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TOPOLOGICAL METHODS FOR NON-LINEAR ELLIPTIC
EQUATIONS OF ARBITRARY ORDER

FELIX E. BROWDER

Consider a strongly elliptic nonlinear partial differential equ-
ation (e): F(x,u,Du,---,D*u) =0, of order 2m on a bounded,
smoothly bounded subset 2 of R*. For second-order operators,
Leray and Schauder, using the theory of the topological degree
for completely continuous displacements of a Banach space,
showed that the existence of solutions of the Dirichlet problem
for (e) could be proved under the assumption of suitable a-priori
bounds for solutions of the type of (e). In the present paper,
using precise results on the solutions of linear elliptic differ-
ential operators with Holder continuous coefficients as well as
a variant of the Leray-Schauder method, we extend this result
to equations of arbitrary even order. We also obtain results on
uniqueness in the large under hypotheses of local uniqueness.

Theorem 1 is our general result of Leray-Schauder type for the
most general sort of strongly elliptic nonlinear equation. Its proof is
based upon Theorems 2 and 3 which concern equations for which one
has local uniqueness of solutions. Theorem 2, which extends a result
of Schauder [16] for second order equations, asserts the solvability of
the equation F'(u) = f for f near f, with w near u, if the solution is
locally unique. Under similar hypotheses and an additional a priori
bound, Theorem 3 asserts the existence and uniqueness of the solu-
tion for all f. Theorem 4 and 5 specialize Theorem 1 with a drastic
simplification of hypotheses to quasi-linear equations of order 2m and
to nonlinear second-order equations. Theorem 4, in particular, gives
a simple and very general extension of the Leray-Schauder method as
given in [9] for quasi-linear equations of second order.

The writer is indebted to Stephen Smale for a number of con-
versations which stimulated his interest in giving a systematic treat-
ment of the Leray-Schauder theory for general non-linear elliptic
equations.

1. Let 2 be a bounded, smoothly bounded open subset of the
Euclidean space R”, I" its boundary in R”, 2 its closure in R", (n = 1).
We denote the general point of £ by « = (x, ---, 2, and for each
n-tuple @ = («,, +--, @,) of nonnegative integers, we set
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For a given integer m = 1, we consider vectors p = {p./|a| =< 2m}
with a real component for each partial derivative of order < 2m. They
form a real vector space R¥ for some integer M, which we shall not
give explicitly,. We assume that we are given a function

F:2x R*—>R'

which is twice continuously differentiable on 2 X R* and whose deriva-
tives up to second order are uniformly bounded on compact subsets of
2 x R™, Using this function F' and the mapping p,: C*"(2) — R given
by

pa(w) = {Du(@)/| | = 2m}

we may form the general partial differential operator (not necessarily
linear) of order 2m by

Fu)(x) = F (v, p(w), v €2, ue C™(Q)
and consider the partial differential equation
(1) F(u)=0, we C™(Q) .

For a given real number N with 0 < A < 1, and any nonnegative
integer j,

CiM0) = {u|ue Ci(Q). There exists a constant
(2) ¢ > 0 such that |D*u(x) — D*u(y)| = cle — y|*,
z,yef, |la| =7}

C#*) is a Banach space (and indeed a Banach algebra) with respect
to the norm

1llosr = 5, sup | Deu(z)|

( 3 ) LTEY)
~sup {l@ —y [ Du@) — D uly) [} .
lw|=j z,y€2;2%y

If we assume (as we shall henceforward) that /" is locally a manifold
of class C*™* then there is an obvious and unequivocal sense that can
be given to D*u |, for any u in C*M®Q) and any « with |a| < 2m.

We may therefore form the closed subspace C:™*Q) of C*™NQ)
which consists of all w in C**(2) which satisfy the homogeneous
Derichlet boundary condition of order m on I, i.e.

(4) Dful, =0, [Bl=m—1.

For w in C**Q), F(w) lies in C**2) as follows by a routine
argument using the fact that F'(x, p) satisfies a Holder condition with
exponent ) in all arguments on compact subsets of 2 x R*, More-
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over, the mapping u-— F(u) is continuous from C*™*Q) to C"Q),
and indeed continuously Frechet differentiable with Frechet derivative
at u in C*™*Q) given by

(5) F'(u) () = Fo(x, p(w)D 7

lw|=2m

where F, = oF/op,.
We say that the nonlinear differential operator F'(u) is strongly
elliptic if for each pe R, the linear differential operator A, given

(6) Ay ) = mgm Fo(z, p)Dq

is uniformly strongly elliptic on Q.
Let Ci"*MQ) = {u|ue C™NQ); DPu|, = 0 for |B]| = m — 1}.

THEOREM 1. Let F be a C*-function 2 x RY which defines a
strongly elliptic monlinear partial differential operator F(u) of order
2m onm 2. Let 0 < AN <1, and for 0 =t <1, let

F({X), D, t) = tF(x)P)+ (1 - t)zlallpalzy

Fy(u) the corresponding partial differential operator of order 2m.
Suppose that all of the following conditions are satisfied:

(1) For each R > 0, there exists a constant pr with 0 < <A <1
and a differential operator H of order < 2m — 1 (possibly monlinear)
on Q such that for each ue C7"NQ), ve Ci™HQ) with || 4| pnr = R,
and
., o)) = {2700 el <m

Dev(x) , la| = m

the linear equation

3, Fulo, pw, 0)Dn + 5, GH(w, pLw)D*) = 0

|| =2m

has only 7 = 0 as a solution in C™*(Q2),0 =<t < 1.

(2) For giwen R > 0 and the corresponding function H of con-
dition (1), there exists a function R(s) such that for u in C-NQ)
With || U || em_iag = R and any v in Ci™ Q) such that

F(p(u, v)) + tH(p(u, v)) = f
for some ¢ in [0,1] and fe CNQ) with || fllon, =S, we have

[|v ngm,x = R(s)

(8) There exists a constant R, > 0 such that for any ¢ in [0, 1]
and ve C™NQD), if
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Fv) =0,
we have
12 llgzm—sire < Bo
Then the equation
F(u)=20

has a solution u in Ci™ Q).

THEOREM 2. Let F be a C’-fumction on 2 X R™ such that the
corresponding partial differential operator F(u) of order 2m 1s
strongly elliptic. Suppose that for a given u, in C™NQ), the map-
ping u— F(uw) of Ci™™Q) into C*Q) 4s one-to-ome on some neigh-
borhood of wu, in Ci™*9Q).

Then F' is an open mapping on some neighborhood of u,.

THEOREM 3. Let F be a C:-function on £ X R™ with F(u)
strongly elliptic. Suppose that both of the following conditions are
satisfied:

(i) There exists pr with 0 < g <A <1 such that for each u
in C(Q), the linear equation

IMZSM F.(x, p,(w))D*p =0, i Q
has only 7 = 0 as a solution in C;™*(2).

(ii) For each f, im CNQ), there exists constants k(f,), e(f,) > 0
such that for every solution w of F(u)=f with ue C™ Q) and
Hf— fOHoOM(g) < e(fo),

i| u Hng,)\(g) é k(fo) .

Then the equation F'(u) = f has one and only one solulion u in
CimNQ) for each f in C*MQ).

We shall prove Theorems 2, 3, and 1 in that order. The proofs
depend upon precise results on the Dirichlet problem for strongly el-
liptic linear operators which are discussed in detail in § 2, combined
with topological arguments concerning nonlinear mappings of Banach
spaces.

2. Let
A= a.(x)D*

la|=2m

be a linear elliptic differential operator of order 2m on 2 with real
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coefficients in C* Q). A is said to be uniformly strongly elliptic on
Q if there exists a positive constant c¢(c > 0) such that

S au(x)E = ¢ |

|w|=2m

for all xe Q, e R, (where £* = J]7%., £%).

The first basic fact that we shall employ about the Dirichlet prob-
lem for the strongly elliptic operator A is the estimate of Schauder
type ([1], Theorem 7.3) given in the following Lemma:

LEMMA 1. There exists a constant C > 0 depending on C,, 2 and
the C*MQ)-norms of the functions a,, such that for all w in C*™(RQ)

” U ”a2m,)\(g) é {H Au’ ”00,?\(9) + H u ”00,)\(9)} .

The second fact that we shall employ concerns the speetrum and
resolvent of the operator A under null Dirichlet boundary conditions:

LEMMA 2. Let p be any number with 0 < p <N <1l, There
exists a constant k, depending only on 2,c, and the C*Q)-norms
of the coefficients a, such that:

(a) For k=k, and any f in C*NR2), the equation

Au + ku = f

has a solution u in Ci™NQ),
(b) The solution u of the equation

Au+ ku = f
with we Ci™NQ), fe CoNQD), satisfies an inequality of the form
% [z = €1 || Au + Kt || z200)

with ¢, dependent only on 2, ¢, and the C"*(2)-norms of the a,.
Proof of Lemma 2. By Theorem 15 of [2], (p. 75) there exists
k, depending only on £, ¢,, and C**(Q) coefficients of the a, such that

for k= k, and all f in L*Q), there exists u in the space W*™*Q)
where

w3 Q2) = {u | D*ue L¥Q) for |a| < 2m}
with
Au+ ku = f

and « lying in the domain D(4,) of the realization of A in L* Q) under
null Dirichlet boundary conditions (in the sense of §2 of [2]). For
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such % and &k, we have the inequality
% |lr2ey S || A% + Ew [|z2(0)

of assertion (b). Since C:™*Q)c< D(4,), the validity of assertion (b)
follows.

If R(G) is the restriction to 2 of the family of C~ functions with
compact support in R”, R(G) is dense in C**2). For every f in R(G),
the solution u in D(A,) of the equation Au + ku — f lies in C™NQ)
by Theorem 8 of [2] (page 65). For this solution, we have by
Lemma 1,

” U Hg?m;)\(g) é C{H Au HUOJ\(Q)} + H % ||00,)\(9)
= cfll Au + kullon + B+ D[40} -

Moreover, since the injection maps of C*™NQ) into C"N2) and L* Q)
are compact, for each ¢ > 0, there exists k(¢) such that

” uU ”00:)\(.0) —S— € || U ||02m,)\(9) + k(s) || U HLZ(-@) .
Hence

|| u ”g?m,)»(m é c ” Au + ku Hgoy)\(g)
+ ek + 1)e || % lozmnigy + €k + DEE) [ % [z,
Choosing ¢ > 0 so small that ¢(k + 1) < 1/2, we have
2¢ || Au + ku||go,n g + 2¢(k + 1)k(e) [| % ||z20)

Co |l Au + k|| go,n g, + €3 || AU + kU [|r20)
s || Au + kullyon

H 4 Hme,)\(ﬂ)

A A TIA

i.e.
” w ||g2m,)\(g) é Cy ”f”go,)\(g)

for such f and u. Hence the mapping f— u from the dense subset
R(G) of CNQ) into C:™*R) can be extended by continuity to a bounded
linear map S of C**Q) into C*™*(2) such that

A+ EDSfF=T, feC"™9) .

Hence assertion (a) is proved.
The proof of Lemma 2 also established the following:

LEMMA 3. The solution w tn Lemma 2 of the equatlion Au -+
ku = f,ue C*"NQ), for k =k, satisfies an inequalily of the form

“ u ||0'—‘m'>\(m é Cs ”fllooﬂ\(m
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where ¢, depends only on |k|, 2, c,, and the C°*-norms of the coef-
fictents a,.

LEMMA 4. A is a Fredholm operator of index zero from C*™ Q)
to CONQ2). In particular +f A s one-to-one, A s am isomorphism.

Proof of Lemma 4. Let S be the inverse of (A + kI) as above.
Then for f e C**Q),

ASf = (A + kI)Sf — hSf
= (I —kS)f
ie.
A= —EkS)A+FKI).
Since (I — kS) is a Fredholm operator of index zero from C**Q2) to

C*N2) and (A + kI) is an isomorphism of Ci™*(Q) onto C**RQ), A is
a Fredholm operator of index zero from Ci™*Q2) to C**(Q).

3. Proof of Theorem 2. Let u,€ Ci™*Q) and suppose that F
is one-to-one on an open neighborhood N of %, in C;™*2). We may
take N of the form

N = {u]|ueCi"NQ), |4 — t|lgemn < €} .
Let A be the linear differential operator on 2 given by
Ap= 3 Fup(u))D .

|l =2

Since F' satisfies condition (a) of Theorem 1, A is uniformly strongly
elliptic on Q. Since the F, are C* on 2 x R™ and therefore satisfy
a Holder condition with expondent N on compact subsets of 2 x R¥,
the coefficients of A lie in C*»Q). Hence by Lemmas 2 and 3, there
exists £ > 0 such that the linear mapping

u— Au + ku

of C*®) into C"MQ) is an isomorphism of the two spaces. Let S
be the inverse mapping, so that S is a bounded linear mapping of
C*N®) into C*™XQ).
Let v and v lie in N. Then
Fu) — F(v) = SlF'(xu (L — M) — v)dn
0
= F'(uo)(u — v) + R(uo, u, v)

where
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R(uo, u; v) = S{Ff(m (L= V0@ — v) — F ) — o) .

Given 6 > 0, we can choose ¢ > 0 so small that for v,ve N,0 =\ <1,

HE"Ovu + (L= Mw) — F'(ug) || <0 .

Then
|| B(wo, %, 0) llgonay = 0 11% — ¥ [l gemone) -
Let
R, (w) = F(u) — F'(u)u , ue N .
Then

|] Ruo(u) - Ruo(v) ||001)\(_Q) - || R(um u, ’U) ||00,Mm

é 6 ” W — v Hme,)\(!))

We form a mapping G of C**Q) into C*NQ) by setting
G(f) = F(Su + w) .

There exists a neighborhood N, of 0 in C*Q) mapped by u— Su + u,
into N. To show that F' is open at u,, it suffices to show that G is
open at zero. However

G(f) = (F'(uo) + R, )(Sf + u,)
= (A + KI)Sf) — ESf + R, (Sf + u)
= f—kSf + B, (Sf + u) .
Here kS like S itself is a continuous linear map of C**(Q) with C*™*(Q)
and since the injection map of C*™*(Q) into C**(2) is compact, kS is a

compact linear mapping of C*Q2) into C**(Q).
For f and f, in N,, we know that

” R'u()(Sf + uO) - Ruo(Sfl + uo) ”00,7\(9)
Z 0| (Sf + ) — (Sfy + uy) ||02my)\(g)
Sceo ||l f— fu ||00,)\(g)

If we choose 0 > 0 so small that ¢,0 < 1, the mapping
f—_)f— Ruo(sf + uO)

is a bicontinuous mapping of N, on an open neighborhood N, of zero
in C*%Q) and is T is the inverse of this mapping, GT = I - kST has
the same image on N, as G has on N,. Moreover GT is one-to-one
on N, since G is one-to-one on N,.

Finally
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GT=I1I—-C

where C is a compact mapping of N, into C**(2). Since GT is one-
to-one, it has an open image by the Schauder theorem on invariance
of domain for compact displacements in Banach spaces (see Schauder
[15], Leray [18], Nagumo [12]).

Proof of Theorem 3. By the construction of the proof of Theorem
2, for each u, in C:™*(f), there is a homeomorphism % of a neighbor-
hood N of u, with an open neighborhood N, of the origin in C"*Q)
such that for f in N,

(Foh™)f = F(u) + f — Cf

where C is a compact (possibly nonlinear) map of N, into C**(Q).

Let w be an element of Ci™*®). The Frechet differential of F'

as a map of Ci™*(2) into C**(2) is given by the linear operator

Al) = 3 FD7,  7eCr@).

By the hypotheses of Theorem 3, A, is uniformly strongly elliptic on
Q, has coefficients in C**(2), and is one-to-one on C:#*). Hence A,
is an isomorphism of C¥™#*(Q) onto C**(2). By the implicit function
theorem, F' is a local homeomorphism of C?™#(Q) into C**(Q), i.e., it
maps some neighborhood of each point w homeomorphically onto a neigh-
borhood of F(u).

The inverse A;' of A, is a bounded linear mapping of C"*(Q) into
Cim#(2) and its norm || A;'|| between this pair of spaces is bounded for
u on compact subset of C*™*(Q2). Hence so is the norm of A;' as a
linear map of C*M2) into C**(2). Let % run through a bounded sub-
set B of Ci™*). Since B is precompact in Ci™*®), it follows that
there exists a constant ¢ such that for all  in B, ne C*N9Q)

“ 77 ”oOM(,.L) é ¢ H Au77 “00))\(,1.) .

If we apply Lemma 1 of §2, we have

” 77 ”me,h(g) é 0’ H Au77 “go,x(g)

with ¢’ independent of % on B.

However A, is also the Frechet differential of F as a map of
CimM2) into C**(2) at u, and between this pair of spaces F' is a local
homeomorphism as before.

We now apply the following theorem of Hadamard and P. Levy [10]:
If F ts a local homeomorphism of a Banach space X into o Banach
space Y and if mo curve of infinite length in X 1s mapped by F
onto a line segment in Y, then F is a homeomorphism of X onto Y,
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Our given mapping F is a local homeomorphism of Ci™*Q) into
C**2). Let t— ¢(t) be a curve in C*™*Q) covering a line segment
in C*MQ) with respect to F. If the curve is bounded in C**Q) then
since || (F,)7'|| is bounded on bounded subsets of C*™*(2), the length
of the curve would be finite. Hence it suffices to prove that the
inverse image under F' of every closed line segment in C"MQ) is
bounded in C*™*Q).

By hypothesis, each point f, of the line segment L, has a neigh-
borhood such that |[F~f| em. = k(f;) in this neighborhood. Cover-
ing the compact set L, by a finite number of neighborhoods, we have
I F=() gy < b for fe L,

4, Proof of Theorem 1, Let
R=R,, Bp={ulueCm*N2),|u| =R}.

Let H be the function corresponding to R by condition (1) of the
hypothesis of Theorem 1. For each u in R, we consider the equation

(e): Fy(p(u, v)) + tH(p(v)) = tH(p(w))
for v in C™*(2). The linearized form of equation (e) is

( e )’: |w|zz"‘2m Ft,a(p(uy v))Dav + lwlgzz:‘m—l tHa(p(u, ’U))D“’? =0

which by condition (1) has only » = 0 as a solution in C;™*(2) for a
fixed ¢ with 0 < gt <A< 1. Moreover by condition (2) of the hy-
pothesis, the solution v of the equation

(e) Fy(p(u, v)) + tH(p(%, v)) = f

for || % ||jem—1x = R and f in C*Y2) with || f||,,a = 8, Where v lies in
CiM0), must satisfy the inequality

|| v ”g?m,)\ = Rl(s) .

Hence the hypotheses of Theorem 3 are satisfied for the family of
equations (e); and in particular, equation (e) has one and only one
solution v, for each ¢ in [0, 1].

We set C,(u) = »,. Then C, is a well defined mapping on B, whose
range we consider as a subset of C2»~*({2). Since the map u— H(p(u))
carries bounded sets of C:"~%*®) into bounded sets of C**2), it follows
from the argument of the preceding paragraph that

” Ct(u) ”g2mr>\(9) = -R2

for all % in B, and all ¢ in [0,1] with a fixed constant R, > 0. Since
imNQ) has a compact injection into C*™~M2), it follows that
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Uo=es: Ci(Bp)

is precompact in Ci"—5N(Q).
We wish now to verify that the mapping

[¢, u] — Cy(w)

is a continuous mapping of [0,1] x B, into C*™*NQ). Let ¢, be a
fixed number in [0, 1], %, a fixed element of B,. For ¢ near ¢, and u
near u,, we have

Fy(p(u, v) + tH(p(v)) — tH(p(u))
= F,D(p(uo, v)) + tOHto(p('U)) + {F(p(u, v) — Fto(p(uo’ v)}
+ {tH,(p(v)) — t:H, (p(v))} — t.H, (p(%))
+ {tH,(p(w)) — t.H,,(p(u))} .

Furthermore
F(p(tho, v)) = F4(p(to, v0)) + Fy(p(tho, v:))(0 — o) + B, v, o, V)
where v, = C,(v,) and
|| R(tho, Vs, o, 0) [lgon = 0(]| v — w0 [])

as ||v — v, ]| — 0. (The norm of v — v, will be taken in C;™*(2) through-
out this argument.) Similarly

b Hyy(p(v)) = tH,(p(v0) + LH(D(v:))(v — o) + Bi(to, v, o, V)
where
|| By(%o, Voy oy ) lgo,n = ([ v — wo])
as
[|v — vollggmir — 0«

It follows that for v near v, in C;™N2) we have
F(p(u, v)) + ¢Hy(p(v)) — tH,(p(u))
= {Fto(p(um V) + toHto(p(vo)) - toHto(p(uo))}

+ [Fy(p(to, v0)) + &H/ (D(v:))](v — v,)
+ Rz(um vo; tOy t, ur 'U)

where

” Rz(uor Vo, tO, tr u, ’U) “00,)\(9)
= 0(’” - 'vo) ” vV — ”02m,)\ + 03(“0’ U, t; to) ’

and
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O5(Uo, U, t, t) — 0
as
% — % llpgmn 4 |2 — & —0
while
o(v — ) —0 as | v — v [l jemn — 0 .
The condition that
(1) Fy(p(w, v)) + tH(p(v)) — tH(p(w)) = 0
can therefore be satisfied if
[F(p(%o, v0)) + tH (D) [(v — w0) = — Ry(Uy, Vs, oy T, U, V) .

The operator in square brackets is an isomorphism of C;™*(Q) with
C"~2) by condition (1) of the hypothesis. Hence for ||u — u,|| + |t — &,|
sufficiently small, we may find a solution v of equation (i) in a pre-
scribed neighborhood of v, in C™*Q) with

v — o llgomn = 0% — %o || + [t — 1)
where
o(s)— 0 as s—0.

Since the solution of (i) is unique, » = C,(u). Hence C, maps [0, 1] X B,
continuously into C;™*2) and afortiori into C2™—Y*(Q).

We now apply the theory of the Leray-Schauder degree ([9],[12])
to the family of mappings I — C,,0=<¢<1. For t = 0,C, = 0 since
then v is a solution of

5 DDw=0.
@|l=m

Hence the degree of T, over B, with respect to 0 is equal to -+1.
For each ¢ in [0,1], C, is a compact map and the degree of T, over
B, with respect to 0 is well-defined since for % in B, with [|%]|,sm.xq =
R, T,u = 0 implies that

Fy(p(w)) + tH(p(w)) = tH(p(w))
i.e.
Fy(p(w)) =0

and for solutions of the latter equation, condition (3) of the hypothesis
assures that || [/pm_,» < R, = R. The degree of T, over B, with
respect to 0 is constant in ¢ by the continuity and compactness of C,
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in the pair [¢, #]. Hence the degree of T, over B, with respect to 0
is equal to +1 and there exists a solution w in B, of Tyu = 0. This
is equivalent, however, to

F(p(w) =0

and Theorem 1 is proved.
As an important specialization of Theorem 1, we have the follow-
ing result for the quasi-linear case.

THEOREM 4. Suppose F is a C*function on 2 X R* such that
the corresponding differential operator F(u) of order 2m ts strongly
elliptic and quasi-linear, i.e.

Fu)= 3 Az, u, -+, D" w)Du = G(x, u, - -+, D*™'u) ,
lw|=2m
Suppose that for F,(u)=tF + (1 — t)4™, we know the existence of
R, >0 such that for w in C™NQ), we have ||u|lpm-ir < Ry if
F,(p(uw)) = 0 for some t in [0, 1].
Then the equation F(p(w)) = 0 has a solution u in Ci™NRQ).

Proof of Theorem 4. We apply Theorem 1 with

H@,p) =keln .

Since for || % |lpm—irn < R, the C**2)-norms of coefficients in the dif-
ferential operator

> Al(x, u, Du, + -+, D™ ') Dy

la|=2m
are bounded by a function of R, it follows from Lemmas 2 and 3 of
Section 2 that the conditions (1) and (2) of Theorem 1 are satisfied.

Since condition (3) is part of the hypothesis of Theorem 4, we may
apply Theorem 1 and obtain a solution of F'(u) = 0.

Another interesting specialization is to the case of nonlinear second
order equations.

THEOREM b. Let F'(u) be a nonlinear strongly elliptic differential
operator of second order. Suppose that both of the following hypo-
theses are satisfied:

(a) There exists a constant R, > 0 such that if F,(u) = tF(u) +
(1 =184 =0 for ue C*™NQ), then ||u||gn_sr < Ro.

(b) The equation

Fy(p(u, v)) = f
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Jor | ullgem—in = B, || Flloon = s has all its solutions v in C¥™ Q) bounded
by

|| v ||g2m,)\ é R1(3) .
Then the equation F(u) = 0 has a solution w in Ci™N%2).

Proof of Theorem 5. We apply Theorem 1 with H = 0. The
linearized equation

S Fu(p(u, v)D = 0

|@[=2

has only » = 0 for a solution in C}*(2).

5. Historical remarks. The basic work on the Leray-Schauder
degree and its application to elliptic boundary value problems is of
course the original paper of Leray and Schauder |9]. The result of
the latter were only given for equations of second order because of
the need for precise results on linear equations not then established
for higher order differential operators. Our treatment of the case of
strongly nonlinear rather than quasilinear equations follows somewhat
different lines from that given in the second part of [9].

Theorem 2 is a generalization of the result of Schauder [15] for
second order equations. A partial generalization is given by Agmon-
Douglis-Nirenberg ([1], Theorem 12.6).

Theorem 3 is an application of the ideas of the writer’s papers
[4] and [5].

Systematic accounts of the Leray-Schauder theory of the degree
are given by Nagumo [12], Krasnoselski [7], and Cronin [6]. Complete
treatments of applications to second order quasilinear equations in R*
are given by Nirenberg |[13] and Miranda [11].
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