DIFFERENTIABILITY OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN HILBERT SPACE

Avner Friedman

Consider the differential equation

$$
\begin{equation*}
\frac{1}{i} \frac{d u}{d t}-A(t) u=f(t)(a<t<b) \tag{1.1}
\end{equation*}
$$

where $u(t), f(t)$ are elements of a Hilbert space E and $A(t)$ is a closed linear operator in E with a domain $D(A)$ independent of t and dense in E. Denote by $C^{m}(a, b)$ the set of functions $v(t)$ with values in E which have m strongly continuous derivatives in (a, b). Introducing the norm

$$
\begin{equation*}
|v|_{m}=\left\{\sum_{j=0}^{m} \int_{a}^{b}\left|v^{(j)}(t)\right|^{2} d t\right\}^{1 / 2} \tag{1.2}
\end{equation*}
$$

where $|v(t)|$ is the E-norm of $v(t)$, we denote by $H^{m}(a, b)$ the completion with respect to the norm (1.2) of the subset of functions in $C^{m}(a, b)$ whose norm is finite. Set $H^{m}=H^{m}(-\infty, \infty)$ and denote by H_{0}^{m} the subset of functions in H^{m} which have compact support. The solutions $u(t)$ of (1.1) are understood in the sense that $u(t) \in H^{1}\left(a^{\prime}, b^{\prime}\right)$ for any $a<a^{\prime}<b^{\prime}<b$.

Theorem 1. Assume that, for each $a<t<b$, the resolvent $R(\lambda, A(t))=(\lambda-A(t))^{-1}$ of $A(t)$ exists for all real $\lambda,|\lambda| \geqq N(t)$, and that

$$
\begin{equation*}
|R(\lambda, A(t))| \leqq \frac{C(t)}{|\lambda|} \text { if } \lambda \text { real, }|\lambda| \geqq N(t), \tag{1.3}
\end{equation*}
$$

where $N(t), C(t)$ are constants. Assume next that for each $s \in(a, b), A^{-1}(s)$ exists and
(1.4) $\quad A(t) A^{-1}(s)$ has m uniformly continuous t-derivatives,
for $a<t<b$, where m is any integer $\geqq 1$. If u is a solution of (1.1) and if $f \in H^{m}(a, b)$, then $u \in H^{m+1}\left(a^{\prime}, b^{\prime}\right)$ for any $a<a^{\prime}<b^{\prime}<b$.

Theorem 2. If the assumptions of Theorem 1 hold with $m=\infty$, if $A(t) A^{-1}(s)$ is analytic in $t(a<t<b)$ for each $s \in(a, b)$, and if $f(t)$ is analytic in (a, b), then $u(t)$ is also analytic in (a, b).

In case E is a Banach space, an analogue of Theorem 1 was proved by Sobolevski [3] and Tanabe [4] and an analogue of Theorem 2 was proved by Sobolevski [3] and Komatzu [2], but all these authors

[^0]assume a stronger condition on the resolvent, namely, they assume that (1.3) holds for all complex λ with $\operatorname{Im}(\lambda) \geqq 0$. On the other hand analogs of Theorems 1, 2 were proved by Agmon and Nirenberg [1] (for E a Banach space) under weaker bounds on $R(\lambda, A)$, but only in the case where $A(t) \equiv A$ is independent of t. It was shown in [1] that the condition (1.3) is necessary if $u \in C^{m+1}(a, b)$ whenever $f \in C^{m}(a, b)$.

Before proving Theorem 1 we wish to observe that (1.4) implies that

$$
\begin{equation*}
A(s) A^{-1}(t) \text { has } m \text { uniformly continuous } t \text {-derivatives. } \tag{1.5}
\end{equation*}
$$

Indeed, setting $B(t)=A(t) A^{-1}(s)$ and multiplying both sides of $B(t+h)-B(t)=B(t, h) h$ (here $\|B(t, h)\|$ is bounded independently of $h,|h|$ small) by $B^{-1}(t), B^{-1}(t+h)$, we find that $\left\|B^{-1}(t)\right\|$ is locally bounded. We further find that $B^{-1}(t)$ is continuous in t and also differentiable, and $\left(B^{-1}(t)\right)^{\prime}=B^{-1}(t) B^{\prime}(t) B^{-1}(t)$; (1.5) now easily follows.

Writing $A(t) A^{-1}(s)=A(t) A^{-1}(\bar{s})\left[A(\bar{s}) A^{-1}(s)\right]$ we see that if (1.4) holds for one particular $s=\bar{s}$ and if $A(\bar{s}) A^{-1}(s)$ is a bounded operator for each s, then (1.4) holds.
2. Proof of Theorem 1. Consider first the case $A(t) \equiv A$.

Lemma 1. If $f \in H_{0}^{m}(m \geqq 0), u \in H_{0}^{1}$ and (1.1) holds for $-\infty<$ $t<\infty$, then $u \in H_{0}^{m+1}$ and

$$
\begin{equation*}
|u|_{m+1} \leqq C\left(|f|_{m}+|u|_{0}\right) \tag{2.1}
\end{equation*}
$$

where C depends only on A, m.
Proof. Taking the Fourier transform of (1.1) we get $(\lambda-A) \hat{u}(\lambda)=$ $\hat{f}(\lambda)$, hence

$$
\begin{aligned}
\sqrt{2 \pi} u(t) & =\int_{-N}^{N} e^{i \lambda t} \widehat{u}(\lambda) d \lambda+\int_{-\infty}^{-N} e^{i \lambda t} R(\lambda, A) \hat{f}(\lambda) d \lambda+\int_{N}^{\infty} e^{i \lambda t} R(\lambda, A) \hat{f}(\lambda) d \lambda \\
& \equiv u_{1}+u_{2}+u_{3}
\end{aligned}
$$

By Schwarz's inequality and Plancherel's theorem,

$$
\left|u_{1}\right|_{m+1}^{2} \leqq C \int_{-N}^{N}|\widehat{u}(\lambda)|^{2} d \lambda \leqq C|u|_{0}^{2}
$$

where various constants depending only on A, m are denoted by C. Next, if f is sufficiently smooth then

$$
u_{2}^{(j)}(t)=\int_{-\infty}^{-N} e^{i \lambda t}(i \lambda)^{j} R(\lambda, A) \hat{f}(\lambda) d \lambda \quad(0 \leqq j \leqq m+1)
$$

so that by Plancherel's theorem and (1.3),

$$
\left|u_{2}\right|_{m+1}^{2} \leqq C \sum_{j=1}^{m+1} \int_{-\infty}^{-N}\left|\lambda^{j-1} \hat{f}(\lambda)\right|^{2} d \lambda \leqq C|f|_{m}^{2}
$$

If now f is only assumed to belong to $H_{0}{ }^{m}$, then the inequality $\left|u_{2}\right|_{m+1}^{2} \leqq C|f|_{m}^{2}$ follows by approximating f by sufficiently smooth functions (for instance, by employing mollifiers and using the fact that "weak" derivatives are also "strong" derivatives). Since a similar inequality holds for $u_{3}, u \in H_{0}^{m+1}$ and (2.1) holds.

From (2.1), (1.3) we get

$$
\begin{equation*}
|A u|_{m} \leqq C\left(|f|_{m}+|u|_{0}\right) \tag{2.2}
\end{equation*}
$$

Lemma 2. Let the assumptions of Theorem 1 hold for $(a, b)=$ $(-\infty, \infty)$, let the derivatives in (1.4) be uniformly bounded in t, and let $\|B(t)\|<\delta$ where $B(t)=[A(t)-A(s)] A^{-1}(s)$. If u is a solution of (1.1) in $(-\infty, \infty)$, if $f \in H_{0}^{m}(m \geqq 0), u \in H_{0}^{1}, A(s) u \in H_{0}^{m}$, and if δ is sufficiently small (depending only on $A(s), m$), then $u \in H_{0}^{m+1}$ and

$$
\begin{equation*}
|u|_{m+1} \leqq C\left(|f|_{m}+|u|_{0}\right) \tag{2.3}
\end{equation*}
$$

Proof. u satisfies

$$
\begin{equation*}
\frac{1}{i} \frac{d u}{d t}-A(s) u=B(t) A(s) u(t)+f(t) \tag{2.4}
\end{equation*}
$$

from which it follows that $u \in H_{0}^{m+1}$. Applying (2.2) with $m=0$ and taking $\delta<1 / 2 C\left(C\right.$ as in (2.2)) we get $|A(s) u|_{0} \leqq C\left(|f|_{0}+|u|_{0}\right)$. Next applying (2.2) with $m=1$ and using the last inequality we find that $|A(s) u|_{1} \leqq C\left(|f|_{1}+|u|_{0}\right)$.

Proceeding step by step one gets

$$
\begin{equation*}
|A(s) u|_{m} \leqq C\left(|f|_{m}+|u|_{0}\right) . \tag{2.5}
\end{equation*}
$$

(2.3) follows from (2.4), (2.5).

Setting $v_{h}(t)=[v(t+h)-v(t)] / h$, we have the following
Lemma 3. Let $u \in H_{0}^{0}, u \in H^{m+1}(m \geqq 0)$ if and only if $u_{h} \in H^{m}$ for all h sufficiently small and $\left|u_{h}\right|_{m} \leqq M$, and, in that case, $|u|_{m+1} \leqq C M$ and $\left|u_{h}\right|_{m} \leqq C|u|_{m+1}$.

The lemma is well known in the special case where $u(t)$ is a complex-valued function. The proof in the present more general case can be given analogously, or also by expanding $u(t)$ in terms of a fixed orthonormal basis of E and applying the special case to each component.

Lemma 4. Lemma 2 holds even if the assumption that $A(s) u \in H^{m}$ is dropped.

Proof. Taking finite differences in (1.1) we get

$$
\frac{1}{i} \frac{d u_{h}}{d t}-A(t) u_{h}=\left[A_{h}(t) A^{-1}(s)\right] A(s) u(t+h)+f_{h}(t) \equiv \varphi(t ; h) .
$$

Since $A(t) u \in H^{\circ}$ the same is true of $A(s) u$ (using (1.5)) and of $A(s) u_{h}$. Lemma 2 can then be applied to u_{h} with $m=0$. We find (using Lemma 3) that $\left|u_{h}\right|_{1} \leqq C$; hence, by Lemma 3 , $u \in H^{2}$. Then $\mathrm{A}(t) u \in$ H^{1} and we can proceed to apply Lemma 2 to u_{h} with $m=1$. Thus, $u \in H^{3}$, etc.

Let $\zeta(t)$ be a C^{∞} function satisfying: $\zeta(t)=1$ if $|t-s|<\varepsilon$, $\zeta(t)=0$ if $|t-s|>2 \varepsilon$, where ε is sufficiently small. $v=\zeta u$ satisfies

$$
\frac{1}{i} \frac{d v}{d t}-A(t) v=\zeta f+i \zeta^{\prime} u
$$

Applying Lemma 4 with $m=1$ we find that $u \in H^{2}(s-\varepsilon, s+\varepsilon)$. Similarly, by considering $v_{1}=\zeta_{1} u$ where $\zeta_{1}(t)=\zeta(2 t-s)$ and applying to it Lemma 4 with $m=2$, we find that $u \in H^{3}(s-(1 / 2) \varepsilon, s+(1 / 2) \varepsilon)$. Proceeding in this manner, step by step, we find that $u \in$ $H^{m+1}\left(s-\varepsilon_{1}, s+\varepsilon_{1}\right)$ for some $\varepsilon_{1}>0$. Since s is an arbitrary point in (a, b), the proof of Theorem 1 is complete.

Remark. If $u \in H^{m+1}(a, b)$ then $u(t)$ is equal almost everywhere to (and therefore can be identified with) a function in $C^{m}(a, b)$.
3. Proof of Theorem 2. It suffices to prove analyticity in a small interval $\left(a^{\prime}, b^{\prime}\right)$. Furthermore, it suffices to show that for some fixed $s \in\left(a^{\prime}, b^{\prime}\right)$,

$$
\begin{align*}
|A(s) u|_{m-1, \delta}+|u|_{m, \delta} \leqq & \frac{H_{0} H^{m}}{\delta^{m}} m! \tag{3.1}\\
& \left(m=0,1, \cdots ; 0<\delta<\frac{b^{\prime}-a^{\prime}}{2}\right)
\end{align*}
$$

where $|u|_{m, \delta}=\left[\int_{a^{\prime}+\delta}^{b^{\prime}-\delta}\left|u^{(m)}(t)\right|^{2} d t\right]^{1 / 2}$. The proof is by induction on m. To pass from m to $m+1$ we differentiate (1.1) m times and thus obtain

$$
\frac{1}{i} \frac{d u^{(m)}}{d t}-A(t) u^{(m)}=\sum_{j=0}^{m-1}\left(c_{j}^{m}\right)\left[A^{(m-j)}(t) A^{-1}(s)\right] A(s) u^{(j)}(t)+f^{(m)}(t) \equiv \varphi_{m} .
$$

Let $\zeta(t)$ be a smooth function satisfying: $\zeta(t)=1$ if $a^{\prime}+\delta<t<b^{\prime}-\delta$, $\zeta(t)=0$ if $a^{\prime}<t<a^{\prime}+\delta^{\prime}$ or if $b^{\prime}-\delta^{\prime}<t<b^{\prime}$, and $\left|\zeta^{\prime}(t)\right| \leqq C /\left(\delta-\delta^{\prime}\right)$. $v=\zeta u^{(m)}$ satisfies

$$
\frac{1}{i} \frac{d v}{d t}-A(t) v=\zeta \varphi_{m}+i \zeta^{\prime} u^{(m)}
$$

If $b^{\prime}-a^{\prime}$ is sufficiently small then we can apply (2.3), (2.5) (with $m=0$) and thus obtain, if $\delta=\delta^{\prime}(1+1 / m)$ and if H is sufficiently large (independently of m, δ),

$$
|A(s) u|_{m, \delta}+|u|_{m+1, \delta} \leqq C \frac{H_{0} H^{m}}{\delta^{m+1}}(m+1)!\leqq \frac{H_{0} H^{m+1}}{\delta^{m+1}}(m+1)!;
$$

use has been made of the inequalities

$$
\left|A^{(n)}(t) A^{-1}(s)\right|_{0}+\left|f^{(n)}\right|_{0} \leqq(\text { const. })^{n+1} n!.
$$

References

1. S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121-239.
2. H. Komatzu, Abstract analyticity in time and unique continuation property for solutions of parabolic equations, J. Facul. Sci. Univ. Tokyo, Sec. I, 9 (1961), 1-11.
3. P. E. Sobolevski, On equations of parabolic type in a Banach space, Trudy Moscow Math. Obsch. 10 (1961), 297-350.
4. H. Tanabe, On the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 363-376.

Northwestern University

[^0]: Received May 1, 1964. This work was partially supported by the Alfred P. Sloan Foundation and by the National Science Foundation Grant G14876.

