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SINGULARITIES IN A VARIATIONAL PROBLEM
WITH AN INEQUALITY

BORIS GARFINKEL AND GREGORY T. MCALLISTER

The subject of the paper is the variational problem of
Lagrange with an inequality in the form (a) φ(x, y) ^ 0 or (b)
Φ(%> V> V!) ~ 0. The question of existence and uniqueness of
the continuation of a minimizing arc is investigated at points
of the boundary φ = 0. Various phenomena, including splitting
of extremals, dead-end, entry into, and exit from the boundary,
are treated and the conditions for their occurrence are derived.
The nature of the continuation is related to the 'index"
associated with an extremal.

An appendix extends the results to a control problem of
the Mayer type.

In the variational problem of Lagrange with the inequality (a)
φ(x, y) :> 0 or (b) Φ(x, y, y') ^ 0, case (a) has been treated by Bolza [3]
and Mancil [6], and case (b) by Valentine [8]. Despite the relative
antiquity of the problem several questions have remained unresolved.

A difficulty arises when an extremal of the problem has no unique
continuation. We distinguish continuations in the region φ > 0, and
continuations in the boundary φ = 0, Let the type of continuation
not be specified a priori, and let H denote the corresponding Hubert
determinant of the composite arc. As will be shown, in case (a)

Λv -i
0 Φ

and H = 0 if and only if φ = 0; in case (b)

V Φ '

where λ is a Lagrange multiplier and F= f+XΦ, and H— 0 if and only
if φ — x, = 0. Since a solution generally contains points of the boundary,
clearly the singularities defined by H = 0 deserve attention. For not
only do they arise in practical problems, as noted by Garfinkel [5] and
others, but they are also of intrinsic mathematical interest.

A systematic treatment of such singularities is undertaken here.
Various phenomena, including splitting of extremals, dead-end, entry
into, and exit from the boundary, will be treated and the conditions
for their occurrence derived. It will be shown that case (a) exhibits
the splitting and the dead-end, in contrast case (b), where a unique
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continuation exists.

Let R be a set of points (x, y, w) for which xλ ^ x ^ x2 and

Φ(x, yf w) ^ 0. Assume that functions f(x, y, w) and φ(x, y, w) have

continuous derivatives of order r + 2 in R. An admissible arc y(x)

has a piece wise continuous first derivative, with a possible discontinuity

in y', i.e. i/(x) is of class (C1, D1) in the notation of Bolza, with

(%, V, V') ίn RJ a n ( i its end-points (^, y{x^), (x2,2/(#2)) fixed. In the

class of admissible arcs, we seek a τ/(#) that minimizes the integral

f(x, y, y')dx .

Within this general formulation, we shall investigate the singularities
that arise on φ = 0.

The attack on the problem begins in § 2 with a discussion of the
necessary and sufficient conditions I-IV of the calculus of variations,
which are applied in §§ 3 and 5 to the point of junction of the region
and the boundary subarcs. Finally, the singularities in question are
treated in §§ 4 and 6.

A restatement of the known and relevant theory, designed to unify
the subject and to provide a sufficient background for the current
development, is incorporated in §§2, 3, and 5.

2* Necessary and Sufficient Conditions* Let R and B be the
subsets of R for which Φ > 0 and φ = 0, respectively. Subarcs in R
and B will be referred to as region, or i?~subarcs, and boundary, or
B-subarcs, respectively, and may be abbreviated as R and B.

An admissible curve y(x) is generally compounded of iϋ-subarcs,
on which Φ > 0 and λ — 0, and of 2?-subarcs, on which φ = 0 and
λ Φ 0 is admitted. Let such a composite curve lie in R for xx 5Ξ! x < ξ
and in B for ξ ^ x ^ x2, and have no corners except possibly at the
junction x — ζ.

Construct the function F' = f + λ^, where the Lagrange multiplier
X(x) satisfies λ^ = 0. For the sake of notational compactness, define
the (n + 1) — vectors z — (x, y) and p(x, y, y'):

(2) Po = F-y'-Fy> , Pi = K>i, i = l, Λ,

where the dot denotes the inner product of vectors. Then condition
I, dJ^O implies the Euler condition

(3) (la) -d-F,. = F,, Xφ = 0 ,
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holding between corners; the Weierstrass-Erdmann condition

(4) (Ib) Δp dz\ξ = 0,

for all dz satisfying d^ = 0 at x = ζ, with Δp = p+ — p_ denoting a
jump in p(x); the convexity condition

( 5 ) (I c) λ(flj) ^ 0 .

The latter was derived by Bolza for case (a), and by Valentine for
case (b). We shall use the term extremaloid [7] to describe arcs that
satisfy la, Ib, and Ic.

The necessary conditions for a minimum also include condition II
of Weierstrass, condition III of Legendre, and an appropriate modifi-
cation of condition IV of Jacobi. These conditions and the sufficient
conditions Π^ [1], III', and IV are well known, and the last two can
be found in Valentine. For the purposes of our paper, we shall im-
pose the following condition ΠΓ', which is somewhat stronger than III':

Fyryr is a positive-definite matrix for all (x, y, λ) on the extremal
and for all y'.

3* Non-Singular Points in Case (a)* The question of existence
and uniqueness of an extremal continuation at points that are neither
corners nor junctions has been settled by the Hubert Differentiability
Theorem [2]. On R and on B, the hypothesis of the theorem is the
nonvanishing of the Hubert determinants; i.e.,

Hί=\f,.9.\*0, (R)
( } Ht = φ9-?y.v. Φ,Φ0, (B)

where the symbol A denotes the adjoint of a matrix. The condition
is assured by III" and by the assumed normality φv Φ 0 on the extremal.
Then the theorem implies that y" and λ exist and are in Cr, and that
the Euler equations have a unique solution.

The behavior of extremals at junctions has been investigated with
the aid of the corner condition. Since φy, == 0, dz(ξ) in (4) must satisfy
dφ = φz dz = 0 and Δp dz = 0, which implies

( 7) Δp = κφz at x = ξ ,

where K is a constant of proportionality. From the system (7), of n + 1
equations, the n + 1 unknowns, y+, it are to be determined. At a
corner, the E'-function with arguments yr = y_ and Y' = y\ is given
by the expression
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( 8 ) E(yL, y'+) = Δf - (f,L)-Ay' = κφ'+ .

For entry into the boundary, Φ\ = 0 and (8) implies E = 0. Since
/ is in Cr+2, fy,y, exists and is continuous. By the Mean Value Theo-
rem applied to (8), there exists a number θ in the interval (0,1) such
that

(9 ) E(y'_, y\) = Δy'-UAV- + OΔy'YΔy' .

Condition III" and E = 0 then imply

(10) Δy> = 0 , ^ = 0 .

The corner condition is then trivially satisfied with Jp = 0, K — 0,
and the incident extremal must be tangent [4] to the boundary ψ = 0.
It may be pointed out that, in order to establish (10), the positive-
definiteness of /„,„, is required only for θ in (0,1). Hence condition
III" is stronger than necessary.

Entry is thus subject to the conditions

(11) φ = φ* =0 at x = ξ ,

connecting the two unknowns ξ and ak, where <xk is suitably chosen
among the n parameters of the family y(x, a). It is noteworthy that
a degree of freedom is lost upon entry, with the ^-parameter family
of i2-extremals degenerating into an (%~l)~parameter family of i?~ex-
tremals, with ak fixed.

At a point of exit from the boundary, the tangency condition (10)
is established by symmetry. Thus, while entry is limited to iϋ-arcs
that are tangent to the boundary, exit from the boundary is unrestricted
provided X(ξ) < 0. The variable ξ thus becomes a family parameter
of the emergent i?~arcs, replacing the lost, parameter ak, and the degree
of freedom lost on entry is restored on exit. While (10) is necessary
for both transitions, it is by no means sufficient, as will be shown in § 4.

Since y' is continuous, and since y" and λ are generally discontinuous
at junctions, it follows from the Hubert Theorem that y"(x) and λ(sc)
are in (Cr, D°).

4* Singularities in Case (a)* On a composite arc, the system (3)
is linear in the unknowns y", λ and has the Hubert determinant

(12) fv'V ~Φ>
0 φ

= Φ\fv>

A unique solution exists if and only if H Φ 0 at x = ζ. Accordingly,
we define singular points by the condition H = 0, which implies φ — 0
in virtue of ΠΓ. Singularities therefore occur on φ = 0 in transitions
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classified below:

Table 1.

Type

Region-boundary
Boundary-region
Region-region
Boundary-boundary

Types of Transition

Symbol

RB

BR

RR

BB

Name

entry
exit
nonentry
nonexit

Remarks

nontrivial
nontrivial
trivial
trivial

Let us define p as the least integer such that p ^ r and
) φ y{l+2)(ξ) in a nontrivial transition. The exceptional case where

p does not exist is treated in Appendix 1.

LEMMA (a). // φy, = 0, Φy Φ 0 on the extremal, and I II" holds,
then at a singular point x = ξ

(13) Δφ{P+2)ΔXiP) ^ 0 ,

where the equality holds only for the trivial transitions, with both
factors vanishing.

Proof. For a nontrivial transition an application of the jump
operator Δ to the Euler equation in (3) yields

(14) fv'v' Ay"(ξ) = φyΔX(ξ) ,

in view of the continuity of y and y'. It follows by III" and normality
that both Δy" and ΔX vanish or do not vanish simultaneously. The
definition of p and the successive differentiation of the Euler equation
leads to

By analogous reasoning, the application of the zί-operator to the
function φ" yields

(16) φy Δyff(ζ) = Δφff(jζ) ,

and

(17) Φy dy{P+2)(ζ) = Δφ{P+2)(ξ) .

The elimination of ΔyiP+2) from (17) and (15) now leads to

(18) Δφ{P+2) = (Φy-fy*y> Φy)ΔX{P)

and, finally, by III" and normality, the conclusion follows.

COROLLARY (a). Under the same hypothesis.
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(19) 0?+»\?} < 0 ,

where the two factors belong to the R and the B continuations re-
spectively.

Proof. Two cases occur, which shall be referred to as (R) and (B).

Case (R). If ξ belongs to a JS-arc, the RB and the RR transitions
must be considered. For the RB transition \(x) = 0, λ?}(£) = 0 for
x^ξ, and Φ(x) = 0, Φf+2)(ζ) = 0 for x^ξ. Hence (13) becomes
φ(p+vχ(p) < o, where the two factors are the lowest non-vanishing
derivatives at f. For the RR transition all the existing derivatives of
y(x) are continuous at ζ, so that φ{J!+2) = φ{^+2]. Since Φ_ refers to the
same i?-are, the last two equations imply (19).

Case (B). If ξ belongs to a i?-arc, the BR and the BB transitions
must be considered. Analogous reasoning shows that ^+ 2 )λί? < 0 and

λ(p> = λ(p)> a g a i n fading to (19).

We shall now inquire whether the two continuations indicated in
(19) meet both the requirements Φ ̂  0 and λ <* 0. The question is
settled by

THEOREM (a). If the hypothesis of Lemma (a) holds, then the
extremal has either two continuations or none:

(1) for p even, there exists a continuation in the region and a
continuation in the boundary]

(2) for p odd, there is no continuation.

Proof. Case (R). If ξ belongs to a iϋ-arc, the dominant terms of the
Taylor series expansion of X(x) and Φ{x) about ζ in powers of ε = | x — ξ |
are given by:

λ(ί + e) = ε^fiΰ/pl + ,
{ Φ(ξ±e) = (±1)V+V(P+S)(£)/(P + 2)! + , (RR)

for the RB and the RR continuations respectively. Since the given
.β-arc is admissible, φ(ξ — ε) > 0. Then (20) and (19) imply exactly
two possibilities:

(1) p is even: φ<p+2) > 0, φ(ξ + ε) > 0, λ?} < 0, λ(f + ε)< 0.
The RB and the RR transitions satisty the respective requirements
λ(£ + ε) < 0 and φ(ξ + ε) > 0. Both continuations being possible, an
extremaloid arc tangent to the boundary at x — ξ splits off a boundary
subarc.

(2) p is odd: φ(P+2} < 0, φ(ξ + ε)< 0, \(f > 0, X(ζ + ε) > 0.
Both transitions violate the respective requirements, and neither con-
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tinuation is possible; the extremaloid thus comes to a dead-end.

Case (B). If ξ belongs to a J3~arc, (20) is replaced by

Φ(ξ + e) = 6'+V?+1)(f)/(P+2)I + , (BR)
{ } λ(ί ± ε) = ( ± l ) W P ) ( f ) / p ! + . (BB)

Since the given i?-arc satisfies λ(f — ε) < 0, (21) and (19) again imply-
exactly two possibilities:

(1) p is even: λ(P) < 0, X(ξ + ε ) < 0, φ{*+2) > 0, ψ(ξ + ε) > 0.
Both continuations being possible, a boundary extremaloid splits off, at
x — ξ, a tangent subarc.

(2 ) p is odd: λ(2)) > 0, X(ζ + ε) > 0, ^ + 2 ) < 0, Φ(ξ + ε ) < 0.
Neither continuation being possible, the extremaloid comes to a dead-
end.

An illustration of the theory is furnished by the following example.
Consider a boundary extremal subarc at ξ = 0 with

/ = VΓ+ψ , φ = y - x* .

Then y(x) = x\ y' = Sx\ y" - 6x, y'" = 6. From (3)

= 6α?(l + 9^4)~3/2 .

Hence λ(£) = 0, λ'(ί) = 6, and j> = 1. Since p is odd, case (2) applies,
with the diagnosis of a dead-end. A string stretched along a convex
boundary φ — 0 provides a physical interpretation of the fact that a
geodesic y(x) has no continuation beyond a point of inflection, where
y"(ξ) = 0 and y'"(ξ) > 0.

5. Nonsingular Points in Case (b)* As in § 3, an extremal has
a unique continuation between junctions. A significant change in the
analysis leading to (6) is the replacement of (/, λ, φyf φ") by (F, λ', φy,, φ')
respectively, with the assumed normality φy, Φ 0 on the extremal.
There follows the conclusion that the Euler equations have a unique
solution y" and λ'.

Since φy, Φ 0, dz in (4) is arbitrary and the corner condition be-
comes

(22) Δp(ζ) = 0 ,

which furnishes n + 1 equations from which the n + 1 unknowns y+,
λ+ are to be determined. Hence

(23)
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by reasoning analogous to that in § 3. An assumption on F like the
one in (9) finally implies

(24) Δy' = 0.

From (24) and (23) it follows that λ+ = 0; since λ_ = 0, λ is continuous
at ξ, and

(25) AX = 0 .

Entry is thus subject to the conditions

(26) # = 0 , Δy' = 0 , AX = 0 .

By symmetry, the conditions

(27) X = 0 , Δy' = 0 , J λ = 0

hold for exit. In both transitions, the unknowns ζ, y\9 λ+ are com-
pletely determined. That these conditions are not sufficient will be
shown in § 6.

Since yf and λ are continuous, and since y" and λ' are generally
discontinuous at junctions, it follows from the Hubert Theorem that
y"(x) and X'{x) are in (Cr, D°).

6. Singularities in Case (b)* For a composite arc the system (3)
is replaced by

(28). jLFy, = Fy, jL(Xφ) = 0,
ax ax

which is linear in y", X' and has the Hubert determinant

(29) H =
My Φ

= Φ I Fry, I -

From ΠΓ, normality, and λ^ = 0 there follows H — 0 if and only
if φ = x = 0.

LEMMA (b). If φy> Φ 0 on the extremal, and III" holds, then at
a singular point x = ξ

(30) Δφ<p+l)Δ\{P+1) ^ 0 ,

where the equality holds only for the trivial transitions, with both
factors vanishing.

The proof proceeds as in § 4, Lemma (a), with the replacement of
(λ, Φy, Φ") by (-V, Φr, Φ') in (14-18).
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COROLLARY (b). Under the same hypothesis,

(31) ^Vp+1)λ!?+1) > 0 ,

where the two factors belong to the R and the B continuations, respec-
tively.

The proof proceeds as in §4, Corollary (a), with the replacement
of Φ{P+2), λ(P) by φ{P+1\ λ(P+1), respectively.

THEOREM (b). If the hypothesis of Lemma (b) holds, then the
extremal has a unique continuation:

(1) for p + 1 even, a R-arc continues in R, and a B-arc con-
tinues in B;

(2) for p + 1 odd, a R-arc continues in B, and a B~arc con-
tinues in R.

Proof. Case (R). Equation (20) is replaced by

λ(ί + e) = s^xrm/iP + 1)! + , (RR)
{ } Φ(ξ±e) (±iγ^+ψ9^(ξ)/(P + 1)! + . (RB)

Then (32), (31) and Φ(ξ - ε) > 0 imply either (1) or (2):
( 1 ) p + 1 is even: the quantities Φ{P+1), Φ(ξ + ε), λ?+1>, λ(f + ε)

are positive; the extremaloid continues in the region and no entry can
occur.

( 2 ) p + 1 is odd: the same quantities are negative, so that entry
is the unique extremaloid continuation.

Case (B). Equation (21) is replaced by

Φ(ξ + ε) = 6>+V?+1) (f )/(p + 1)! + , (BR)
( ) λ(ί ± ε) = (-lγ+V+W+vMKP + 1)! + . (BB)

Now (33), (31), and X(ξ - ε ) < 0 again imply either (1) or (2):
( 1 ) p + 1 is even: the quantities λ(P+1), λ(f + ε), φ{»+l), φ(ξ + ε)

are negative; the extremaloid continues in the boundary and no exit
can occur.

( 2 ) p + 1 is odd: the same quantities are positive, so that exit
from the boundary is the unique extremaloid continuation.

7* The Index of an Extremal* Since y{k+2)(x) at x — ζ_ exists
for k = 0, 1, •••, r and must be presumed known, the lowest non-
vanishing derivative of either φ(x) or X(x) at £_ can be determined.
This may be done by the repeated differentiation of

(34) Φ(x) = Φ(x,v(x),v'(x))

if the subarc is in R, or of the Euler equation
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(35) A φy, -
dx

- f. = 0

if the subarc is in j?. Let g be the order to the lowest nonvanishing
derivative, and let the index i(ξ) be defined as 0 if q is even and as 1
if q is odd. Clearly i(x) = 0 almost everywhere; the exceptions are
dead-end in case (a), and entry and exit in case (b).

In terms of the index i(ξ), the behavior of an extremaloid can be
summarized by the following

THEOREM. If x = ξ is a singular point of an extremaloid, and
(a) If φyf = 0, then the extremaloid either splits, undergoing

both a trivial and a nontrivial transitions, or it comes to a dead-end,
depending on whether the index is zero or one.

(b) If φy, -φ 0, then the extremaloid undergoes a trivial or a
nontrivial transition, depending on whether the index is zero or one.

Note that this statement covers two situations not included in the
proofs of §§ 4, 6:

1. In case (a), if ΦL < 0 and q = i — 1, a dead-end occurs, since
a corner on the boundary is excluded by our assumption on F.

2. In case (b), if λ_ < 0 and q = i = 0, there is only a trivial
transition, BB. If φ(ξ) > 0, then i = 0, and only the trivial transition
RR occurs in both cases (a) and (b).

Details appear in Table 2, with N denoting the number of con-
tinuations, and the word Type referring to the type of transition.

Q

even
odd
even
odd

i

0

1
0
1

, (n)

φl

+
-
0

0

Table 2.

λ_

0
0
—

+

Behavior

N

2
0
2
0

on the Boundary

Case (a)
Type

RB (entry) and
dead-end

BR (exit) and
dead-end

RR

BB

JV

1
1
1
1

Case (b)
Type

RR
RB
BB
BR

The existence and uniqueness of extremaloid continuation have been
determined. The case Φ(x, y) ^ 0 exhibits the singularities of splitting
and dead-end, in contrast to the case Φ(x, y, yf) Ξ> 0, where a unique
continuation exists. In all cases, the nature of the continuation depends
on the extremaloid index ί(ζ); i.e. the parity of the lowest order of the
set of nonvanishing derivatives of either Φ(x) or X(x) at a given point



SINGULARITIES IN A VARIATIONAL PROBLEM WITH AN INEQUALITY 283

APPENDIX 1. An exceptional situation arises if the index i(ξ) does
not exist because all the existing derivatives of y(x) at ξ are continuous
in nontrivial transitions; i.e.

ΔyW(ξ) = 0, j = 0, 1, r .

Two cases are distinguished:
(1) The ambiguous case r < °o # Here the Taylor expansions of

φ(x) and λ(x) do not exist, and the signs of Φ{ξ + ε) must be deter-
mined by a direct solution of (3).

( 2 ) The degenerate case r = oo. Here the Taylor expansions are
identically zero, with φ == 0 and λ == 0; the two continuations are not
distinguishable, as Φ — 0 is an integral of the Euler equation.

APPENDIX 2. A control problem of the Mayer type is governed by

v' = o(χ, y, u) ,
Φ(x, y, u) ^ 0 ,

where the control variable u may be absent in φ. The transformation
u — vf converts the problem into the standard form of the calculus of
variations, with the set (y', vf), i.e. (y'f u), playing the role of the slope
functions of the field theory. Accordingly, the function F defined by

F=*-(-V' + g) + μφ , μΦ = 0

must satisfy the Euler equations. As before, two cases are distin-
guished: case (a) Φ — φ{x, y), and case (b) Φ = φ(x, y, u), with the
corresponding Hubert determinants

( a ) H=\Fuu\φ

(b) H= \Fu
uu

on the composite arc. These expressions are analogous to (6) and (29)
respectively; hence the conclusions of § 7 hold for the control problem
under consideration.
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