
PACIFIC JOURNAL OF MATHEMATICS
Vol. 17, No. 1, 1966

TOPOLOGICAL METHODS FOR NON-LINEAR ELLIPTIC
EQUATIONS OF ARBITRARY ORDER

FELIX E. BROWDER

Consider a strongly elliptic nonlinear partial differential equ-
ation (e): F(x,u,Du, ,D2mu) = 0, of order 2ra on a bounded,
smoothly bounded subset Ω of Rn. For second-order operators,
Leray and Schauder, using the theory of the topological degree
for completely continuous displacements of a Banach space,
showed that the existence of solutions of the Dirichlet problem
for (e) could be proved under the assumption of suitable a-priori
bounds for solutions of the type of (e). In the present paper,
using precise results on the solutions of linear elliptic differ-
ential operators with Holder continuous coefficients as well as
a variant of the Leray-Schauder method, we extend this result
to equations of arbitrary even order. We also obtain results on
uniqueness in the large under hypotheses of local uniqueness.

Theorem 1 is our general result of Leray-Schauder type for the

most general sort of strongly elliptic nonlinear equation. Its proof is

based upon Theorems 2 and 3 which concern equations for which one
has local uniqueness of solutions. Theorem 2, which extends a result
of Schauder [16] for second order equations, asserts the solvability of
the equation F(u) — f for / near f0 with u near u0 if the solution is
locally unique. Under similar hypotheses and an additional a priori
bound, Theorem 3 asserts the existence and uniqueness of the solu-
tion for all /. Theorem 4 and 5 specialize Theorem 1 with a drastic
simplification of hypotheses to quasi-linear equations of order 2m and
to nonlinear second-order equations. Theorem 4, in particular, gives
a simple and very general extension of the Leray-Schauder method as
given in [9] for quasi-linear equations of second order.

The writer is indebted to Stephen Smale for a number of con-
versations which stimulated his interest in giving a systematic treat-
ment of the Leray-Schauder theory for general non-linear elliptic
equations.

1* Let Ω be a bounded, smoothly bounded open subset of the
Euclidean space Rn, Γ its boundary in Rn, Ω its closure in Rn, (n^l).
We denote the general point of β by x = (xu •••,#«) a n d f° r each
%-tuple a = (al9 , an) of nonnegative integers, we set

\a = y,Σ
i l
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18 FELIX E. BROWDER

For a given integer m Ξ> 1, we consider vectors p = {pa/\(x\ ^ 2m}
with a real component for each partial derivative of order <£ 2m. They
form a real vector space RM for some integer M, which we shall not
give explicitly. We assume that we are given a function

F .Ω x RM-+Rι

which is twice continuously differentiate on Ω x RM and whose deriva-
tives up to second order are uniformly bounded on compact subsets of
Ω x RM. Using this function F and the mapping px: C2m(Ω) ->RM given
by

px(u) = {Dau(x)/\a\ ^2m}

we may form the general partial differential operator (not necessarily
linear) of order 2m by

F(u)(x) = F(x, pg(u))f xeΩ,ue C2m(Ω)

and consider the partial differential equation

( 1 ) F(u) = 0, ueC2m(Ω).

For a given real number λ with 0 < λ < 1, and any nonnegative
integer j ,

Cj'λ(Ω) = {u I u e Cj(Ω). There exists a constant

( 2 ) c > 0 such that \Dau(x) - Dau(y) \ ̂  c | x - y | λ,

x,yeΩ,\a\ ^ j}.

Cjtλ(Ω) is a Banach space (and indeed a Banach algebra) with respect
to the norm

+ Σ. sup {| a? - y h λ IZ

If we assume (as we shall henceforward) that Γ is locally a manifold
of class C2 m 'λ then there is an obvious and unequivocal sense that can
be given to Dau\Γ for any u in C2m>λ(Ω) and any a with \a\ <Ξ 2m.

We may therefore form the closed subspace Com'λ(£) of C2m>λ(Ω)
which consists of all u in C2w'λ(i2) which satisfy the homogeneous
Derichlet boundary condition of order m on Γ, i.e.

( 4 ) D^u\Γ=0, | / 3 | ^ m - l .

For u in C2 w 'λ(β), F(u) lies in C°'λ(β) as follows by a routine
argument using the fact that F(x, p) satisfies a Holder condition with
exponent λ in all arguments on compact subsets of Ω x RM. More-
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over, the mapping u—>F(u) is continuous from C2 w 'λ(β) to C°'λ(β),
and indeed continuously Frechet differentiable with Frechet derivative
at u in C2m>λ(Ω) given by

(5) F'(u)(V)= Σ Fa(x,p(u))D°V

where Fa = dF/dpa.
We say that the nonlinear differential operator F(u) is strongly

elliptic if for each peRM, the linear differential operator Ap given

(6) Ap(η)= Σ Fa(x,p)D°η
\cύ\—2m

is uniformly strongly elliptic on Ω.
Let Cr~ 1 ) λ(β) = {̂  I u e C 2 — 1 * ^ ) ; £ > ^ |Γ = 0 for | /9 | ^ m - 1}.

THEOREM 1. Lβί F be a C2-function Ω x RM which defines a
strongly elliptic nonlinear partial differential operator F(u) of order
2m on Ω. Let 0 < λ < 1, and for 0 g ί ^ 1, let

F(x, p, t) = tF(x, P) + (1 - t ) 2 | α | I pa|
2

Ft(u) the corresponding partial differential operator of order 2m.
Suppose that all of the following conditions are satisfied:

(1) For each R > 0, there exists a constant μ with 0 < μ < λ < 1
and a differential operator H of order fg 2m — 1 (possibly nonlinear)
on Ω such that for each ueCT^ψ), v e CTΦΨ) with || u\\o2m_uλ g R,
and

Dau(x) , \a\<m

linear equation

Σ i^,Ps(^))£α)?+ Σ
| α > | 2 m | | ^ 2

57 = 0 as a solution in C2

0

m>IM(Ω), O ^ ί g l .
( 2 ) .FΌr given R > 0 awd ίfce corresponding function H of con-

dition (1), ί/iβre eansίs a function R^s) such that for u in Clm~ltλ(Ω)
with ||^||σ2m-i,λ{fl, ^ R and any v in CTΛ(Ω) such that

v)) + tH(p(u, v)) - /

for some t in [0,1] and feC°'λ(Ω) with ||/||σo,λ(β) ^
 s, we have

( 3 ) There exists a constant RQ > 0 such that for any t in [0, 1]
and veClm>λ(Ω), if
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Ft(v) = 0 ,

we have

\\v\\o2m-uMΩ) <Ro.

Then the equation

F(u) - o

has a solution u in Clm>λ(Ω).

THEOREM 2. Let F be a C2-function on Ω x RM such that the
corresponding partial differential operator F(u) of order 2m is
strongly elliptic. Suppose that for a given uQ in Clm'λ(Ω), the map-
ping u —»F(u) of C2

0

m'λ(Ω) into C0>λ(Ω) is one-to-one on some neigh-
borhood of u0 in CT>λ(Ω).

Then F is an open mapping on some neighborhood of u0.

THEOREM 3. Let F be a C2-function on Ω x RM with F(u)
strongly elliptic. Suppose that both of the following conditions are
satisfied:

( i ) There exists μ with 0 < μ < λ < 1 such that for each u
in CT>μj{Ω), the linear equation

Σ Fa(x,pΛ(u))Daη = 0 , in Ω
\cύ\^2m

has only rj — 0 as a solution in CT'μ{Ω).
(ii) For each fQ in Ck(Ω), there exists constants k(fo),ε(fo) > 0

such that for every solution u of F(u) — f with u e Clm>λ(Ω) and

Then the equation F(u) — f has one and only one solution u in
CT>\Ω) for each f in C°>λ(Ω).

We shall prove Theorems 2, 3, and 1 in that order. The proofs
depend upon precise results on the Dirichlet problem for strongly el-
liptic linear operators which are discussed in detail in § 2, combined
with topological arguments concerning nonlinear mappings of Banach
spaces.

2* Let

be a linear elliptic differential operator of order 2m on Ω with real
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coefficients in C°>\Ω). A is said to be uniformly strongly elliptic on
Ω if there exists a positive constant c(c > 0) such that

for all xeΩ,ξeRn, (where ξa = Πy-if?').
The first basic fact that we shall employ about the Dirichlet prob-

lem for the strongly elliptic operator A is the estimate of Schauder
type ([1], Theorem 7.3) given in the following Lemma:

L E M M A 1. There exists a constant C > 0 depending on Co, Ω and

the C0>λ(Ω)-norms of the functions aa, such that for all u in C2m>ί{Ω)

\\u\\o2m,λ{Ω) ^ {|| Au\\o0,λ(Ω) + \\u\\0()fλiΩ)} .

The second fact that we shall employ concerns the spectrum and
resolvent of the operator A under null Dirichlet boundary conditions:

LEMMA 2. Let μ be any number with 0 < μ < λ < 1. There
exists a constant &0 depending only on £?, c0, and the C0>^)-norms
of the coefficients aa such that:

(a) For k ^ k0, and any f in O λ(β), the equation

Au+ ku = f

has a solution u in CT>\Ω).

( b) The solution u of the equation

Au + ku = /

with u e Clm>\Ω), f e C°>λ(Ω), satisfies an inequality of the form

\\u\\L2{Ω) ^c1\\Au+ ku\\L2{Ω)

with cx dependent only on Ω, c0, and the C0>μ{Ω)-norms of the αμ.
Proof of Lemma 2. By Theorem 15 of [2], (p. 75) there exists

k0 depending only on Ω, c0, and C°'μ(£?) coefficients of the aa such that
for k ^ k0 and all / in L\Ω), there exists u in the space W2w"2(Ω)
where

W2m>2(Ω) = {u\D«ue L\Ω) for | a \ ̂  2m}

with

Au + ku = /

and u lying in the domain D (A2) of the realization of A in L\Ω) under
null Dirichlet boundary conditions (in the sense of § 2 of [2]). For
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such u and k, we have the inequality

\\u\\L2{Ω) ^ \\Au + ku\\L2iΩ)

of assertion (b). Since CT>λ(Ω) c ΰ ( i 2 ) , the validity of assertion (b)
follows.

If R(G) is the restriction to Ω of the family of C°° functions with
compact support in Rn, R(G) is dense in C°'λ(Ω). For every / in R(G),
the solution u in D(A2) of the equation An + to — f lies in CT>λ{Ω)
by Theorem 8 of [2] (page 65). For this solution, we have by
Lemma 1,

\ \ u \ \ o 2 m , λ { Ω ) ^c{\\Au\\o0)λ{Ω)} + \ \ u \ \ o Q > λ { Ω )

^ c{\\ An + k u \ \ o Q > K { Ω ) + (k + 1) || u \\0«,λ{Ω)} .

Moreover, since the injection maps of C2m'λ(Ω) into C0>k(Ω) and U(Ω)
are compact, for each ε > 0, there exists k(e) such that

II ̂  ll̂ λcβ, ^ ε II ̂  llσ2m,λ(β)

Hence

+ c(k + 1)6 II w ||(72«,x(fl) + c(fc + l)fc(e) || u\\L,{Ω)

Choosing ε > 0 so small that c(k + l)ε < 1/2, we have

ku | |σ0,λ(β) + 2c(fc + l)fc(e) ||

= ^4 II ^ ^ 1 ^ ^ ||(7θ,λ(β)

i.e.

for such / and %. Hence the mapping f—>u from the dense subset
R(G) of C°'λ(β) into CT>λ(Ω) can be extended by continuity to a bounded
linear map S of C°>λ(Ω) into C2m>λ(β) such that

Hence assertion (a) is proved.

The proof of Lemma 2 also established the following:

LEMMA 3. The solution u in Lemma 2 of the equation Au +
Icu = f,ueCZm*k(Ω), for k ^ k09 satisfies an inequality of the form.
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where c4 depends only on \k\,Ω,c0, and the C0>λ-norms of the coef-
ficients aa.

LEMMA 4. A is a Fredholm operator of index zero from C2m>λ(Ω)
to COfλ(Ω). In particular if A is one-to-one, A is an isomorphism.

Proof of Lemma 4. Let S be the inverse of (A + kl) as above.
Then for feC°>λ(Ω),

ASf =(A + kI)Sf - hSf

= (I-kS)f

i.e.

A = (I - kS)(A + kl) .

Since (/ — kS) is a Fredholm operator of index zero from C°'λ(Ω) to
O λ ( β ) and (Λ + kl) is an isomorphism of CT>\Ω) onto C°'λ(β), A is
a Fredholm operator of index zero from Qm>λ(Ω) to C°>K(Ω).

3* Proof of Theorem 2 Let uQeClmtλ(Ω) and suppose that F
is one-to-one on an open neighborhood N of u0 in CT>\Ω). We may
take N of the form

N = {u I u~e CΓ>\Ω), \\u~u0 \\o2m>λ < ε} .

Let A be the linear differential operator on Ω given by

Arj= Σ Fa(p(u0))D«V .

Since F satisfies condition (a) of Theorem 1, A is uniformly strongly
elliptic on Ω. Since the Fa are C1 on Ω x RM and therefore satisfy
a Holder condition with expondent λ on compact subsets of Ω x RM,
the coefficients of A lie in C°'λ(Ω). Hence by Lemmas 2 and 3, there
exists k > 0 such that the linear mapping

u —> Au + ku

of Clm'λ(Ω) into C°'λ(β) is an isomorphism of the two spaces. Let S
be the inverse mapping, so that S is a bounded linear mapping of
C°'λ(β) into C2m'λ(β).

Let w and v lie in JV. Then

F(u) - F(v) =

= F'{uo)(u - v) + R(uQ, u, v)

where
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R(u0, u; v) — [{F'(Xu + (1 - X)v)(u - v) - F'(uQ)(u - v)}dX .

Given 3 > 0, we can choose ε > 0 so small that for u,v e N, O^gλgΞl,

|| F'(Xu + ( 1 - X)v) - F'(u0) \\<δ .

Then

|| R ( u 0 , u, v) \\o0,λ{Ω) ^ δ || u - v \\o2m,λ{Ω) .

L e t

RUQ(u) = F(u) - F'(uo)u , % G iV .

Then

\\RUo(u) - i ? M » ||σ0>λ(fl) = \\R(u0, u, v) \\o0lMo)

^d\\u' - v\\o2mtλ{Ω)

We form a mapping G of C°>λ(Ω) into C°'λ(β) by setting

G(f) = F(Su + u0) .

There exists a neighborhood iVx of 0 in C°'λ(£?) mapped by u—>Su + u0

into iV. To show that F is open at u0, it suffices to show that G is
open at zero. However

G(f) = (F'(u0) + RuJ(Sf + u0)

= (A + A/)(iS/) - kSf + ^

= f-kSf+RUQ(Sf+u0).

Here A:S like S itself is a continuous linear map of C°>λ(Ω) with C2m'λ(β)
and since the injection map of C2m>λ(fl) into C°'λ(Ω) is compact, &S is a
compact linear mapping of C0>λ(Ω) into C0>λ(Ω).

For / and ^ in Nu we know that

\\RU0(Sf + O - Λ oίSΛ + u0) \\o0>λ{Ω)

^δ \\(Sf + ^0) - (Sf/, + U o ) \ \ o 2 m Λ { Ω )

^ Oδδ\\f — fi\\o0,\{Ω)

If we choose δ > 0 so small that cδδ < 1, the mapping

is a bicontinuous mapping of iVt on an open neighborhood N2 of zero
in C0>λ(Ω) and is Γ is the inverse of this mapping, GT— /— kST has
the same image on N2 as G has on JVΊ. Moreover GT is one-to-one
on N2 since G is one-to-one on Nx.

Finally
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where C is a compact mapping of N2 into C°'\Ω). Since GT is one-
to-one, it has an open image by the Schauder theorem on invariance
of domain for compact displacements in Banach spaces (see Schauder
[15], Leray [18], Nagumo [12]).

Proof of Theorem 3. By the construction of the proof of Theorem
2, for each u0 in CTΛ(Ω), there is a homeomorphism h of a neighbor-
hood N of uQ with an open neighborhood N2 of the origin in C°'λ(Ω)
such that for / in N2

(Foh~ί)f=F(u0)+f-Cf

where C is a compact (possibly nonlinear) map of N2 into C0>λ(Ω).
Let u be an element of CT>»{Ω). The Frechet differential of F

as a map of Clmφ(Ω) into C°>μ(Ω) is given by the linear operator

Σ
\^2

Fa(u)Day,

By the hypotheses of Theorem 3, Au is uniformly strongly elliptic on
Ω, has coefficients in C°'μ(β), and is one-to-one on Com'μ(ί2). Hence Au

is an isomorphism of CT^φ) onto C0>μ(fl). By the implicit function
theorem, ί 1 is a local homeomorphism of CT>μj(Ω) into C0>μ(Ω), i.e., it
maps some neighborhood of each point w homeomorphically onto a neigh-
borhood of F(u).

The inverse A"1 of Au is a bounded linear mapping of C0>/x(ί2) into
Clmiμ(Ω) and its norm H ^ 1 ! ! between this pair of spaces is bounded for
u on compact subset of C2m>fJj(Ω). Hence so is the norm of A'1 as a
linear map of C0>λ(Ω) into C°'\Ω). Let u run through a bounded sub-
set B of C§m'λ(β). Since B is precompact in C2

0

m'μ(β), it follows that
there exists a constant c such that for all u in B, η e C°*λ(Ω)

\\V\\0o,χw ^ c \ \ A u η \ \ o 0 f λ w .

If we apply Lemma 1 of § 2, we have

with c' independent of u on J5.
However Au is also the Frechet differential of F as a map of

CT>λ(Ω) into C°*λ(Ω) at tc, and between this pair of spaces F is a local
homeomorphism as before.

We now apply the following theorem of Hadamard and P. Levy [10]:
If F is a local homeomorphism of a Banach space X into a Banach
space Y and if no curve of infinite length in X is mapped by F
onto a line segment in Y, then F is a homeomorphism of X onto Y.
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Our given mapping F is a local homeomorphism of Com>λ(β) into
C0>λ(β). Let t-+φ(t) be a curve in C2m>λ(Ω) covering a line segment
in C°'λ(β) with respect to F. If the curve is bounded in C2m>λ(Ω) then
since 11 (Fί)""111 is bounded on bounded subsets of C2m'λ(β), the length
of the curve would be finite. Hence it suffices to prove that the
inverse image under F of every closed line segment in C0>λ(β) is
bounded in C2m>\Ω).

By hypothesis, each point f0 of the line segment Lo has a neigh-
borhood such that || ί7"1/!!^*,^) ^ &(/o) in this neighborhood. Cover-
ing the compact set LQ by a finite number of neighborhoods, we have

m,λ{Ω)^k for feL0.

4* Proof of Theorem 1# Let

R = R0, BR^{u\ue C Γ - 1 A ( β ) , \\u\\^R} .

Let H be the function corresponding to R by condition (1) of the
hypothesis of Theorem 1. For each u in RRi we consider the equation

( e ) : Ft(p(u, v)) + tH(p(v)) = tH(p(u))

for v in C2

Q

m>λ(Ω). The linearized form of equation (e) is

(e) ' : Σ FtΛv{u, v))D«η + Σ *#«(Pfa, ^))^α)? = 0

which by condition (1) has only η = 0 as a solution in C\mφ(Ω) for a
fixed μ with 0 < μ < λ < 1. Moreover by condition (2) of the hy-
pothesis, the solution v of the equation

( e ) f Ft(p(u,v)) + tH(p(u,v))=f

for H ^ I U ^ λ g J ? and / in C°>λ(Ω) with \\f\\o0,κ ύ s, where v lies in
Com'λ(β), must satisfy the inequality

Hence the hypotheses of Theorem 3 are satisfied for the family of
equations (e)f and in particular, equation (e) has one and only one
solution vt for each t in [0,1].

We set Ct(u) = vt. Then Ct is a well defined mapping on BR whose
range we consider as a subset of Qm~ltλ(Ω). Since the map u—>H(p(u))
carries bounded sets of CT~ly\Ω) into bounded sets of C°'λ(β), it follows
from the argument of the preceding paragraph that

for all u in BB and all t in [0,1] with a fixed constant R2 > 0. Since
CΓ>λ(Ω) has a compact injection into C2m-hλ(Ω), it follows that
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is precompact in Clm-ltλ(Ω).

We wish now to verify t h a t the mapping

[t, u] — Ct(u)

is a continuous mapping of [0, 1] x BR into C2 m~1 > λ(β). Let ί0 be a

fixed number in [0, l],uQ a fixed element of BR. For t near tQ and £̂

near u0, we have

^ ( P ί w , i;)) + tHt(p(v)) - ίfΓt(

- Fh(p(Uo, v)) + tQHtQ(p(v)) + {Ft(p(u, v) - Fto(p(uQ, v)}

+ {tHt(p(v)) - tQHfo(p(v))} ~ tQHto(p(uo))

+ {tHt(p{u)) ~ UHt0(p(u))} .

Furthermore

FtQ(p(uOy v)) = FtQ(p(u0, v0)) + Ft'0(p(u0, vo))(v - O + Λ(w0, ^0, *o

where v0 = Cto(t;o) and

o, vo, *o, *0IUλ = o(|| ι ; - vo II)

as || v — v01| —> 0. (The norm of v — v0 will be taken in CT"\Ω) through-

out this argument.) Similarly

tQHto(p(v)) = toHto(p(vQ)) + tQH!0(p(vQ))(v - v0) + RJji,, vOy t0, v)

where

II Ri(u0, Vo, ί0, v) llσo,λ = o(|11; - v0 \\)

as

11^ - ^ o l U > , λ - > θ .

It follows t h a t for v near ^0 in CT>X(Ω) we have

(Pίw, v)) + tHt(p(v)) - tHt(p(u))

= {Fto(p(uo, vQ)) + t0HtQ(p(v0)) - t0HtQ(p(uQ))}

+ i?2(^0, VQ, ί0, ί, ^, V)

where

||i?2(^o, v0, ί0, t, u, v)\\σo,λ{Ω)

Sσ{v -v,)\\v - vQ \\o2mtλ + σ3(uO1 u, t, ί0) ,

and
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σ,(uQf u,t,to)-+O

as

II W - ^olUam-i.λ + I* - *o I —> 0

while

(7(ι; - Vo) -> 0 as || v - ^0 H^m.x -> 0 .

The condition t h a t

( i ) F t(p(w, v)) + tfr f(p(v)) - tHt(p(u)) = 0

can therefore be satisfied if

[F '(p(^ 0 , O ) + t0H!Q(p(v0))\(v - v0) = -R2(u0, v0, to, t, ^, i>) .

The operator in square brackets is an isomorphism of Clm>λ(Ω) with
C°Λ(Ω) by condition (1) of the hypothesis. Hence for \\u — uQ\\ + \t — ίo|
sufficiently small, we may find a solution v of equation (i) in a pre-
scribed neighborhood of v0 in Cow'λ(ί?) with

II v - v0\\o2m,λ g |0( | |u - uQ || + 11 - to I)

where

/θ(β) —^0 as s —• 0 .

Since the solution of (i) is unique, v — Ct(u). Hence Ct maps [0,1] x BR

continuously into CT>λ(Ω) and afortiori into CT~lfλ{Ω).
We now apply the theory of the Leray-Schauder degree ([9], [12])

to the family of mappings I — C ^ O ^ t ^ l . For ί = 0, Ct — 0 since
then v is a solution of

X ZJαD«v = 0 .
|α|=m

Hence the degree of Γo over J5β with respect to 0 is equal to + 1 .
For each t in [0, 1], Ct is a compact map and the degree of Tt over
ί?β with respect to 0 is well-defined since for u in BR with ||^||σ2m,λ{β) =
i2, Ttu = 0 implies that

i.e.

Ft{V(u)) = 0

and for solutions of the latter equation, condition (3) of the hypothesis
assures that \\u\\o2m_uκ < Ro ~ R. The degree of Tt over BR with
respect to 0 is constant in ί by the continuity and compactness of Ct
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in the pair [t, u\. Hence the degree of TΊ over Br with respect to 0
is equal to + 1 and there exists a solution u in BR of Txu — 0. This
is equivalent, however, to

F(p(u)) = 0

and Theorem 1 is proved.
As an important specialization of Theorem 1, we have the follow-

ing result for the quasi-linear case.

THEOREM 4. Suppose F is a C2-function on Ω x RM such that
the corresponding differential operator F(u) of order 2m is strongly
elliptic and quasi-linear, i.e.

F{u) = Σ AΛ%, u,---, Ό^-ιu)Όau = G(x, u, , D^-'u) .
\a\=2m

Suppose that for Ft(u) = tF + (1 — t)Jm, we know the existence of
R0>0 such that for u in Cow'λ(β), we have \\u\\o2m~ltλ < Ro if
Ft{p{u)) — 0 for some t in [0,1].

Then the equation F(p(u)) = 0 has a solution u in C2

Q

m'λ(Ω).

Proof of Theorem 4. We apply Theorem 1 with

H(x, p) — kR\ p01
2 .

Since for || u\\o2m__uλ < R, the C°'λ(β)-norms of coefficients in the dif-
ferential operator

Σ Aa(x, u,Du, , D2m-lu)Dav

are bounded by a function of R, it follows from Lemmas 2 and 3 of
Section 2 that the conditions (1) and (2) of Theorem 1 are satisfied.
Since condition (3) is part of the hypothesis of Theorem 4, we may
apply Theorem 1 and obtain a solution of F(u) = 0.

Another interesting specialization is to the case of nonlinear second
order equations.

THEOREM 5. Let F(u) be a nonlinear strongly elliptic differential
operator of second order. Suppose that both of the following hypo-
theses are satisfied:

(a) There exists a constant Ro > 0 such that if Ft(u) = tF(u) +
(1 - t)Δ = 0 for ueC2m>λ(Ω), then \\u\\o2m_hλ < Ro.

(b) The equation

i, v)) - /
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for ||w||c72»-i,\ έ= R, ll/llαo,λ ^ s /MXS αiί iίs solutions v in CTΛ(Ω) bounded
by

ίfee equation F(u) — 0 feαs α solution u in Clm>λ(Ω).

Proof of Theorem 5. We apply Theorem 1 with H = 0. The
linearized equation

|Λ|=2

has only 77 = 0 for a solution in Q'λ(Ω).

5* Historical remarks* The basic work on the Leray-Schauder
degree and its application to elliptic boundary value problems is of
course the original paper of Leray and Schauder [9]. The result of
the latter were only given for equations of second order because of
the need for precise results on linear equations not then established
for higher order differential operators. Our treatment of the case of
strongly nonlinear rather than quasilinear equations follows somewhat
different lines from that given in the second part of [9].

Theorem 2 is a generalization of the result of Schauder [15] for
second order equations. A partial generalization is given by Agmon-
Douglis-Nirenberg ([1], Theorem 12.6).

Theorem 3 is an application of the ideas of the writer's papers
[4] and [5].

Systematic accounts of the Leray-Schauder theory of the degree
are given by Nagumo [12], Krasnoselski [7], and Cronin [6j. Complete
treatments of applications to second order quasilinear equations in R2

are given by Nirenberg [13] and Miranda [11].
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