero) of ^~ onto the class of Borel subsets of the unit interval
which preserves set operations and the measure ([3], p. 173).

More generally, if m is any finite measure, it can be shown [8]
that X is essentially a countable union of measurable sets Xn which
are measure-theoretically equivalent either to a single point or to a
product of intervals with the product Lebesgue measure. The measure
spaces (Xn, ̂  Γi Xn,m) are homogeneous in the sense that

(i) there exists a class ^~n of measurable subsets of Xn which
generates ^~ Π Xn and

(ii) for each subset Y of Xn of positive measure, the σ-algebra
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^ Π Y is not generated by any class of smaller cardinality than that
of ^l. The cardinality of J^ is called the character of Xn and
determines the number of copies of the unit interval which go into
its representation as a product measure space. It is clear that, except
for the atoms (character 1), each of the spaces Xn may be assumed
to be of different character, hence not measure-theoretically equivalent
to each other. In particular, any invertible measure-preserving transfor-
mation of X must leave invariant each of the nonatomic Xn as well as
their union.

Now suppose that X — Xx (J X2 where X1 and X2 are disjoint and
Xx is either one of the nonatomic Xn of the preceding paragraph or
the union of all of the atoms. Consider the Markov operator T defined
on Lp by

Tf(x) = ( f(y)m(dy) .
JX

For this operator we have

(Xzv TχX2) = ^ χZl(x)TχZΛ(x)m(dx) = m(X0m(X2) .

(Here and in the remainder of the paper χA denotes the characteristic
function of the set A.) On the other hand, if φ is any measure
preserving transformation of X, then we know that

(Xxv TφX,2) = m(Xx Π qr'Xt) = 0 .

Thus T cannot be a limit of convex combinations of elements of Φ in any
operator topology. We therefore assume that (X, «^r, m) is nonatomic
and homogeneous. As noted above, this implies that (X, j ^ ~ , m) is
essentially a product of unit intervals with the product Lebesgue
measure. As such it has a natural topology, the product topology, in
which X is compact, ^ coincides with the class of Borel sets of X
and m is a regular Borel measure.

Now let T be a Markov operator on !/«,. We shall denote the
product measure space (X x X, ^ x ^) by (X2, ^ ^ 2 ) . We shall
further denote the algebra of finite unions of measurable rectangles
A x 5, A, Be ^ , by ^ 2 . For each such rectangle we define

(10) λ(A x B) - (χΛ, Tχΰ) .

Since λ is additive in A and B individually, it follows that it can be
uniquely extended, by additivity, to a finitely additive, nonnegative
set function on ^ 2 . Moreover,

(11) λ(A x X) = λ(X x A) = m(A) ,
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We shall show that λ is count ably additive. This is a special case of
a theorem of E. Marczewski and C. Ryll-Nardzewski [9, 10] on non-
direct products of compact measures. For completeness and because
the special case is much simpler than the general case, we include a
proof.

Any nonnegative, finitely additive set function λ on J^l2 which
satisfies (11) will be said to be doubly stochastic.

LEMMA. Let X be a doubly stochastic set function on ̂ l2. Then
X is countably additive and regular, hence it has a unique extension
to a doubly stochastic measure on

Proof. If A and B are Borel subsets of X, then by the regularity
of m there exist compact sets At and Bι such that A1aA, BίaB1

m(A — Aj) < ε and m(B — B^) < ε, where ε is any preassigned positive
number. It follows that At x B1cz A x B, A1 x Bt is compact, and

X(A x B - A, x Bx) ̂  X(A x (B - B,)) + X((A - A,) x B)

^ m{B - Bx) + m(A - A,) < 2ε .

Thus any set in j^2 can be approximated from the inside by compact
sets, i.e. λ is regular. It follows by Alexandroff's theorem ([2], p. 138)
that X is countably additive. The existence and uniqueness of the
extension then follow from the Hahn extension theorem.

COROLLARY. The relation (10) determines a one-to-one corre-
spondence between the set M of Markov operators on L«, and the set
of all doubly stochastic measures on

Proof. We have shown that each Markov operator T determines
a unique doubly stochastic measure λ satisfying (10). Conversely,
suppose that λ is a doubly stochastic measure. Let g e L^ and let /
be a simple function on (X, ̂ ~, m). Set

(12) G(f) = \f(x)g(y)\(dx,dy).

Then

\G(f)\^\\g\u\\f(x)\\(dx,dy)

Thus (12) defines for each # e LM a bounded linear functional G on a
dense subset of Lx. It follows that there exists a function Tg e L«,
such that
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<13) (/, Tg) = j f(x)g(y)X(dx, dy)

for all fe Llo If g ^ 0, then G is a positive functional so that Tg Ξ> 0.
Thus T is a positive linear operator on L«, Clearly, Γ l = 1. More-
over,

I Tg(x)m(dx) = I g(y)X(dx, dy) .

Γ Γ
Since λ is doubly stochastic, it follows that I Tg — \ g for all simple
functions g and hence for all g e L^, Thus T is a Markov operator.
Since (10) is clearly a special case of (13), the proof is complete.

Suppose that T — Tφ is determined by a measure-preserving transfor-
mation φ e Φ. Then according to (10) and (9) ψ determines the doubly
stochastic measure λ^ defined by

(14) \(A x B) = m(A Π φ~ιB) .

Thus λ^ is concentrated on the graph of φ« Such measures are some-
times referred to as permutation measures .

4* Weak approximation* We are now in a position to prove
the main result of this paper.

THEOREM 1. M is a compact convex set of operators and Φ is
dense in M in the weak operator topology of Lp, 1 < p < <χ>o / /
(X, j ^ ~ , m) is a separable measure space, then M is metrizable.

ProofΌ The convexity of M is clear. Let us show that M is
compact. Suppose that T belongs to the closure of M in the weak
operator topology of bounded linear operators on Lp. Since L^czLpftLq,
where 1/p + 1/q = 1, and since (/, Tg) is a continuous function of T
for each fixed feLp1geLq, it follows that T has the properties (3)~
(5) of § 2. For instance, (3) is equivalent to

It follows from (3) and (4) that T maps L^ into itself. Thus T is a
Markov operator and M is closed. Since Lp is reflexive, the closed
unit sphere in the space of bounded linear operators on Lp is compact
([2], p. 512). Since || T\\p ^ 1 for each TeM, it follows that M is
compact.

Note that each of the weak operator topologies corresponding to
different values of p is stronger than the weak topology on M de-
termined by the functionals (/, Tg) for f^geL^o Since the latter is,
nevertheless, a Hausdorff topology and since M is compact in each of
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the weak operator topologies, it follows that they all coincide and
hence there is no ambiguity in referring to the weak operator topology
on M.

Now suppose that (X, J ^ , m) is separable. Then Lp and Lq are
separable in their norm topologies. Let {/„} and {gn} be dense sequences
in Lp and Lg, respectively. The series

τ ) = v v 1 . \(fn,(T-S)gm)\

is uniformly convergent in S and T and thus defines a continuous
(weak operator topology) metric on Mo It follows that the resulting
metric topology is weaker than the weak operator topology and hence,
by the compactness of M, that the two topologies coincide.

It only remains to show that Φ is dense in M. A basis for the
weak operator topology of M is given by all sets of the form

(15) {T: \(fk, Tgk)-(fk, Togk)\ < ε, k = 1, , n}

where fk and gk run through a dense subset of L2, Toe M and ε > 0.
In particular, we may take fk and gk to be continuous. (Recall that
X has a natural topology for which X is compact and m is regular.)
In this case they are bounded and, by the arbitrariness of ε in (15),
we may assume that they are bounded by lβ Let ToeMB We shall
show that there exists a measure-preserving transformation φ such
that Tφ belongs to the set (15).

For A.Be^ we introduce the notation

λo(A xB) = (χA, ToχB)

Xφ(A x B) = (χA, TφχB) - m(A n φ~ιB) , φ e Φ .

According to the lemma of § 3, λ0 and λ^ may be extended to doubly
stochastic measures on (X2, ̂ βr2)o Let us set hk(x, y) — fk(x)gk(y),
k = 1, , n. According to (13), we have

(Λ, Togk) - \ hkd\Q

and

(fk, Tψgk) = 1 hkdXφ .

Since each hk is uniformly continuous on X2, it follows that there
exist disjoint sets Xu — , Xse ^ such that X=\J*i=1Xi and the
oscillation of each hk is less than ε/3 on each rectangle X{ x X3 ,
i, j — 1, •••, s. Since λ0 is doubly stochastic, we can choose, for each
i — 1, , s, disjoint measurable subsets Xi3 of X{ such that m(Xi3) =
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λo(Xί x Xj), j — 1, , So (Recall that X is nonatomic.) Similarly, for
each i = l, ,s we can choose disjoint measurable subsets Yi3 of Xj
such that m(Yiά) = λo(Xί x X3 ), i = 1, , s. For each i and j" there
exists an invertible measure-preserving transformation φi3 of X^ onto
Yi3 since X^ and Y^ are both homogeneous with the same character
and the same measure. Define φ on X by

We shall show that Tφ belongs to the set (15).

Since φ maps each Xir onto YίraXr and since Xt = U ^ J i r , it
follows that

XyiXi x Xj) = m(X, Π φ-'Xj) - m(X { i) = λo(X, x Xs)

for each i,j = l, ,s. Recalling that the oscillation of each of the
functions hk is less than ε/3 on each of the sets Xi x X3 and that

hk(x, y) I ̂  1, we have

hkdX0

( Λ , Γffflffc) - ( Λ , Γog/C) I

i

-u i \ f y v y ^ Λ (y v y ^ it
i I ί\jφ\u^Li A - A J 7 /\;Q\-Λ.̂  A y\.j) |j

and the proof of Theorem 1 is complete.

5, Strong and uniform approximation* Since convex sets have
the same closure in the weak operator and the strong operator topologies
([2], p. 447), we immediately obtain the following approximation
theorem.

THEOREM 2. M is the closed convex hull of Φ in the strong
operator topology.

It is natural to ask whether Theorems 1 and 2 can be strengthened
to give M as the closure of Φ in the strong operator topology. The
answer, at least on L2, is negative as we shall now show.

Henceforth, all operator topologies will refer to operators on L2.
Let us denote by Φ1 the set of all (not necessarily invertible)

measure-preserving transformations of (X, J?~, m). Again we identify
Φ1 with a subset of M by setting Tψf(x) = f(φx), feL2. It follows
that ΦdΦ.dM.
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THEOREM 3. Φγ is the closure of Φ in the strong operator topology*

THEOREM 4. Φ is closed in the uniform operator topology.

Theorems 3 and 4 follow easily from Theorem 2 and a pair of
simple algebraic propositions which we give as Theorem 5 below. Note
that nothing is said about the closed convex hull of Φ in the uniform
operator topology. This is apparently still an open question.

THEOREM 5. Let T be a bounded linear operator on L2. Then
TeΦx if and only if T is doubly stochastic and isometric; TeΦ if
and only if T is doubly stochastic and unitary.

Proof. It is well known that every T e Φλ is isometric while every
TeΦ is unitary. Moreover, T is unitary if and only if both T and
T* are isometric. Thus the second part of the theorem follows from
the first. It only remains to show that every TeM which is iso-
metric is induced by a measure-preserving transformation φ of X.

Suppose that T e M is isometric and let A and B be measurable
subsets of X. Then

\χ (TχΛ)(TχB)dm = (TχA, Tχΰ) = (χA, χB)

(16) =(XΛ^l) = (TχΛnB9l)

= ( TχArίSdm.

However, since T is positive and 0 ^ χA ^ 1, we have that 0 ^ TχA <g
Γ l = 1 and so

(17) 0 ^ (TχAγ ^TχA^lo

It follows from (17) and (16) with A = B that (TχA)
2 = TχA and hence

that TχA is (essentially) the characteristic function of some measurable
set. Let us denote this set by ψ{A)o

Using the positivity of T again we have, moreover, that TχAΓB ^
min{TχA,TχB} so that

(18) 0 ^ TχA,B = (TχA,Bf rg (TχA)(TχB) .

From (16) and (18) we see that

TχAnB = (TχA)(TχB)

or

n B) = ψ(A) n ψ(B)
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for all measurable sets A and B. Thus ψ preserves finite intersections.
From the relations χAϋB = χA + χB - χ4njB and χ ,̂ = 1 — χA and the
fact that Tl = 1, it follows that ψ* preserves finite unions and com-
plements as well. From the relation

m(f (A)) = (TJU, Tl) = (χ^1) - m(A)

it follows that ψ preserves countable unions and intersections as well
as the measure.

It follows that there exists a measure-preserving transformation
φ of (X, jr, m) Such that ψ(A) == ̂ (-A) for all A e jrm Thus TχA(x) =
Xir(A)(x) = %A{φ%)- It follows that Γ coincides with 2^ on all simple
functions and hence on all of L2. This completes the proof of
Theorem 5.

It follows immediately from Theorem 5 that Φ is closed in the
uniform operator topology and that Φλ is closed in the strong operator
topology. According to Theorem 2, every element TeΦ1 is the limit
in the weak operator topology of a convergent net Ta of elements of
Φ. It follows that

|| ( Γ - Γβ)/||ϊ = 2(/,/) - (Tf, Taf)-(Taf, Tf)~>0

for each feL2o Thus Ta-+T and Φ is dense in Φx in the strong
operator topology. This completes the proofs of Theorems 3 and 4.
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