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CLASSES OF DEFINITE GROUP MATRICES

R. C. THOMPSON

Two positive definite symmetric n X n matrices A, B with
integer elements and determinant one are said to be congruent
if there exists an integral C such that B = CACT” (C7 is the
transpose of C). This is an equivalence relation. The number
of equivalence classes, C-classes, is finite and is known for all
n =16, Let G be a finite group of order n and let Y, Z be
two positive definite symmetric group matrices for G with
integral elements and determinant one. If an integral group
matrix X for G exists such that Z = XY X7 then Z,Y are
said to be G-congruent. G congruence is an equivalence re-
lation., In this paper the interlinking of the G-classes with
the C-classes is determined for all groups of order » =< 13.
The principal result is that the G-class number is two for
certain groups of orders eight or twelve and is one for all
other groups of order n < 13,

Let G be a finite group with elements g¢,, ¢,, *++,9,. Let x,,2,,---,2,
be variables and let X be an % X » matrix whose (7, j) element is x,
where k is determined by g, = ¢.97'. We say X is a group matrix
for G. In this paper we study group matrices which have rational
integers as elements. We call a matrix M integral if its elements are
rational integers, unimodular if the determinant of M = det M = =+1,
symmetric if M = M”* where M?” is the transpose of M. We let M*
denote the complex conjugate of M”. The words positive, definite,
symmetric, integral, unimodular are abbreviated as p,d, s, ¢, u, re-
spectively. We say pdsiu matrices M and M, are congruent if M, =
UMU* for some iuU. Congruence is an equivalence relation on the
set of n X n pdstu matrices, The number of equivalence classes
(briefly: C-classes) is finite and in fact [2] is one for 1 =< n <7, two
for 8 = n =11, and three for » — 12,13. If G is a finite group we
say pdsiu group matrices M and M, are G-congruent if M, = UMU”
for some tu group matrix U for (. Since sums, products, inverses,
and transposes of group matrices for G are still group matrices for
G, G congruence is an equivalence relation on the set of pdsiu group
matrices for G. Not much is known about the equivalence classes
(briefly: G-classes). In this paper we find all G-classes and determine
their relationship with the C-classes for all groups of order =» =< 13;
we also get a little information for % > 13. Our interest in this
problem stems from the following Theorem 1, proved in [8].
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176 R. C. THOMPSON

THEOREM 1. If a pdsiw group matric M for G is in the principal
C-class then M s in the principal G-class, when G 4s solvable.

The principal class is, of course, the class containing I,, the n X n
identity matrix.

One may ask: are there any pdsiw group matrices for G, other
than the identity?

THEOREM 2. There exist pdstu group matrices for G in addition
to the identity precisely when G 1s not any of the following types of
groups:

(1) the direct product of cyclic groups of orders two and/or four;

(ii) the direct product of cyclic groups of orders two and/or three;

(iii) the quaternion group or the direct product of the quaternion
group with cyclic groups of order two.

Proof. Combining the discussion on p. 340 of [6] with Theorem
11 of [1] shows that an %% group matrix for G exists which is not
a permutation matrix or the negative of a permutation matrix precisely
when G is not any of the groups (i), (ii), (iii). If M is an 4u group
matrix for G, not a permutation matrix or the negative of a permutation
matrix, then MM?” is a pdsitw group matrix for G and not the identity
since the (¢, 7) element of MM?” is the sum of squares of the integers
in row ¢ of M.

Concerning the finiteness of the G-class number, only the following
fact is known.

THEOREM 3. The G class number is finite if G is abelian.

Proof. This follows from the argument of [3], making use of
Lemma 2 of [7].

2. Two lemmas. Let P= P, be the n X » companion matrix
of the polynomial A» — 1, Letv =9, = (1,1, -+, 1) be the row n-tuple
in which each entry is one.

LEMMA 1. Let p be an odd prime and let ¢t be an integer prime
to p. Then =1 is a simple eigenvalue of P, x= —1 s mot an
etgenvalue, and v, spans the eigenspace of Pt belonging to N = 1.

Proof. The eigenvalues of P, are 1 and the p — 1 primitive pth
roots of unity. Hence this is also true of P} since ®’ is a primitive
pth root of unity if @ is and (¢, p) = 1. Thus 1 is a simple eigenvalue
of P} and —1 is not an eigenvalue. Since v,P, = v,, the last assertion
is immediate.
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Let @ denote the complex conjugate of a.

LEMMA 2. Let

P R

B aj\y x/\B « Y @

where a, B,y are complex numbers and x s a positive real number,
Let v* —|yP=1. If |aP—|BP =1 then z, < x implies |B] < |y
and x, < x implies |G| = |y|. If |la)f — | B = —1 then x, < x implies
la| < |y| and », = x implies |a| = |y|.

Proof. The cases « =0 or 8 =10 are easy. Let a 0,80,
la]* — |BF=1. Now |a|*+ |8 =1+ 2|8}, hence x, — x = 2x|B +
YaB + yaB < 0 if », < x. Hence 0 < 2z |B|* < —ya@B — yaB. By the
triangle inequality we get 2x|8[° < 2|y||«||B], hence z*| B < |y |*|a|* =
[y [*(X + [B[), therefore (x* — [y [) [ B < |y, or || < |y as required.
A similar computation holds when x, <« or when |a|’ — |B['= —1.

An n X n circulant is, by definition, a polynomial in P,. It is
also a group matrix for the cyclic group of order %#. Since P, is
unitarily diagonable, given a circulant

n—1

X =3 wP,
=0

there exists a unitary V, independent of X, such that VXV* =
dia’g (éo; Sly ty gn—l) Where

(1) £ =S w0 0=j=n—1.
i=0

Here w is a primitive nth root of unity. We make frequent use of
this fact. If Y = (Y,,) is partitioned into blocks Y;; each of which
is a circulant and if W=V +V + --- + V (+ denotes direct sum)
then each of the blocks in WY W* is diagonalized. One may find a
permutation matrix @ for which Q WY W*Q* splits into a direct sum.
In the computations of §§ 4-9 some of the direct summands will again
be circulants and so may themselves be unitarily diagonalized. In this
manner we obtain the unitary U and the irreducible constituents of
the group matrices of §§4-9. We also use the fact that a circulant
equation like Z = XY holds if and only if £,(Z) = &,(X)&(Y) for all ¢,

3. The C-classes @, + I;, where @, does not represent one,
Let @, be an r X r pdsiu matrix (not necessarily a group matrix) such
that z@,2” # 1 for any integral vector x.
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THEOREM 4. The C-class of @, + I; does not contain any group
matrix f there exists an odd prime divisor p of r + 5 which does
not divide 7.

Proof. Let m = r + j. Since @, does not represent one, it is easy
to find all integral n-tuples  for which 2(®, + ;)" = 1. The number
of such z is exactly 2j. Suppose X is a group matrix for some group
G, with X in the C-class of @, 4 I;, Then G contains an element a
of order p. Let H be the cyclic subgroup of G generated by a and
let ¢9,H, ¢g.H, ---, 9.H, (k = n/p), be the cosets of H in G. If we take
the elements of G in the order g¢,, g.a, g.@% -+, .0"7%, 9., 9.Q, §,0°, - - -,
Go0"7Y, e G, 010, 9,07, ¢+, g,a”, then the group matrix X partitions
as X = (X;;)i<i.i<s, Where each X;; isa p X p circulant, If Q = P, +
P,+ .-+ P, then QXQ" = X. Let = (%, 2, --+,2,) be a row
n-tuple, where each z; is a row p-tuple. If x is integral and xXa% = 1
then (@)X Q)" =1 for « =0,1,2,---,p — 1. If 2Q* = zQ? for
a pair «, 8 with 0 < 8 < a < p then 2Q*® = . This implies ¢, P7f = x;
for 1=<¢=<%k, and by Lemma 1, z,= 2 v,,1 <¢=<k. Since z; is
integral, )\, is an integer. Moreover, v, is an eigenvector of P,, hence
of any p X p circulant, hence v,X;; = r;;v,. Here r;; is an integer
(in fact the sum down any column of X;;). Now

13
e Xe' = > o, Xk

i7=1
k
= Z NN T35
%,5=1

= 0(mod p)

because v,v5 = p. This contradicts xXx” =1, hence 2Q* = 2Q°® is
impossible, If 2Q* = —2Qf then 2Q** = —z, so x,Py P = —2,1=
©t=k. By Lemma 1 this implies ;= 0. Hence = =0, a clear
falsehood. Thus +z@Q* for 0 < a < p are 2p distinet integral solutions
of yXy* = 1. 1If y is further solution then Q% 0 < «a < p are also
all different, If +yQ* = +2Q” then y = +2Q", for some v, 0 < v < p,
and this contradicts the choice of y. Thus the integral vectors
representing one come in nonoverlapping sets of 2p. We thus have
J = 0 (mod p). Since r + j = 0 (mod p), we get » = 0 (mod p), a contra-
diction.

Now let @, (for n = 0 (mod 4), n > 4) be the matrix on p. 331 of
[5]. Then it is known that @, is pdsiu and @, does not represent
one. Representatives of the nonprincipal C-classes up to n = 13 are
@y, Oy + I; for 1=75=5,0,09, + 1.
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COROLLARY. The only mon principal n X n C-classes for n < 13
that can contain a group matrixz are the C-classes of @y and @,,.

4. The dihedral group of order eight. The dihedral group of
order 2% is generated by two elements @, b with a™ = > = 1, b~'ab = a™"'.
If we take the elements in the order 1, a, @*, --+,a"*, b, ba,ba’, + - -, ba"*,
then the group matrix X has the form

A C
(2) XZ(B D)

where A, B, C, D are n X n circulants and C = B", D = A*, If n =
and A =« + P + «,P* + «,P*, B =« + «,P + x;P* + x,P? then
there exists a unitary U such that UXU* = (¢) + (&) + (&) + (¢) +
X, + X, where:

1
j
\

1 1 1 1.0
112 2 2 2| "
A 1 1 1 1
(8) 7 |2 22 | "
2 i1 11 7
’ 2 2 2 2 :
1 1 1 1
5 —_ - = il
L) L2 2 2 2_Lm~
(4) Ny = Byt Ty Wy = By b Xy, Yy = Xy b Xy Yy = X+ By,
A B, Cy— 1Dy
(5) XI:[”’.’X = WD
Cy+1iDy Ay — tBy]|

(6) Ay =28, — 7, By = 2w, — 1, Cx = 20, — 73, Dy = 225 — 7, .

For X to be 4u each of ¢, ¢, ¢, &, det X, must be 1 since each
of these is a rational integer. Since the matrix in (3) is unitary,

(7) i+t gi= (el + el + el +lal)/4=1.

Consequently as 7, 7, 7, 1, are rational integers, exactly one of
M ey U3y MWy 18 =1, and the other three are zero. Thus exactly one of
Ay, By, Cy, Dy is odd, the other three are even. From det X; = 41
we get det X; =1 if A, or By is even, det X, = —1 if Cy or Dy is
even, (Consider A% + B% — C% — D% = =1 modulo 4.) Conversely if
Ay, By, Cy, Dy are integers, one even, three odd, with A% + B% —
C% — D% = +£1 we can use (3), (4), (5), (6) to construct an <u group
matrix X. The pdsiu group matrices arise when ¢ —=¢,=¢ = ¢, =
h = 1’ Ax > 0.
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Now let Y, Z be pdsiu group matrices. Then Z = XYX7 holds
if and only if UZU* = (UXU*(UYU*(UXU*)*; and this holds if
and only if Z, = X, Y, X*, and ¢,(Z) = ¢,(X)e;(Y)e,(X), for s = 1,2, 3, 4.
This last condition is satisfied since the ¢,(X) are =+1, Here, and
henceforth, let o, 0., 0s, 0; stand for integers which may independently
be 1. We now use a descent argument. We attempt to choose
Ay, B;,Cy, D, so that A, < A,. As in the proof of Lemma 2, we
have
(A; — Ay)[2 = Ay(Cx + Dj)

8
( ) + CY(AXCX - BXDX) + DY(AxDx + Bxcx) .

Put Ay =0, By =20,,Cxy =20,,Dy =0, Then X is ¢u and by (8)
we can choose the signs o, 0,, 0; so that 4, < A4, if
(9) 2AY_|CY1”_2‘DY|<O-

Next take Ay = p,, By = 20,,Cy = 0, Dy = 20,. Then X is 4u and by
(8) we may choose the signs p,, 0., 0, so that 4, < A, if

Since A% =1+ C3 + Dy, Ay > 0, (9) holds

24y <|Cy|+ 2|Dy|,

445 < Cy + 4|CyDy | + 4D5

41+ C; + D) < C3 + 4|CyDy | + 4D3
(11) 4+ 3C —4|Cy||Dy| <O0.

Similarly (10) holds if and only if

f8vt

(12) 443D —4|Cy||Dy|<0.

Now the region in the positive quadrant of the Cy, D, plane not
satisfying either (11) or (12) is a region of infinite extent with a
portion of two hyperbolas as part of the boundary. The only points
in this region with even integral coordinates have either C, = 0 or
Dy =0, or else |Cy|=|Dy|=2. Now if Cy = 0 we get from A} =
1+ C% + D3 that (Ay — Dy)(Ay + Dy) =1, 80 A, + Cy, = A, — Cyp =
+1, hence A, =1, D, = 0. Now 4, =1,C, =D, =0 gives Y = [.
Thus any pdsiu group matrix Y is in the same G-class as I; or clse
in the G-class of a Y for which Cy = *+2,D, = +2, A, = 3. That
these last four possible Y are in the same G-class is seen as follows.
Let T denote the pdsiu group matrix with A, =3,Cr = 2, Dy = 2.
If A, =3,B,=0,Cy=—2 Dy= —2 then Z = XTX" has 4, = 3,
B,=0,C,=—-2,D,= -2, If Ay = -2, By=—-2,C,=38,D,=20
then Z = XTX” has A,=3,B,-=-0,C,—= —2,D, =2, If A, =2,
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By,=-2,Cy=0D,=—3thenZ—=XTX"has 4,=3,B,=0,C,=2,
D, = —2. Thus the G-class number is =<2. If it were one there
would be an X such that X,7.X* = I,. Lemma 2 then shows that if
det X; = 1 we have C% + Di < Ci + D; = 8 and if det X, = —1 then
A% + B%: < 8. All possible Ay, By, Cx, Dy are easily found and none
work.

5. The other groups of order eight. The cyclic group of order
eight is completely worked out in [4]. The G class number is two.
The only pdsiu group matrix belonging to any of the remaining groups
of order eight is I,.

6. The cyclic group of order twelve, Let X = z,[;, + ,P;, +
eor + 2, P, Take @ = (3% + 4)/2 for the primitive root of unity of
order twelve. Then for a unitary U, UXU* = diag (&, &, -+, &1) where
(see (1)):

12 12 12 127 7 &,
) 2 2 =12 —if2 || 7 | _ 1| &
12 —1/2 12 =12 || 5 | 2| &

12 iz ~12 iz Ly, &

b = X Ly Ty Ny = T+ X A Ty, W = T+ T+ Ty

(g 7
Ny = X3 + X7 + Xy,

& =20, 4+ 2, — @, — 22 — T + Ty
(15) + (e, + 205 + x5 — 2, — 20y — Xy)
+ 8, — @5 — ® + @) + (=)@, + x, — Ty — X40)]/2,

(16) & =122+ ®, — v, — 205, — x, + 2, + 22, + 2, — X, — 22,
— By + B+ (—3)@ + Ty — Ty — T+ T Ty — Ty — T)]/2,
1 & =122y — @, — x, + 20, — 2, — Xy + 205 — X, — Xy + 22,

— Xy — Ty + (=), — o+ @y — X5+ X, — Xy + Ty — X0)]/2

The remaining &; are conjugate to one of &, &, &, in the field R(w) of
the 12th root of unity. As &, ---, &, are algebraic integers, X is
unimodular if and only if &, ---, &; are units. Since the matrix in
(13) is unitary, 72+ 72+ 7+ = (&P [&F+ &+ &4 =1
since &, &,, &, & are units in the Gaussian integers, hence roots of unity.
As 1., s, 15, 1, are rational integers, exactly one of 7, 9, 75, 1, is 1,
the other three are zero. We now show that we can find a circulant
W of the form +Pg2 so that in XW we have

(18) 7]0:1:50253256259
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and & = +1. If, for X,7, = £1 then by (13), {,=&=&=§& =7,
and for X(n,[.), (18) is satisfied. If, for X, 7, = &1, then by (13),
o =Ny & = 105, & = — 7y, & = —41;. Then, for X (9,P}), (18) is satisfied.
If, for X, 7, = =1, then by (13), & = Noy &3 = — oy &6 = Ny, §g = — s
Then, for X (n.P%), (18) is satisfied. If, for X, n, = =+1, then by (13),
Eo = Ny &5 = — g, &g = — 7y, & = 17, and for X (n,P.,), (18) is satisfied.
So now let X satisfy (18). For X, &, is a unit in the field R((—38)"?),
hence &, is a power of w* = (1 + (—3)¥*)/2. We can choose N\ to be
—1,0, or 1, such that for XP$' we still have (18) and, moreover,
XP# has &, equal to @ or @® that is §, = +1. Thus we have achieved
our claim., Note that &, is also a unit in R((—8)"%) and that the
rational part of the numerator of &, is congruent (mod 2) to the rational
part of the numerator of &,. Since the only units in R((—3)"?) are
(=1 £ (—3)"))2 or +2/2, & = +1 forces & =— +1.

We now construet the pdsiu circulants X. These have all &; real
and positive, whence (18) holds. Symmetry implies #,_; = %,,; for
0=<j5=4. Then for the & to be positive units we require & = &, =
&, = &, = & =1, hence:

2o + 22, + 20, + 22, + 22, + 20, + ¥, =1,
Lo+ Xy — Xy — 205 — Ty + X5+ X, =1,

X, — 20, + 20, — =1,

Lo — Xy — Xy + 205 — 2, — X+ 2, =1,

o — 20, + 2%, — 20, + 2%, — 205 + X5 = 1.

Solving these simultaneously we get x, =1 — 2w, v; = —@,, ©; = 0,
X, = —2x,, %, = 22,, Then & =1 — 6z, + (3)*(2x,), and §,&, = (1 — 6x,)* —
3(2x,)* =1 if &, & are to be positive units. Hence &, satisfies a Pell’s
equation, the fundamental solution of which is 2 — 3%, Now by
induction one easily checks that all odd powers of 2 — 3" have even
rational part and all even powers have rational part =1 (mod6) and
even irrational part, Consequently all pdsiu circulants are powers of
the cireculant M for which 9, =1=§=§&=§&=§=6=§6,6 =
2—38")=1T7-—4.3" Now M* = M*(M*)" is in the principal G-class
and M+ = M*-M-.(M*)" is in the G-clags of M. To show that the
G-class number is two, we need only show that M is not in the principal
G-class. If M = XX7 for X an 4u circulant, then for any W of the
form W = +P2% we have M = (XW)(XW)*. Then by the remarks
of the previous paragraph, we may, after changing XW to X, assume
that M = XX”* where, for X, (18) holds and &, = +1, &, = *+1. From
(14) and (18) we get
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T+ X, + 25=1,

X+ Xk x, =0,
(19) ' !

Ty -+ X+ Xy ’—70,

Ty + X+ =0,
From & = +1 we get

20y + X, — X, — 2w, — X+ X5+ 205 + X, — X
(20) — 20y — Ty + Ty = 20, ,

®y A By — Ty — Ty Xy By — Xy — Xy =0,
and from &, = 4+1:

§2x0~x1—x2—k 20, — X, — Xy + 205 — X, — X
(21) + 22, — Xy — Ty = 20, ,

(ml—x2+x4—x5+x7——x8+xm—-xu:0.

Solving (19), (20), (21) simultaneously and remembering that the
variables are integers, we get 0, =p, = 1,2, = —®, ¥, = &, + x, — 1,
By = By — X7, Tg =1 — Xp, Bg = 1 — Ty — Xy, By = Xy — Ly, Lyg = — Xy, Ty =
—2;. Then for M = XX* we must have 7 — 4.3 = £&,. Using (15)
this becomes

(22) (3w, — 2)" + 3(ws + @) + ws — @,)* + (%, + 2, — 1) =17,
(23) —2(x5 + 2,)(3x, — 2) + 6(x; — ®)(¥, + 200, — 1) = —4.

From (22) we first obtain x; = x,, then x; = x, = 0. But then we
contradict (23). Hence the G-class number is two.

7. The alternating group of order twelve. This group is
generated by elements a,b,¢ with &* =0 = ¢ = 1, ab = ba, ac = cabd,
bc = ca. The irreducible constituents of the group matrix X are most
easily computed if we take the group elements in the order,
1,a,b,ad,c, ca, cb, cadb, ¢, c’a, ¢*b, c’ab. Then the group matrix partitions
into 4 X 4 blocks each of which has the structure of

a B v 0
B a o v
v 0 a B
0 v B «
If V denotes the unitary matrix of (3), then VNV * = diag (o + 8 +

Yy+o,a+B—v—0,a&—B+7—0,&— B —+0d). Thus each block
in X can be diagonalized. After the same permutation of rows and
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columns, the group matrix splits up into a direct sum of four 3 x 3
blocks, of which one is a circulant and may be diagonalized. Let
(@0, y, *++, @1,)" be the first column of X.

Let 7 = @+ @ + & + Tay Do = T4+ Ty + Ty + Ty Yy = T+ T +
Lig + Tuy O = X + Ty Aoy = By + Xy, Qg3 = & + By Wy = Ty + Tygy Qpy =
Ly + Trgy By = Brg + L1y Qug = Xs + Loy Aoy = Tg + gy Uy = 5 + T, Also
now let w = (—1 4+ (—38)"*)/2. Define ¢, ¢,, &, Ax by:

3—1/2 3_1/2 3—1/2 7]1 & 7
(24) 37 @3 w23'”2—H772 =37 g

-1z )28-1/2 0)3—]/2J L 75 & |

771 - 2(111 773 - 2“12 7]2 - 20/13—
Ay = o — 20, N — 20, Ny — 2y
Ny — 20 Ny — 203, N — 20

Then there exists a unitary U such that UXU* = (¢) + (&) + (&) +
Ay + Ay + A;. Moreover X is unimodular if and only if det A, =
+1 and ¢, ¢, & are units in R(w). Thus ¢, ¢,, &, have to be roots of
unity and since the matrix in (24) is unitary, this forces i+ 7; +
=&+ &+ |&[)/3 =1. Thus exactly one of 7, n, 7, is =*1,
the other two are zero. Note that a, = x, + 2, @y = 2, + @3, @3y =
2, -+ x,, possess an integral solution z,, «,, 2, if and only if a; + a, +
a5 = 0(mod 2); a similar remark holds for a,, a., a,; and for a,;, @, @s.
Thus X is 4w if and only if Ay is 4u and exactly two of 7, 7, 9, are
zero and one is +1, and @, + Ay + G = Ay + Ay + Gy = Qys + Ay +
@y = 0(mod 2). The pdsiu X arise when ¢, =¢ =¢6=1,9=1,7, =
7; = 0, Ay is pdsiu.

Now if Y, Z are pdsiu group matrices we have Z = XY X7” if
and only if A, = A;A,A% and ¢,(2) = &,(X)e(Y)e(X), 7 = 1,2,3. This
last condition is met since ¢,(X)¢,(X) = 1 because ¢;(X) is a root of
unity. The fact that Ay is pdsiw and the fact that the C-class number
is one at n = 3 implies that Ay, = WW?* for some 2u W. Here W
need not be an A;. Consider W mod 2. Since mod 2, 4, = I,, W (mod 2)
is orthogonal. Hence, mod 2, W is a permutation matrix. We may
find a 3 X 3 permutation matrix @ such that, mod2, WQ = I,, We
can do more. If we permit @ to be a generalized permutation matrix
(nonzero entries are +1) we can force WQ = I, (mod2) and each
diagonal element of W@ is =1 (mod4). Changing notation and letting
WQ be W, we have Ay = WW?* where now W is tu and (mod 4) has
1 in each diagonal position and (mod 4) has 0 or 2 in each off-diagonal
position. Now one can write down all 64 matrices W (mod 4) of this
type and determine those for which WW?” has the structure (mod 4)
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of an Ay. It turns out that the W matrices (mod 4) with this property
are precisely the W matrices with an even number of twos (mod 4)
off the main diagonal. Certain of these acceptable W already have
the structure (mod4) of an A,. When this is so, Y is in the principal
G-class. For all those acceptable W not (mod 4) of the form of an
Ay, it turns out that WT, where

1 2 2
T=|0 10
0 01

isan Ay. Let H = T(T"Y)". Then Ay = (WT)H(WT)" = A HA%
where Ay = WT. Moreover, H is an A,. Thus Y is in the same
G-class as Z, where A, = H. 1s Z in the principal G-class? If so
H = A;A% for some X. But it is easy to find all integral B for which
H = BB"; none is (mod4) an Ay. Hence the G-class number is two.

8. The dihedral group of order twelve. As is §4 the group
matrix may be taken to have the form (2) with C = B", D = A”. Let
A=uad + 2P+ -« + a,P, B=al; + «,P; + «++ + x,P;. There
exists a unitary U such that UXU* = () + (&) + (&5) + () + X, +
X, 4+ X, + X, where: if 9, =+ @ + &4, 7y = @, + T3 + X5, 7 = @ +
Ty + Xygy Ny = X, + g + 2y, and if @ =2, + @5, 0 = 2, + v, @ =, — @y,
B=1%, — %, €=+ Xg, d = Xy + Ty, ¥ = Xg — Xy, 0 = Typ — %, then (3)
holds, and, in addition,

Xl,l Xl 2} [XZ,I
25 X, = X =

<
=8

where

Xin=@Ba—1—n+ (=3)"a+ 20 — 0 — 7))/2,
Xm = (3¢ — Ny — Ny + (_‘3)1/2(0 + 2d — Nz — 774))/2 y
X = @Ba — 7+ 0+ (=3)"( — p — @ — 20))/2,
Xoo =By — s+ 9+ (=3)(ny — 1 — v — 20))/2..

(26)

Note that z,, ---, %, are integers if and only if a=a,b=p,¢c=7,
d =0 (mod2). As ¢,e,¢&,¢, det X,, det X, are rational integers, X
is unimodular if and only if ¢, ¢, &, &, det X,, det X, are each =+1.
Hence, as with the dihedral group of order eight, exactly one of
N1, Noy W5y Wa 18 £1 and the other three are zero. By considering the
formulas for det X, and det X, (mod 3), we find det X, = det X, =1 if
7, or 9, is *=1, and det X, = det X, = —1 if n; or 7, is +1. The pdsiu
group matrices arise when 7, = 1 and X, and X, , are real and positive.
If 9, or 9, is =1 we let X, = (Ax+(—3)""By)/2, X,.= (Cx+(—3)"Dy)/2,
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KXoy = Ax 4+ (—3)"By)/2, X, = (€5 + (—3)*Dy)/2; and if 7, or 7, is
+1 we let X, = (Cx+ (—38)""Dy)/2, X,,, = (Ax + (—3)"By)/2, X,,, =
€y + (—3)1*D,)/2, X, , = Uy + (—3)"*By)/2.

Now let Z, Y are pdstu group matrices; then Z = XY X" holds if
and only if &(Z) = e(X)e(Y)e,(X) for i =1,23,4, Z = X, Y. X,
Z,= X,Y,X;*. The first of these conditions need not concern us as
g(X) is always to be +1. We proceed to show that, given Y, we
can choose X¢u such that Z, = 1I,. If Y, = I, we have nothing to do.
Otherwise we compute as in Lemma 2 that

2(A; — Ay) = Ay(Ck + 3D5)

+ Co(AxCx — 3BxD;) + 3Dy (AxDy + B,Cy) ,
20, — Ay) = Ap(C% 4 3D%)

+ G5 — 38;D;) + 3D (A Dy + BEy) .

@7

(28)

We now assign special values to the quantities entering into X, If
Weputr]l: ——101’772:7]3:7]4:Ora:a:pnb::g: _101,0:7:(02y
d=0= —p,then we get Ay = Ay = 40, By = By = 0,C; = €, = 3p,
Dy = — 0, Dy = p,. For this tuX, A, — A, < 0 will hold if

(29) Ay + 0,085 + 0,050y < 0.

Next weput 9, =0, == =0,a =a=0,b=L8=0,c=7=p,

d=0= —p,. Then Ay =U;=20,, By =20,, By = —20,, Cy = €5 = 3p;,

D,= —0,,Dy = — 05, Dy = p;,. For this tuX, A, — Ay < 0 will hold if
122y + € (60,05 + 60505) + 3Dr(20,05, — 60.,05) < 0.

If o, = p, this becomes

(30) Ay + 008y — 0,059y <0,

and if o, = —p, this becomes

(31) Ay + 20,0,y < 0.

Choosing the signs p,, 0., 0, suitably, (29) and (30) becomes
(32) A — 6| — | Dy <0,

and (31) becomes

(33) AUy — 21Dy [ < 0.

So we can make U, < A, if A, €., D, satisfy either (32) or (33).
As in §4, the facts that 9%, >0 and AL = 4 + €% + 3D} show that
(32) and (33) are equivalent to

(34) 2+ D — |6 ||Dr] <0,
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(35) 44+ 16— [9, P <0,

respectively.

Now the region in the positive quadrant of the €, D, plane
satisfying neither (34) nor (85) is a region of infinite extent with
hyperbolas as part of the boundary. Remembering that €, = 0 (mod 3),
we find several points (| €, |, | D, |) in our region: (€, |, | Dy |) = (0, 2),
(3, 1), (3, 2) and points with |€, | = | D, | and points with D, = 0. The
points (0, 2), (3, 1), (3, 2) give 2; = 4 or 5 and this can be rejected on
the grounds that a pdsiuw Y has 8, = 0,7, = 1 and then 4, =4 or 5
give a nonintegral «, 8. The cases in which ©, =0 or |€; | =|D;]|
are rejected by showing that U, =4 + €% + 3D, does not give a
positive integral %, except if €, = D, = 0,2, =2. When €, =D, =0,
Ay =2, we have Y, = I,., Thus we have shown that if Y, # I, then
we can find an 4% X so that %A, < ;.. Since A, > 0, eventually this
descent halts and then Z, — I,.

Thus assume Y, = I,, Our next goal is, using only X for which
X, X;* = I,, to make A, < A,. Notice that Y, = I, and 7, = 1 implies
that the parameters a, 8,v,0 of Y, are a =1,8=v=0=0. Thus
the parameters a,b,c,d of Y satisfy a=1,b=c=d= 0 (mod2).
Hence C, = 0 (mod6) and D, =¢ = —¢ = Cy (mod4). We next de-
termine those X for which X, X, = I,, By Lemma 2 these X must
have €; = D, = 0, so that A% + 3B% =4, A, = +2, B, = 0, or A, —
+1,B, = +1. It is then easy to determine the parameters «, 8,7, 0
of X. We find that if », or 7, is =1 then v =0 =0 and not both
a, B are odd; and if 7, or », is +1 then @« = 8= 0 and not both v, 0
are odd. So in X the parameters a, b, ¢, d are restricted by: both ¢, d
are even and not both a,b are odd in the cases when %, or 7, is +1;
and both a, b are even and not both ¢,d are odd in the cases when
N or 0, is 1. In particular if we put », = —p, a =0, 8= —(0,+ 0.)/2,
v=20,0=0,orif weputn, = p,a=p,8=v=0=0, then X, X;* =L,

We now seek X for which 4, < 4, and X, X;* = I,. To this end
we give special values to the parameters in X. Put 7, = 0,7, =7, =
n=0a=p,04=0,b=—-20,8=0,v=c=0,d=20,0=0. Then
Ay =20, By = —40,,Cx = 0, Dy = 4p,, X is v and X, X;* = I,. From
(27) we find that the signs p,, p,, o, can be chosen to make 4, < A if

(36) 2AY~2lCY[_‘DY|<0-

Next set », = —p, a6 = =20, = 0,b = (0, — 30,)/2, B = —(0, + 0,)/2,
vy=c¢=0,d =20, 0=0. Then Ay = —b5p,, By = —30,,C5x = 0,D, =
40,, X is 4u and X,X;* = I,. Then from (27) we can choose the signs
01, 0, P4 SO that A, < A, if
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(37) 44, —3|Cy| —5|Dy| < 0.

Finally we set 7, = —p,, @ = 20, «=0,b=(0,— 30)/2, B= —(0,+ 0,)/2,
c=7v=0,d=20,0=0. Then Ay =7Tp, By = 0,,Cy =0, Dy = 4p,.
We can, using (27), choose the signs p,, 0., 0, so that 4, < A, if

(38) 44, — |Cy| —T|Dy] < 0.

Using 4, >0, A2 = 4 + C% + 3D%, we find that (36), (37), (38) are
equivalent to

(39) 16 + 11D% — 4|C+ || Dy | < 0,
(40) 64 4+ 7C% + 23D3 — 30 |Cy||Dy| <O,
(41) 64 + 15C — D} — 14|C || Dy | < 0,
respectively.

Now the region in the positive quadrant of the C,, D, plane not
satisfying any of (39), (40), (41) is a region of infinite extent with a
portion of three hyperbolas as part of the boundary. In this region
the only points (|Cy |, | Dy |) with Cy = 0 (mod 6), C, = D, (mod 4) are
(0, 4), (6, 2), (0, 8), (12, 4), together with points for which |C;| = | Dy |
or for awhich D, = 0. We can rejeet (0, 4) and (6, 2) since, using A% =
4 4+ C% + 3D%, they give nonintegral A,. Now |C,|=|Dy| gives
A} =44 4D%, so (Ay — 2D,)(Ay + 2D,) = 4. This gives a finite
number of possibilities of which only C, = D, = 0, 4, = 2 is acceptable.
Similarly D, = 0 leads only to C, =D, =0, A4, = 2. Now A, = 2,
C, =D,=0 gives Y, =1,, Thus, subject to the constraint that
Z,=Y,=1, we have found 44 X so that in Z = XYX” we have
A, < A,. Since this descent must eventually stop, we have shown
that any pdsiu group matrix is in the G class of I, or the G-class of
a group matrix Y for which Y,—= I, A, = 14, (Cy, Dy) = (0, +=8) or
(+12, +4). Let now Y be the pdsiu group matrix for which Y, = I,
A, =14,C, = 0, D, — 8. We now exhibit 74 X for which Z = XY X”*
has Z,=1,, A, = 14, (C,, D,) = (0, —8) or (=12, *4).

First put = —0, 0= 0,a=0,b= _<(01 + (02)/2y B = _((01+ .02)/2,
c=7=0,d=0=0. Then Ay=p0,,By=—0,,Cx=D;=0, X, X;* =1,
and A, =14,C, = —12p,0,, D, = —4. Next put 7, = —p, a = 20,
a=0,b=(0,— 380)/2, 8= —(0,+ p)/2,¢=0,v=0,d = —20,,0 = 0.
Then Ay =70, By = 0,,Cx=0,Dy= —4p, X, X =1, A,=14,C,=0,
D,= —8. Finally put ,= —p,a=a=b=B=c=7=0,d=0=
—(p, + 0)/2. Then Ay = p,, By = —0,,Cx = Dy = 0, Ay = 0, By = 0,,
Cy =Dy =0. Moreover X, X;* =1, and Z, = X, Y, X;* has A4,= 14,
C,= —120,0,, D, = 4.
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We have thus established that the G-class number is at most two.
If it were one there would be an X for which X, Y, X{* =1, and
X, X¥ = I,. The second condition forces (as previously noted): vy =0 =0
ora = £ = 0. In turn these as before, C; = 0 (mod 6), C; = D, (mod 4).
Then Lemma 2 shows that C% 4+ 3D% < C% + 3D} = 192, Using
A% + 8B% = 4 + C% + 3D%, all possible values of Ay, By, Cx, Dy are
easily found and tested in (27). In all cases A, — 4, = 0. Thus we
have proved that the G-class number is precisely two.

9., The group a'= 1,0 =1, a7'ba = ¥, of order twelve. If we
take the group elements in the order 1,5, %, a, ab, ab®, a’, a’b, a’b*, @*, &’b, a°b*,
then the group matrix X partitions into blocks which are 3 x 3
circulants, Let (x,, ,, -+, @;))" be the first column of X, We compute
the irreducible representations as indicated in §2. At one point it is
necessary to make use of the following fact:

2—1/2[12 Iﬂl:A BJZﬂ/zl:IZ 12:l o |:A + B 0 :I
I, -I|B A I, -, | 0 A-B
if A,B are 2 X 2 matrices. Thus we find a unitary U such that

UXU* = () + (e) + (&) + (&) + X, + X, + X, + X,. Here, if 5 =
Lo+ Ty + By, Yy = T + Xyy + By, s = By + Ty + g, 74 = Xy + Ty + Ty, then:

12 12 12 127 % &
@) 12 42 =1/2 =42 || 5| 1] &
12 ~12 12 —12 || 5 | 2| &

12 —i2 =12 2 || 7 &

The matrix X, is described by (25) and (26) where a =, + %, b = @, + ;,
¢c=x;+ %, d = x; + x,. X, is described by

X2 — [Xz,L _)52,2}
X2,2 X‘Z,l
with X,,, X,, given by (26); «a=um, — 2, =1, — &y, 7 = &; — &y,
0 = X5 — Xy,

As before, for integral x,, x,, -+, 2, we must have a = «, b = 5,
¢c=7,d=0(mod2). Here ¢, ¢, ¢, ¢, det X, det X, are algebraic inte-
gers and must be units if X is to be 7u. Since the ¢; are Gaussian
integers, this forces the ¢; to be roots of unity. Because the matrix
in (42) is unitary, this forces exactly one #; to be =1, the others to
be zero. Now in fact det X, det X, are rational integers and det X, > 0.
Thus det X, = +1 (+1if », or », is +1, —1 if 7, or 7, is +1) and
det X, = 1. , The pdstu X arise when 7, =16 =¢=¢=2¢,=1,
det X;=1,X,>0,X,,>0. From det X,=1 we get | X,,,["+ | X,,.["= 1.
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Bach of | X, [}, | X,,. * is a rational integer so either X,, = 0 or X, = 0.
When X is pdsiu, X,, is thus a positive unit in the field of R((—3)"*),
hence X,, =1 and hence X, = I,. But always if X is just ¢ we have
X, X} =1,. Weshow X, =0 when, or 5, is =1; and X,, = 0 when
7 or 7, is +1. If we had 7, or 7, equal to =1 and X,, = 0 we would
have 3a — 7, + 1, = 0, which is not true for any integer ct. Similarly
if », or 7, is £1 then X,,= 0 is absurd. From this point on the
discussion is almost word for word the same as the discussion in § 8.
We introduce Ay, By, Cx, Dy, Ay, By, €4, Dy as in §8. We have just
established that €, = ®, =0 and that Y, =1, if Y is pdstu. We
now carry on from the point in §8 at which we assumed Y, = L.
The conclusion we reach is that the G-class number is two.

10. The noncyclic abelian group of order twelve. By Theorem
2 the only pdsiw group matrix for this group is I,.

11, Summary, Let @, be the matrix on p. 331 of |5].

THEOREM b. For all groups G of order m =13, the G-class
number s one, except for the cyclic groups of orders 8 and 12, the
dihedral groups of orders 8 and 12, the alternating group A,, and
the remaining nonabelian group of order twelve. In each of these
exceptional cases the G-class number 1is (wo and the monprincipal
G-class is contained in the C-class of @,.
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