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PRIMAL CLUSTERS

ADIL YAQUB

In a series of recent publications [Math. Z, 66 (1957),
452-469; Math Z, 62 (1955), 171-188] Foster introduced and
studied the theory of a "primal cluster", —a concept which
embraces classes of algebras of such diverse nature as the
classes of all (i) prime-fields, (ii) "w-fields", (iii) basic Post
algebras. Here, a primal cluster is essentially a class {Ui} of
primal (=strictly functionally complete) algebras of the same
species such that every finite subset of {Ui} is "independent".
The concept of independence is essentially a generalization to
universal algebras of the Chinese residue Theorem in number
theory. Έach cluster, U, equationally defines —in terms of
the identities jointly satisfied by the various finite subset of
Us, class of " [/-algebras", and a structure theory for these
[/-algebras was established by Foster, —a theory which contains
well known results for Boolean rings, p-rings, and Post algebras.
In order to expand the domain of applications of this theory,
one should then look for primal clusters. In this paper a
permutation, ~, of ths residue class ring Rn, mod n, is con-
structed, such that {{Rn, X, ~)} forms a primal cluster. In
Theorem 9, which is the main result of this paper, it is shown
that a much more comprehensive (and quite "heterogeneous")
class K of algebras nevertheless forms a primal cluster. Indeed,
K here is the union of all nonisomorphic algebras in the classes
of all (i) residue class rings, (ii) basic Post algebras, and (iii)
"%-fields". Thus, the primal cluster K furnishes an extension
of the primal clusters which were previously given by Foster
(loc. cit.).

In a series of recent publications ([l]-[3]) Foster introduced and
studied the theory of a "primal cluster", —a concept which embraces
classes of algebras of such diverse nature as (i) the class of all prime-
fields, (ii) the class of all "w-fields", (iii) the class of all basic Post
algebras, and (iv) the union of the primal clusters (ii) and (iii) above.
Here, a primal cluster is essentially a class {[/;} of universal algebras
Ui (all of the same species), each is primal (=strictly functionally
complete), and such that every finite subset of {[/J is "independent".
The concept of independence is essentially a generalization to universal
algebras of the Chinese residue Theorem in number theory. Each
cluster, U, equationally defines—in terms of the identites jointly
satisfied by the various finite subsets of [/-a class of "[/-algebras",
and a structure theory for these [/-algebras was established in [1],
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—a theory which contains well known results for Boolean rings, p-rings,
and Post algebras. In order to expand the domain of applications of
this theory, we should then always look for primal clusters. Thus,
our present object, in part, will be to first establish that the class
{Rn} of all residue class rings, mod n, can be converted to a primal
cluster (with respect to suitably chosen operations). Indeed, we shall
construct a permutation, ~, of Rn such that (Rn9 x , ~) is a primal
algebra (Theorem 7). We will thus obtain a confirmation to an existence
theorem proved in [2, pp. 70-81], —a theorem which implies the
existence (but does not give the constructability) of such a permutation, ~.
In Theorem 9, which is the main result of this paper, we show that
a much more comprehensive (and quite "heterogeneous") class K of
algebras nevertheless forms a primal cluster. Indeed, K here is the
union of all nonisomorphic algebras in the classes of all (i) residue class
rings, (ii) basic Post algebras, and (iii) "^-fields". Thus, the primal
cluster K furnishes an extension of the primal clusters which were
previously given by Foster [3; p. 179],

1* Fundamental concepts* In this section, we recall the following
basic concepts of [1]. Let S — {nu n29 •••) be a given finitary species,
where the nx are positive integers, and let o19 o2, denote the primitive
operation symbols of S. Here, o{ is w-ary, ô  = oi (ζlf , ζw<). By
an expression <p(ζ, •••) of species S we mean a primitive composition
of one or more indeterminate-symbols ζ, via the primitive operations
oi9 As usual, we shall use the same symbols o{ to denote the primitive
operations of the algebras Uu 272, when these algebras are of
species S. We write "φ(ζ, •••) (U)" to mean that the S-expression ψ
is interpreted in the S-algebra U. This simply means that the primitive
operation symbols are identified with the corresponding primitive oper-
ations of U, and the indeterminate-symbols ζ, are now viewed as
indeterminates over U. Thus for unrelated S-algebras Uί and Z72,
φ(ζ, mm)(ϋi) will in general be quite unrelated to <p(ζ, )(U2).
"<p(ζ, •• )(U)" is also called a strict U-function. An identity between
the strict [/-functions /, ^-holding throughout £7-is called a strict U-
identity, and is written as /(ζ, •••) = g(ζ, •••)(£/). A finite algebra
U with more than one element is called primal if every (set-theoretical)
mapping of U x x U into U is expressible by a strict U~iunction.
Examples of primal algebras are wide spread. Thus, for example, the
two-element Boolean algebra, (F2, x , ~)(x = intersection, ~ = complement)
was shown in [1] to be primal. Other examples of primal algebras
are (see [1]):

( i ) The prime-field (Fp, x , ~), p — prime, and where

p).
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(ii) The basic Post algebra (Pn, x,~),n arbitrary. Here, Pn =
{0, pn-2, pn-3, * *, Pu 1}> ζ x V = m i n (C, ̂ )> where "min" refers to the
above ordering, and where (Γ = 1, 1~ = ft, p~ = p29 ...9 p~_2 = 0.

(iii) The "w-field" (F n , x , ~), w arbitrary. Here,

ί7. = {0,1, α, α2, ., α- 8 } , ( α - 1 = 1) ,

and where 0 x ζ = ζ x 0 = 0(ζe Fn). Furthermore, (Γ = 1, 1~ = α,
αΓ = α2, •••, (an~2y — 0. (For further examples, see [1].)

We now procede to define the concept of independence. Let [U^ —
{U19 , Ur} be a finite set of algebras of species S. We say that {£/<}
satisfies the Chinese residue condition, or that {£7J is independent,
if, corresponding to each set of expressions ^ , * ,φr of species S,
there exists a single expression 3F such that Ψ = φ^U^i = 1, •••, r) .

A primal cluster of species S is simply a class Z7 = {• , Uiy •} of
primal algebras, of species S, any finite subset of which is independent.

It was shown in [1] that numerous classes of algebras (of rather di-
verse nature), including those in (i), (ii), (iii) above, form primal clusters.

2* Independence* Let

% = pfi . . . <p\t px > . > pt ,

where pu ° ,pt are primes and klf

 a °,kt are positive integers. We
now have the following.

DEFINITION. With n, pu •••, pt9 Jfci, •••, ku as above, the residue
class ring Rn is of type 1 if kx — 1, and is of type 2 if kx > 1.

We procede to define a permutation, ~, of J?%. This we do in two
stages.

Case 1. If Rn is of type 1. In this case, let {l,a19 •• ,ασ} be
the set of all positive integers which are relatively prime to ply and
which do not exceed n, and choose the notation so that aλ aσ —
a^mo&ri). Define, ~, by the ordering

(2.1) ~: - def = 0, 1, pu 2Pl, . . . , (JL - ί)Pl, aσi aσ_u . . , a,
\p, J

i.e.,0Λ = 1, r = pu .- ,αΓ = 0 .

REMARK. If n is prime, the [p^ •••, {(n/pj) — 1}J>J is empty. If
w = 2, then both [pu , {(^/Pi) — l}Pi] and {̂ σ, , aλ} are empty.

Case 2. If J?w is of type 2. Then w = pi1 pf*, and where
k± ^ 2. Let φ(m) denote the familiar Euler ^-function (—number of
positive integers ^ m and relatively prime to m). Then



382 ADIL YAQUB

(2.1)' φiVΪ1'1) = VΪ1"1 - PΪ1-2 ^ PΪ 1 " 2 ^ 2fci-2 ^ fci - 1 .

Let {^( = 1), μ2y •••, jtίjfê i} be an arbitrary but fixed set of distinct
positive integers, each relatively prime to pλ and each less than pί1"1.
This is possible by (2.1)'. Moreover, let {1, η2, •••,%} be the set of
all positive integers which are relatively prime to p1 and which are
less than n. Now, define, ~, by the following ordering:

(2.2) If n = 4, ~: - def - 0, 1, 3, 2 .

(2.3) If n Φ 4, ~: = def = 0,1, τ?2, , ηt, pu μ2p19 , / ^ ^ , βλpx, ,

A,px where A,^ = def = (l-η2 27.) {(PiXμ^i) (μkl~ιPι)} (mod w) .

Here, the (possibly empty) set {βj>19 * ,βυ-iPi} gives the remaining
elements of Rn, arranged in an arbitrary but fixed way.

LEMMA 1. Suppose that En is of type 2, n Φ 4, and suppose
that, ~, satisfies (2.3). Then βvpt is distinct from 0,1, %, , r/B9

Pi, * °, μ^-iPi, and, Λ, is a permutation of Rn.

Proof. Clearly, βvpx Φ 0. Furthermore, βυp± Φ 1, η2, , ηs. If
&! > 2, then / S ^ = λj>J, for some λ, and the result follows since all of
the 7ji and μ3- are relatively prime to plm Hence assume hx = 2 (recall
that &i > 1 since i?w is of type 2.) Now, assume that n = pi1 ••• pϊ*9

and t > 1. Then # 2 e {)j>2, , )7S}, and hence βυpλ = λp^ 2 , for some λ.
Again, the result follows since {pu •••, ̂ fcl_iPi} = fe}. An easy appli-
cation of Wilson's Theorem shows that, in this case,

l ft Vs = ( - l ^ r n o d P l ) , (s - φ(pϊ) = p? - P l ) ,

and hence β j ^ Ξ ( —l)??1p1(modpi) ^ p^moάpl) unless pt — 2 (and hence
n = pi = 4). Hence, if n Φ 4, ft,^ is distinct from p l y and the lemma
is proved.

Following [1], we define a frame to be an algebra (£7, x , ~; 0,1)
of species (2,1) possessing distinguished elements 0,1 (0 Φ 1) such that

O x ζ = ζ x O = O , l x ζ = ζ x l = ζ (ζ e CO ,

and where ζ~ is a cyclic permutation of the elements of U such that

( Γ : = l .

Now, let, ~, denote the inverse of, ~, and as in [1], define

a x _ δ = (oΓ x δ~)~

It is readily verified that α x _ 0 = 0 x _ α = α.
We shall now state the following result of [1, p. 456] which is

very useful in proving the independence of algebras.
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LEMMA 2. Let Ulf U2, **,Urbe a set of frames,

If there exist (Vj expressions \i3 such that \i3 = j(W£M ^ — ^ ^ $ — r^J

then the algebras Uu •••, Ur are independent.

Proof. The proof is essentially a combination of the proofs of
Lemma 5.1 and Theorem 5.2 of [1], Indeed, if \i3 is as above, then
by defining

i;, = def = \\M\u)Ύ)T ,

one readily verifies that

Hence, there exist expressions \i3 such that l^ = Λ Q*f 1/A ^

1, , r) . Now, for each i = 1, , r, define

ζ) = def = |41 (ζ) | i 2 (ζ) |4r(ζ) (no \u term) .

It is easily verified that \{ (ζ) = jfwjy.y for all j Φ i. Now, to prove

the independence of Uu , Ϊ7r, let ^ x(ζ, •), , φr(ζ, •) be any set

of expressions of species x , ~, and define

Then it is easily seen that Φ(ζ, •) = ^ ( ζ , •)(£/*), i = 1, , r, and
the lemma is proved.

Suppose n = pϊ1 ••* pϊt,p1> > pu where each pi is prime and
where each k3- is a positive integer. Suppose that

(2.4) r . = def = n - -?L + k, .
Pi

It is readily verified that 2 ^ rn -^ n, for all n ^ 2. We now
have the following.

L E M M A 3. Let n,plf , pt, k19 •••,&* δe as above. Then

Pi Pi

for each i = 2, •••, t.

Proof. Let
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Then,

d =

If kx — h^ 0, then, clearly, we are through. Assume kx < k{. Then,
ki ^ 2. Hence,

d ^ — - (*i - h) ^ pf^p?*-1 - (fc« - 1)
PP

^ f̂̂ -1 - (fc« - 1) ̂  2 fc^-1 - (fc. - i ) > o ,

and the lemma is proved.

COROLLARY 4. A?M/ subset of {n — (nfp^ + kt — 1} distinct elements
taken from {0,1, 2, , n — 1} contains at least k{ multiples of the
prime p^i = 2, ••, t).

Proof. This follows readily from Lemma 3.
Again, we shall denote the elements comprising the residue class

ring, mod n, by Rn. We now have the following.

THEOREM 5. Let nly ',nt be any set of t distinct positive

integers, each n{ > 1, and let, ~, be defined as in (2.1) if E%i is of

type 1 and as in (2.2), (2.3) if JSΛ< is of type 2(i = 1, •••, t). Then

the algebras (JSΛi, x , Λ ) , •• ,(U n ί , x , ~) are independent.

Proof. In view of Lemma 2, and its proof, we will be through
if we can prove the existence of the expressions \iS of Lemma 2. We
shall construct these expressions in several stages. To simplify the
notation, denote by (Rn, x , ~) any (22n,, x , ~) any two distinct algebras
in the above set, and define

(2.5) E = ζζ~ζ~2 C™'-1 , where ζ ^ = ( {{ξ)Ύ Γ ,

^-iterations.

Case 1. J?% and J2Λ, are both of type 1. Let rn and rn, be defined
as in (2.4). We now distinguish the following subcases.

Case l(a). rΛ, < rn. By (2.4), (2.5), (2.1), and Corollary 4, it is
easily seen that
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Case l(b). rn < rn>. By symmetry, this is essentially the same
as Case l(a).

Case l(c). rn = rΛ,. Since w =£ n'f assume, without any loss in
generality, that n' < n. We distinguish two subcases,

( i ) If n*\n. It is readily verified that

{(£Γ»+1JBΓ»+2 E^+^-^iE^-1)}" = {

(ii) If %' I w. Then, one easily verifies that

2. Rn and i2%, are both of type 2. The argument here is
quite similar to the one given in Case 1. One need only replace in
the above proof (E~E~2 E"**-*)^*-1) by E~E~2 JSΓ' - 1 (see
(2.4), (2.3), (2.2), and Corollary 4); (E~*+1 j&~ +' -8)(JSΓ—x) by
( £ r ^ + 1 . . . £ r ^ + ^ - 1 ) , etc.

3. J?% and Rn, are of opposite types. Assume, without loss
of generality, that Rn is of type 1 and Rn, is of type 2. We distinguish
three subcases.

Case 3(a). n is prime. Since !?„/ is of type 2, therefore, by (2.1),

(2.2), (2.3), (2.5), and Corollary 4, (£Γ)2 = { J ^

Case 3(b). n not prime, n' — 4. Then by (2.1), (2.2), and Corollary

1{B%)m

Case 3(c). w woί prime, w' Φ 4. Then by (2.1), (2.3), and Corol-
lary 4,

- ί ) } Λ { ( ^

(Observe that, since, in addition, Rn is of type 1, therefore, using (2.4),
rn ^ 4). The proof of Theorem 5 is now completed upon using Lemma 2.

3* Primal clusters; principal theorem* In this section, we shall
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prove, among other things, that the residue class frames (Rn, x, ~) are
primal algebras, where, ~, satisfies (2.1) if Rn is of type 1, and satisfies
(2.2)-(2.3) if Rn is of type 2. First, we recall the following result
which is an immediate consequence of [2; Theorem 3],

LEMMA 6. Let (U, x, ~) be a finite frame, and let A{ζ) = 0 if
ζ = 0 and Δ{ζ) = 1 if ζ Φ 0 (ζ e 17). Suppose that A{ζ) is expressible
as a strict U-function. Then (U, x, ~) is primal.

We now have the following

THEOREM 7. The residue class algebra (Rn, x, ~), where, ~, is
as in (2.1)~(2.3), is primal.

Proof. Case 1. 2?̂  is of type 1. In this case, it is readily verified,
by (2.1), (2.4) and Corollary 4, that

The result now follows readily from Lemma 6.

Case 2. Rn is of type 2. In this case, it is easily seen, by (2.2),
(2.3), (2.4), and Corollary 4, that

Again, the result follows from Lemma 6, and the theorem is proved.
Now, an easy combination of Theorem 7, Theorem 5, and the

definition of primal cluster gives the following

THEOREM 8. The residue class algebras {R2fRZiRA1 * ,Rn, •••},
where Ri = (i^, x , ~) and where, ~, is determined by (2.1)-(2.3), form
a primal cluster.

It was proved in [3; p. 179] that the class consisting of F2, P3, FZj

P41 F1*, > where Fn and Pn denote the n-field and basic Post algebra,
respectively, (see examples (ii), (iii), Section 1) forms a primal cluster.
We shall now prove the following

THEOREM 9. PRINCIPAL THEOREM. The class

{ί u u {p«u. u {RX^

is a primal cluster with respect to the above operations.

Proof. First, we recall that the primitive operations of the algebras
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under consideration have been given in examples (ii), (iii), § 1, and
in (2.1)~(2.3). Now, in view of the remarks immediately preceding
Theorem 9, together with Theorem 8, Lemma 2, and the definition of a
primal cluster, we will be through if we can show that: (A)(Bnf x , ~),
and (Pn,, x,~), if nonisomorphic, are independent, and (B)(Rn, x , ~)
and (Fn>, x , ~), if nonisomorphic, are independent.

Proof of (A). First, Rn and Pn, are isomorphic if and only if
n — nf = 2. Assume then that n ^ 2 and nr ^ 3. We now distinguish
the following cases.

Case Al. n — p Φ 2\p, prime. Then it is easily verified, by (2.5)
and Fermat's little Theorem, that

Case A2. n = 2. Then, w' Φ 2. Clearly

Case A3. n not prime, Rn of type 1. Then

(E-ET {{ 2) ,

Case A4. ^ ^oί prime, Rn of type 2. Then

Assertion (A) now readily follows from Lemma 2.

Proof of (B). It is easily seen that (Rn, x , ~) and (i^,, x , ~) are
isomorphic if and only if n = nf = 2 or ^ = nf = 3 (see example (iii),
§ 1, and (2.1)). Assume then that w/ ^ 4, w ^ 2. We now distinguish
the following cases.

Case Bl. n' = n = p = prime. Then {{E~E~2 JE7~* —a)~)̂ —r =

V)
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Case B2. n prime, n' Φ n. Then (E~E~n)n>-1 =

Case B3. n not prime, Rn of type 1. Then E~E~2 =

Case B4. n not prime, iίw of type 2. Then (.K^)^'-1)* = \V>ζn')

Assertion (B) now readily follows from Lemma 2, and the theorem is
proved.
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