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DIFFERENTIABILITY OF SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS IN HILBERT SPACE

AVNER FRIEDMAN

Consider the differential equation

(1.1) -^ 4 r - Λ®u = f® &<t<h)
% at

where u(f)9 fit) are elements of a Hubert space E and A(t)
is a closed linear operator in E with a domain D(A) independent
of t and dense in E. Denote by Cm(a, b) the set of functions
v(t) with values in E which have m strongly continuous
derivatives in (a, b). Introducing* the norm

{'TO fδ U/2

Σo \vW(ί)\*dή
where | v(t) \ is the ϋJ-norm of v(t), we denote by Hm(a9 b) the
completion with respect to the norm (1.2) of the subset of
functions in Cm(a, 6) whose norm is finite. Set Hm = Hm(—oo9 oo)
and denote by H™ the subset of functions in Hm which have
compact support. The solutions u(t) of (1.1) are understood in
the sense that u(t)eHι{a!, b') for any a < af < br < b.

THEOREM 1. Assume that, for each a < t < b, the resolvent
R(λ, A(t)) = (λ- Ait))'1 of A(t) exists for all real λ, \λ \ ̂  N(t),
and that

(1.3) I R(λ9 A(t)) I ^ 1 ! ® - i f r e a l , \ λ \ ^ N ( t ) ,

where N(t), C(t) are constants. Assume next that for each
s e (a, b), A~\s) exists and

(1.4) A(t)A~ι(s) has m uniformly continuous ^-derivatives,

for a < t < b, where m is any integer ^ 1 . If u is a solution
of (1.1) and if feHm(a,b), then ueHm+ί(af,b') for any
a < a' < br < b.

THEOREM 2. If the assumptions of Theorem 1 hold with
m — oo, if A(t)A~ι(s) is analytic in t(a < t < b) for each s e (a, b),
and if f(t) is analytic in (α, 6), then u(t) is also analytic in (α, b).

In case E is a Banach space, an analogue of Theorem 1 was
proved by Sobolevski [3] and Tanabe [4] and an analogue of Theorem
2 was proved by Sobolevski [3] and Komatzu [2], but all these authors
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assume a stronger condition on the resolvent, namely, they assume
that (1.3) holds for all complex X with Im(X) Ξ> 0. On the other hand
analogs of Theorems 1, 2 were proved by Agmon and Nirenberg [1]
(for E a Banach space) under weaker bounds on R(X, A), but only in
the case where A(t) = A is independent of ί. It was shown in [1]
that the condition (1.3) is necessary if u e Cm+1(α, b) whenever fe Cm(a, 6).

Before proving Theorem 1 we wish to observe that (1.4) implies that

(1.5) A(s)A~1(t) has m uniformly continuous ^-derivatives.

Indeed, setting B(t) = A^A^s) and multiplying both sides of
B(t + h) - B(t) = B{t, h)h (here || B(t, h)\\ is bounded independently
of h, \h\ small) by B-\t), B~\t + h), we find that || B~\t) \\ is locally
bounded. We further find that B~\t) is continuous in t and also
differentiate, and (B-\t)Y = B~\t)B\t)B-\ty, (1.5) now easily follows.

Writing A(t)A~\s) = A(t)A-\s) [A(s)A-\s)] we see that if (1.4)
holds for one particular s — s and if AfflA-^s) is a bounded operator
for each s, then (1.4) holds.

2* Proof of Theorem 1* Consider first the case A(t) = A.

LEMMA 1. If fe HQ

m(m ̂  0), ueHo1 and (1.1) holds for - oo <

t < oo f ί/z,e^ u G £Γo

m+1 α^d

(2.1) I ^ L + i ^ C ( | / | m + \u\0)

where C depends only on A, m.

Proof. Taking the Fourier transform of (1.1) we get (λ — A)u(X) —
/(λ), hence

V2π u(t) = \N eiλtύ(X)dX + ("%ίλίjR(λ, A)f(X)dX + (°°eiλίi2(λ, A)f(X)dX
N J J

By Schwarz's inequality and PlanchereΓs theorem,

I ttx |1 + 1 ̂  C Γ I β(λ) I2 dλ ^ C| w
J

where various constants depending only on A, m are denoted by C
Next, if / is sufficiently smooth then

u^{t) = [~Neiλt{ίxyR{X, A)f{X)dX (0 ̂  j ^ m + 1) ,
J-oo

so that by PlanchereΓs theorem and (1.3),
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If now / is only assumed to belong to Ho

m, then the inequality
I u2 \m+i ^ C\f\l, follows by approximating / by sufficiently smooth
functions (for instance, by employing mollifiers and using the fact
that "weak" derivatives are also "strong" derivatives). Since a similar
inequality holds for u3, ueH™+1 and (2.1) holds.

Prom (2.1), (1.3) we get

(2.2) \Au\m^C(\f\m+\u\0).

LEMMA 2. Let the assumptions of Theorem 1 hold for (a, b) —
( — oo, oo), let the derivatives in (1.4) be uniformly bounded in t,
and let || B(t) || < δ where B(t) = [A(t) - A{s)]A-\s). If u is a solu-
tion of (1.1) in ( - oo, oo), if feHo

m(m ^ 0), ueH0\ A(s)ueHo

m, and
if δ is sufficiently small (depending only on A(s),m), then ueH™+1

and

(2.3) \u\m+1^C(\f\m+\u\0).

Proof, u satisfies

(2.4) 4 ^ - - A(s)u - B(t)A(s)u(t) + f(t) ,
% at

from which it follows that u e H™+1. Applying (2.2) with m = 0 and
taking δ < 1/2C(C as in (2.2)) we get | A(s)u |0 ^ C(\ f\0 + \ u |0). Next
applying (2.2) with m = 1 and using the last inequality we find that

Proceeding step by step one gets

(2.5) \A(s)u\m^C(\f\m+\u\Q).

(2.3) follows from (2.4), (2.5).
Setting vh(t) = [v(t + h) — v(t)]/h, we have the following

LEMMA 3. Let u e HS, u e Hm+1(m ^ 0) if and only if uh e Hm

for all h sufficiently small and | uh \m ̂  M, and, in that case,
I u | m + 1 S CM and \uh\m^C\u |m + 1.

The lemma is well known in the special case where u(t) is a
complex-valued function. The proof in the present more general case
can be given analogously, or also by expanding u(t) in terms of a
fixed orthonormal basis of E and applying the special case to each
component.

LEMMA 4. Lemma 2 holds even if the assumption that A(s)u € Hm

is dropped.



270 AVNER FRIEDMAN

Proof. Taking finite differences in (1.1) we get

1 du
dt

- A(t)uh = [Ah(t)A~\s)]A(s)u(t + h) + Λ(t) = φ(t; h) .

Since A(t)ue H° the same is true of A(s)u (using (1.5)) and of A(s)uh.
Lemma 2 can then be applied to uh with m = 0. We find (using
Lemma 3) that | uh |x ^ C; hence, by Lemma 3, ue H2. Then A(t)ue
H1 and we can proceed to apply Lemma 2 to uh with m — 1. Thus,
u e if3, etc.

Let ζ(ί) be a C°° function satisfying: ζ(t) = 1 if 11 — s | < ε,
ζ(ί) = 0 if I ί — s I > 2ε, where ε is sufficiently small. ^ = ζ% satisfies

% dt

Applying Lemma 4 with m = 1 we find that %e iϊ 2(s — ε, s + ε).
Similarly, by considering ^ = ζλu where ζλ(t) — ζ(2t — s) and applying
to it Lemma 4 with ra = 2, we find that u e iP(s — (l/2)ε, s + (l/2)ε)β

Proceeding in this manner, step by step, we find that ue
Hm+1(s — εu s + Si) for some ε1 > 0. Since s is an arbitrary point in
(α, &), the proof of Theorem 1 is complete.

REMARK. If u e Hm+1(a, b) then u(t) is equal almost everywhere
to (and therefore can be identified with) a function in Cm(α, b).

3* Proof of Theorem 2* It suffices to prove analyticity in a
small interval (α', 6') Furthermore, it suffices to show that for some
fixed 8e(a',b')f

TT rim

(3.1) I A(s)u |M_1>5 + I u U £ ° »»!

m - 0, 1, •; 0 < δ < P~°L

Γfδ'-δ "11/2

where I u L,δ = I I u{m)(t) \2 dt\ . The proof is by induction on m.
LJα' + δ J

To pass from m to m + 1 we differentiate (1.1) m times and thus
obtain

Let ζ(ί) be a smooth function satisfying: ζ(ί) = 1 if α' + <5 < ί < V — δ,
ζ(ί) = 0 if α' < ί < α' + δ'or if 6' - δ' < t < V, and | ζ'(ί) | ^
v z=z ζu{m) satisfies
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l__g_ _ A(t)v = ζφm + iζV> .
^ dt

If δ' — α' is sufficiently small then we can apply (2.3), (2.5) (with
m = 0) and thus obtain, if 8 = <5'(1 + 1/m) and if i J is sufficiently
large (independently of m, <5),

,a + I tt | m + l f β ^ C J ^ - (m + 1)! g - ^ ^ - (m + 1)!

use has been made of the inequalities
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