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GROUPS WHOSE IRREDUCIBLE REPRESENTATIONS
HAVE DEGREES DIVIDING p2

D. S. PASSMAN

In several previous papers I. M. Isaacs and this author
studied properties of groups which are related to the degrees
of their absolutely irreducible representations and in particular
to the biggest such degree. The results were concerned mainly
with the existence of "large" abelian subgroups in these
groups. It was found that much more could be said in the
p-group-like situation in which the degrees of the irreducible
characters of group G are all powers of a fixed prime p. We
say group G has r.x.e (representation exponent e) if the degrees
of all the irreducible characters of G divide pe. In this paper
we characterize groups with r.x.2. It is found that the prime
p = 2 plays a special role here. This supports the conjecture
that additional and more complicated groups with r.x.e occur
for p ^ e. With a few exceptions for p = 2, all groups G with
r.x.2 are shown to have either a normal subgroup of index p
with r.x.l or a center of index dividing p6.

1. Preliminary remarks* We will use here the notation and many
of the results of the first four sections of [5]. For example, we need
the characterization of groups with r.x.l given there. From this we
obtain the following.

(1.1) LEMMA. ( i ) Let N have r.x.l. Then either N has a
characteristic abelian subgroup of index p or [N: Q(N)] divides p*
where 3(N) denotes the center of N.

(ii) Let N be a normal subgroup of G. Suppose G has r.x.e,
N has r.x.l and [G: N] = pn. Then G has a normal abelian subgroup
A with [G: A] dividing pn+2.

Proof. We consider (i) first. By Theorem C of [5] we can assume
that N has a normal abelian subgroup A of index p. If A is not
characteristic then N has another such subgroup B. Thus N — AB,
and since both A and B are abelian, Af)BξΞ: S(N). Since [N: A^B]~ p2,
this results follows.

If N in (ii) has a characteristic abelian subgroup A of index di-
viding p2, the result is clear. Otherwise by (i), [N: 8(N)] < p3. Now
3(N)dG and G/3(N) is a p-group. Let A be the inverse image in G
of a central subgroup of order p of this quotient. Then clearly A is
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a normal abelian subgroup of G of index dividing pn+2.

We will have need for some known results, which we tabulate below.

(1.2) LEMMA. Let G be an arbitrary group.
( i ) Let B be a normal abelian subgroup of G such that G/B is

a p-group. Then B can be extended to A, a normal self-centralizing
abelian subgroup of G.

(ii) Let N be a nontrivial normal subgroup of p-group G. Then

(iii) Let K and N be subgroups of G with (K, M) £ £>(G). For
any ke K the map m—*(k, m) is a homomorphism of M into 3(G).
For any me M the map k —> (k, m) is also a homomorphism. In
particular, if K — G and M — 32(G), the second center of G, then the
result holds and hence ((?', 32(G)) = 1.

(iv) Let x be an element of order p acting on an abelian pr-
subgroup H of G. Then x acts fixed point free on H/&H(x).

Proof. ( i ) If &(B) > B then since B is normal so is &(B) and
we can join them by a principal series of p-group G/B. Thus we can
find subgroup C normal in G with &(B) Ξ2 C > B and [C: B] = p.
Clearly C is abelian and we continue this process.

(ii) Since G is nilpotent, N contains V a subgroup of order p
normal in G. G acts by conjugation on V, a group with automorphism
group of order p — 1. Hence G fixes V and F g 3(G).

(iii) For the first case we use the commutator identity ([2], p. 150)
(u, vw) — (u, w)(u, v)w to obtain

(k, m^s) = (k, m2)(k, mx)
m2 = (k, m1)(A:, m2)

since (k, m j is central. For the second case we use (uv, w) = (u, w)v(v,w)
to conclude

{kxkz, m) — (ku m)k2(k2, m) = (klf m)(k2, m)

since {ku m) is central.
(iv) Suppose x does not act fixed point free on H/0ZH(x). Set

Hx = &H(%)
 ar*d let H2 be the complete inverse image in H of &HIH (%).

Then x acts on H2. Set Gx = ζx, iϊ2>. Clearly H, = S(Gi) since H2 > H,.
Also GJHj. is abelian, so G[ £ Hx — SiG^. Hence Gλ is nilpotent of
class 2 and so the p- and p'-elements commute. Thus x centralizes H2y

a contradiction.

(1.3) LEMMA. Let G be a group of order p\ Then G has a
normal abelian subgroup A of index p,
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Proof. If G is abelian the result is obvious. Suppose | S(G) | = p2.
Then we need only take A to be a subgroup of index p containing
8(G). Thus we can assume | 3(G) | = p. Let ζ e &(G) - &(G) with
ζpeg(G). By (iii) of the above lemma g—>(#, ζ) is a homomorphism
with image 3(G) and kernel (£(ζ). Hence [G: £(ζ)] - p. But
[S(ζ): <ζ, 3(G)>] = p, so K(ζ) is abelian and the result follows.

(1.4) LEMMA. Let G be a group of order pQ which is not elementary
abelian. Then we can find g e 3(G) and h e Gr so that <(g, K) is a
normal subgroup of order p2.

Proof. If S(G) contains an element of order p2 we can take this
for g and h ~ 1. So we can assume that Q(G) has period p and also
that G is nonabelian. We show now that G has a central subgroup N
of order p with N Φ G'. This is clear if | 3(G) \ > p. If | 3(G) | = p
and G' - 3(G), then | G' \ = p and p5 = [G: 3(G)] - p2e by Lemma 2.3
of [5], a contradiction. Thus we can find such an N with N < JVG'
and both groups are normal. Choose L normal in G with \L\ = p2 and
N < L g iVG'. The generators of L, one from N and the other from
G', are the required elements.

2* Groups with nontrivial kernel* For convenience we make
the following definition.

(2.1) DEFINITION. We say e(G) = e if G has r.x.e but not r.x.(e — 1).
If e(G) = 2 we set ί2(G) = Π ker 5 where θ runs over all irreducible
characters of G of degree p2.

In this section we characterize those groups G in which the kernel
Ω(G) is nontrivial.

(2.2) PROPOSITION. Let e{G) = 2 and suppose J2(G) > 1. Then
p ~ 2 and G has a normal subgroup N of index 2 such that £?(G), JV'
and (G, &{N)) are the three distinct subgroups of order 2 of a central
subgroup U of type (2, 2). Moreover, we have [G: 3(G)] = 24.

Conversely, let [G: 3(^)1 = 24 and let G have a normal subgroup JV
of index 2 such that iV' and (G, 3(ΛΓ)) are distinct central subgroups
of order 2. Then for p = 2 we have e(G) = 2 and Ω{G) is the third
subgroup of order 2 in ζN', (G, 3(JV))> = ί7.

Proof of converse. Since iV is a maximal subgroup of G and
is not central in G we must have N= QZ3(N), the centralizer of the
center of N. Thus 3(G) S ΛΓ and hence 3(G) < 3(iSΓ). Now N is
nonabelian so [iV: 3(N)] = 22. We show now that for p = 2, e(G) = 2.
Clearly e(G) = 1 or 2 by Propositions 1.1 and 1.4 of [5] since [G: ,8(G)] = 2\
Hence it suffices to $how that G does not have r.x.l,
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We suppose G has r.x.l. By Lemma 1.1 (i), G has a normal abelian
subgroup A of index 2. Clearly A Φ N so B ~ Af]N is a normal
abelian subgroup of N of index 2. Since N is nonabelian &N(B) = 5 .
Hence 5 > ^(ΛΓ). Thus &&(N) 2 <iV, A> = G, a contradiction, and we
have e(G) = 2.

Let θ be a character of G of degree 22 and let θ \ U — 22λ. Since
N cannot be abelian in the representation associated with θ we see
that Nr g ker λ. Similarly 2(N) is not central in the representation
since [G: ̂ (iV)] = 23 so (G, 3(iV)) §= ker λ. Hence, since £7 has only
three subgroups of order 2, the third subgroup must be contained in
the kernel of λ and hence in the kernel of θ. Since this is true for
all such θ, we see that this third subgroup is contained in Ω(G). We
will prove in the forward direction of this proposition that | Ω(G) | g 2.
Therefore, with this additional fact, the result follows.

(2.3) LEMMA. Let G be an arbitrary group.
( i ) Let g and h be two nonidentity elements of G. Then there

is an irreducible character χ of G with g, h £ ker χ.
(ii) Let Gu G2 and G3 be three nonidentity subgroups of G.

Suppose that for every irreducible character χ of G we have Ĝ  QΞ ker χ
for some i = 1, 2, or 3. Then the Gf are the three distinct subgroups
of order 2 of an abelian subgroup U of G of type (2, 2).

(iii) Let Gly G2, G3 and G4 be four nonidentity subgroups of G.
Suppose that for every irreducible character χ of G we have G4 C ker χ
for some i = 1, 2, 3 or 4. TΛe^ αί mos£ £wo o/ ίΛβ G{ can have
order ^ 4.

Proof. Let C[G] denote the group algebra of G over the complex
numbers C. We use the fact that this algebra is semi-simple. Thus,
if in the algebra an expression of the form Πt (1 — 9i) ^s n o t zero, then
we can find an irreducible representation J^ with J ^ ( I L (1 — 9%)) Φ 0
and hence ,%f{gϊ) Φ 1.

( i ) It suffices to show here that (1 - g)(l - h) Φ 0. But if
(1 — g)(l — h) — 0 we have

1 + gh = g + h .

Since 1 occurs on the left, it occurs on the right, a contradiction since
g Φ 1 and h Φ 1.

(ii) Let giβGi with ^ ^ 1. Then for all such choices we must
have (1 - gi)(l - gt)(l - g3) - 0, or

= 9l + 92 + 93 +

Since 1 occurs on the left, it occurs on the right. But g{ Φ 1, so
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If 9i and g2 are fixed, then this holds for all # 3 e G3 — {1}.
Hence | G31 = 2 and similarly for Gx and G2. Also the above equation
implies that Gly G2 and G3 are the three distinct subgroups of U =
<GX, G2, G3> which is abelian of type (2, 2).

(iii) Suppose first that two of these groups have a nontrivial in-
tersection. Say G3r\G4 = H > 1. Then applying (ii) above to the
groups Gu G2 and H we see that | G1 \ — \ G2 \ — 2, so the result follows
here. Hence we can assume that for iφj we have GiΓ\Gj = l.
Suppose g e G can be written in the form g = g{gό with gi e G{ and
gj e Gj. Then for fixed i and j this representation is unique. If not,
we can find g{ e G{ and gό e Gd with g{ Φ g{ and g = # ^ = ̂ griβ Hence

gϊ'gi^-Sjgj'eG.nGj^ l .

So gi = gi9 gj = Us, a contradiction.
Let us assume | G21 ^ 3 and | G31 ̂  4. We show that | G1 \ = | G4| = 2.

This will clearly yield the result. Choose nonidentity gγ e Glt Since
I G21 ^ 3, we can choose nonidentity #2 e G2 with ^i e g2G4. This follows
by the uniqueness mentioned above. Since | G31 ̂  4, we can choose
nonidentity # 3e G3 with ^ g βr3G4 and g, £ G2g3. Now for all g±eGA — {1}
we have

(1 - gr^l - j72)(l - flr,)(l - ί/Γ1) = 0 ,

or

= 9T1 + ̂  + ̂ 3 + gϊ1 + flfr'Ma + o^QiQi1 + gϊ'g^g^1 +

Since 1 appears on the left side, it must appear on the right. But g{φ 1
and g1 $ G2g3, g2G± or g,GA. Hence we must have 1 = g2g3g^ or g4 = g2gz.

Since this is true for all nonidentity g±e G4, we have | G41 = 2. Finally
interchanging the roles of G4 and Gx yields | Gλ \ — 2 and the result
follows.

(2.4) LEMMA. Let e(G) — 2. Let N be a normal subgroup of G.
Then

( i ) if e(N) = 2 then Ω(G) f]N^ Ω(N),
( i i ) if e(G/N) - 2 £ / ^ Ω(G)N/N S
(iii) β(G) C G'.

Proo/. Let xeί2(G)nΛΓ with x Φ 1. If xίΩ(N) we can choose
character <p of AT of degree p2 with x ί ker <p. Let χ be a constituent
of 9?*. Then p2 = deg cp ̂  deg χ ̂  2>2, so deg χ = deg φ and χ | N = ^ .
Hence sc ί ker χ and deg χ — p2, a contradiction. Thus # e β(iV) and (i)
follows.

Part (ii) follows easily, since any character of G/N of degree p2
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can be viewed in a natural way as one of G.
Let x be a nonidentity element of Ω(G) and let Θ be a character

of G of degree p2. We have ^eker/9. If x$Gr then we can find a
linear character λ of G with λ(x) Φ 1. This implies that ΘX is an ir-
reducible character of G of degree p2 with a; ? ker 0λ, a contradiction.
This completes the proof.

(2.5) LEMMA. Let e(G) = 2 cmd Ω(G) > 1. Suppose also that G
has a normal subgroup N of index p with &3(N) — N. Then p = 2,
I Ω(G) I = 2, [G: 3(G)] = 24 and β(G), iV' and (G, Q(N)) are the three
distinct subgroups of order 2 of a central subgroup U of type (2.2).

Proof. Since Ω(G) g Gr we see that Ω(G) S N. Set Gx = <2(G),
G2 = (G, S(N)) and G3 = iV'. By assumption, G2 > 1 and since e(G) = 2,
N is nonabelian and G3 > 1.

Suppose G has a character χ which does not contain either Gu G2

or G3 wholly in its kernel. Since Ω(G) — Gx is not in the kernel and
Ω{β) S G', we see that deg χ = p. We consider χ | N. If χ\N = φ
is irreducible, then clearly 3(N), being central in the representation
associated with φ, is in the center of χ. But this implies that
(G, &(N)) — G2 S ker χ, which is not the case. On the other hand,
suppose χ | N = Xλ + λ2 + + λp, a sum of p linear characters. Then
clearly N' = G3 ^ ker χ, again a contradiction. Thus no such χ exists
and by Lemma 2.3 (ii) we see that Gu G2 and G3 are the three distinct
subgroups of order 2 of U — ζGu G2, G3> which is abelian of type (2, 2).
Since the G{ are clearly normal subgroups of G, they are central since
they have order 2, and thus U is central. In particular S(N) Ξ> N',
so N is nilpotent of class 2. Since ξ?(iV) is abelian and central in N,
this implies that N' is a p-group. Hence p = 2.

If e(N) = 2, then Ω(G) = Ω(G)nN^Ω(N) g iV' and so Gx - G8,
which is not the case. Since N is nonabelian we must have
e(N) - 1. By Lemma 2.3 of [5], [N: 3(iV)] = 22. Now G/N acts on
3(iV) and \(G,8(N))\ = 2. Thus applying Lemma 1.2 (iii), since
S(N) 3 3(G), we have [ 3 ( ^ ) : 3(G)] = 2 and hence [G: £(G)] = 24. This
completes the proof.

Proof of Proposition 2.2. By induction on | G |. If G has a normal
subgroup N of index p with &8(N) = ΛΓ, then the result follows by
the previous lemma. Hence we assume that for all such JV, Q(N) <ΞΞ
8(G) and we obtain a contradiction.

We first show that G is nilpotent. Let N be a normal subgroup
of G of index p (see Proposition 3.4 of [5]). If e(N) = 2 then
Ω(G) s f f S iV so ί2(iV) > 1. Hence p = 2 and [iV: 3(N)] = 24 by
induction. Thus [G: 3(G)] = 24 or 2\ Now suppose JV has r,x,l. Clearly
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N is nonabelian. If [N: 3(N)] = p2 or p3, then [G: Q(G)] = p3 or p4.
Hence in either case, G is nilpotent. The remaining possibility is that
N has a characteristic abelian subgroup A of index p (Lemma 1.1 (i)),
and so G has a normal abelian subgroup A of index p2.

We study this latter case. We show first that G/A is abelian of
type (p, p). Suppose not. Then G/A is cyclic, and so there is a unique
subgroup N of G with G > N > A. Clearly N is nonabelian. By Lemma
2.3 (i), G has an irreducible character χ not containing either JV' or
Ω(G) wholly in its kernel. Since Ω(G) ξ§ ker χ, we see that deg χ = p.
Also iV' sg ker χ implies χ | N = φ is irreducible. Now A is abelian, so
χ\A = φ\A = X1 + X«+ + λp, a sum of p distinct conjugates since,
if φ I A = α Σ5 λ ^ w e ^ a v e α ^ = [ ^ L̂] = P Let Γ be the inertia
group of λ = V Then G > T > A, so T = N. But this implies that
λx is fixed by N, contradicting φ \ A — XL + + λp. Thus G/A is
abelian of type (p, p).

Write A^HxP where P = @P(A) and f? is the Hall p'-subgroup
of G. Both are clearly normal in G. We show that H is central. If
not, let H± = i ϊ n ^ G 1 ) < H. Let ^ be an element of order p of G/A.
Now G/A acts on H, since A is abelian. Clearly QZB(g) 3 J J 1 ( On the
other hand &H(g) S 8«^., ^» fi 3(G) by assumption, since <A, ^> has
index p in G. Hence ί^ = &H(g). By Lemma 1.2 (iv), g acts fixed
point free on H/Hλ and this is true for all g. Then group G/A, which
is abelian of type (p, p), acts fixed point free on H/Hu a contradiction
([1], Theorem V, p. 336). Hence H is central and G is nilpotent.

We have G - §(G) x @,(G). Let ζ e &2(G) - &(G) with ζ^ e S(G).
For any g e G v̂ e have (^, ζ) e g(G) and (gr, ζ)p = (g, ζp) = 1. Hence
(G, ζ) is central and has period p. If | (G, ζ) | = p, then [G: (E(ζ)] = p
and ζ G 3(£(ζ) S 8(^)» a contradiction. Hence | (G, ζ) | ^ p2. Thus we
can choose a central subgroup Jjof order p with J =g> Ω(G). Consider
G = G/J. We show first that e(G)j= 2.

Since Ω(G) Q G' we see that G is nonabelian. If e(G) = 1 then
either G has an abelian subgroup B of index p or [G: 3(G)] = p3.
Suppose the first case occurs. Let B be the complete inverse image of B
in G. Clearly JB is nonabelian. If e(B) = 2 then fl(G) g ΰ ' = J , a contra-
diction. Hence e(B) = 1 and [B: 3(JS)] = p2 by Lemma 2.3 of [5]. Thus
[G: 3(G)] — p2 or p3, which contradicts e(G) = 2. On the other hand, sup-
pose [G: 3(<5)J = P3 Let ζ belong to the complete inverse image of 3(G)
in G. Then (G, ζ) s J so LG: (£(ζ)] = 1 or p. Hence ζe_8&(ζ) c 3(G)
and [G: 3(^)1 = p2 or p3, again a contradiction. Thus β(G) = 2.

By Lemma 2.4 (ii), β(G) > 1. Hence by induction p = 2, [G: 8(G)] = 24

and G has a normal subgroup iV of index 2 with [N: 3(N)] = 22. As
in the above, [G: 8(G)] - 24 implies that [G: 3(G)] = 24. Let D be the
complete inverse image in G of 3(iV). Since [JD: $(G)] — 2, we can
write D = <3(G), V> with 77 e &(G). Now | (G, 3(^V)) | = 2 and | J | =
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p = 2 so I (G, rj) I = 2 or 4. If | (G, 37) | ^ 2 then 77 would be central, a
contradiction. Hence | (G, τj)\ = 4 and [G: ©(97)] = 4. This means that
[(£(77): <3(G), )7>1 = 2 and hence A = (£(77) is a normal abelian subgroup
of G. Moreover, since ψ e 3(G), (G, rj) has period 2, Hence G/A ~ (G, rj)
is abelian of type (2, 2).

Let us denote by NΊ, N2 and N3 the three subgroups of G satisfying
G > Nt > A. Since clearly A = (£(A) 2 3(G) we have ΛΓ, 2 3(G) and
hence [N^ £(#<)] = [^: 3(G)] = 23. Each N{ is nonabelian and has a
normal abelian subgroup of index 2. Hence, by considering the action
of NJA on A, we obtain | JNΓ/1 | 3(iV ) | = | A | and so \N(\ = 4. Set
Gi = N! for i = 1, 2, 3 and set G4 = #(G). Since | G1 | = | G21 == | G31 - 4
and | G 4 | > 1, we see by Lemma 2.3 (iii) that there is an irreducible
character χ of G with G?: g; ker χ for i = 1, 2, 3, 4.

Since β(G) g ker χ and β(G) S G' we see that deg χ = 2. We con-
sider χ\ A. Since A is abelian, we have either χ | A = 2λ or χ | A =
λjL + λ2. In the first case A would be central in the representation.
This would imply that each Nt is abelian in the representation and hence
Gi = N- g ker χ for i = 1, 2, 3, which is not the case. Thus χ\A =
X1 + λ2. The inertia group T of λx satisfies G > T > A so T is one of
the Ni9 say JVj. Suppose χ | Nλ = rp is irreducible. Then <p | A = λx + λ2,
which is not the case, since \ and λ2 are not conjugate in T = iVle

Hence χ | iS^ has only linear constituents and so G1 — N{ C ker χ, again
a contradiction. This completes the proof.

We show by example now that such groups exist.

(2.6) EXAMPLE. Let D be the dihedral group of order 8 and let
D* = D x D. Now for p = 2, e(D) = 1 and in fact D has precisely one
nonlinear character. Then clearly .D* has e{D*) = 2 and precisely one
character of degree 22. But D* is not a faithful linear group, since
its center is not cyclic, so Ω(D*) > 1.

The reason for studying groups G with Ω(G) > 1 can be seen from

the following.

(2.7) PROPOSITION. Let G have r.x.2 and suppose that G has a
normal subgroup N of index p with e(N) = 2 and JV = &Q(N). Then
p = 2, (G, S(N)) = β(i^) > 1 and [G: 3(G)] = 26.

Conversely, let G have a subgroup N of index 2 with e(N) = 2
and Ω(N) > 1. Suppose also that (G, 3(iV)) = i2(iV). Then for p = 2
we have e(G) = 2.

Note that, using the structure of groups N with Ω(N) > 1 as given
in Proposition 2.2, the structure of group G above is as follows, G
has subgroups N and K with
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G>N>K> 3(K) >
I I I I I I I

2 2 22 2

and (G, &(N)), (N, &(K)) and Kf are the three distinct subgroups of
order 2 of U, an abelian subgroup of type (2, 2) contained in

Proof. We show first that Ω(N) 3 (G, Q(N)) > 1. Let a; be a
nonidentity element of (G,3(N))m If x$Ω(N), then there exists a
character φ of N oΐ degree p2 with a? g ker φ. Let χ be a constituent
of <p*. Then, since e(G) = 2, we have p2 ^ deg χ g deg φ = p2. Hence
deg χ = deg φ and χ | ΛΓ = φ. Thus 3(^0 being central in the repre-
sentation associated with φ is central in the representation associated
with χ. But this implies that (G, 8(^0) c ker χ Π N — kerφ, which is
not the case. Thus Ω(N) 3 (G, £(#)) > 1 and Proposition 2.2 applies
here.

Clearly N 3 8(G), so &(N) > 3(G). Now we have p = 2 and
[JV: 3(iV)] = 24. Moreover, | Ω(N) | = 2 and so | (G, £(#)) I = 2. Let
G = <JV, ̂ >. Then 3(G) = e(^) n 3(ΛΓ) is the kernel of the homomorphism
a — (η, a) of g(N) into (G, 8(iV)). Hence [ί](N): 3(G)] = 2 and
[G: B(G)] " 26. This completes the forward direction of the proof.

Conversely we see as above that | (G, &(N)) \ = 2 implies that
[S(N): 3(G)] = 2 and hence, since [JNΓ: 3(iV)] = 24 by Proposition 2.2, we
have [G: 3(G)] = 26. For p = 2, Propositions 1.1 and 1.4 of [5] imply
that G has r.x.3. Hence we need only show that G has no irreducible
character of degree 23. Suppose χ were such a character. Then since
N has r.x.2 we must have χ ] JV = ^ + φ2i the sum of two conjugate
characters of N of degree 22. But then β(JV) S ker ^ (Ί ker φ2, so
β(iV) = (G, 3(iV)) s ker χ. This implies that 3(ΛΓ) is central in the
representation associated with χ, a contradiction, since [G: Q(N)] — 25.

Finally we give an example of such a group.

(2.8) EXAMPLE. Let D* = D x D be the group given in Example
2.6. D* has an obvious automorphism of degree 2 which amounts to
essentially interchanging the two factors. Let Fz be the semidirect
product of D* by an element of order 2 acting in this manner.

Now we have shown for p = 2 that e(D*) — 2 and β(D*) > 1.
Moreover, it is easy to see that (Fi9 3Φ*)) = Ω(D*). Hence by the
above Proposition, F3 has r.x.2.

3* Self-centralizing abelian subgroups. We saw in the last
section that the prime 2 plays a special role in the characterization of
groups with r.x.2. We discuss now another special case which can
occur.
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(3.1) EXAMPLE. Let Go be the following group of order 72. GQ

is the semidirect product of Vo, an abelian group of type (3, 3) by Do,
the dihedral group of order 8. We write this as Go = VQxσDQm The
action of Do on Vo is a faithful irreducible representation of degree 2
of DQ over GF(S). Now Do has only one nonlinear irreducible repre-
sentation and this is realizable over GF(3), so GQ is well defined by this
information.

Let us consider a concrete example of the representation. Do is
generated by elements x and y of order 4 and 2 respectively, given by

x =
0 1

- 1 0
y =

l o
o - l

Now Do has four noncentral elements of order 2. Let w be such an
element. Since w + lΦOjW — lΦO and 0 — w2 — 1 = (w + l)(w — 1),
we see that (w — 1)VO is a one-dimensional subspace of Vo and this is
invariant under w. If (w — 1)VQ — (w — 1)VO for some other noncentral
element w of order 2, then clearly

(w + l){w - 1) = (w - l)(w + 1) = 0 ,

so w — w, a contradiction. Hence the four subspaces (w — 1)FO for the
four elements of order 2 are all distinct. But Vo has only four sub-
spaces of dimension 1 and thus every one is of this form.

Since VQ is a normal abelian subgroup of Go we have by Proposition
1.1 of [5] that Go has r.x.3 for p = 2. We show now that Go has
r.x.2.

Let λ be a nonprincipal linear character of V'o. Then ker λ is a
one-dimensional subspace of Vo and so ker λ = (w, Vo) by the above in
multiplicative language for some noncentral element w of Do of order
2. Then

Xw(v) = X(wvw~ί) = Xiwvw^v^Xiv) = X(v)

and so w fixes λ. Thus λ has 1, 2 or 4 conjugates. In the first two
cases we would have λ fixed by z, the central element of Do. But
zvz~λ — v~ι so Xz(v) = λ('y~1) = λ(v) implies λ(v2) = 1, which is not the
case for all v. Hence λ has 4 conjugates.

Now let χ be a character of Go with χ | Vo = α Σ 5 λ i . If ί = 1,
then λ = λj. is the principal character of VQ and hence χ is a character
of Do

 ar*d has degree 1 or 2. If t Φ 1, then λ == λx is a nonprincipal
character and hence t — 4. Since α2έ ^ [Go: Fo] = 8 by Lemma 1.2 of
[5], we have a = 1 and degχ = 4. Thus G has r.x.2.

For convenience we introduce the following.

(3.2) HYPOTHESIS. Group G has r.x.2 and for every subgroup N
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of G of index p we have &(N) S

The main result of this section is the following.

(3.3) PROPOSITION. Let G satisfy Hypothesis 3.2. Moreover, suppose
G has a self-centralizing normal abelian subgroup of index p3. Then
either [G: 3(G)] divides p6 or G is a central extension of an abelian
group Z by Go (of Example 3.1) such that ZV0 is abelian.

Conversely, let G be a group with [G: 3(G)] dividing p5 or let G
be a central extension of abelian group Z by Cr0 such that ZV0 is abelian,
then G has r.x.2. In the latter case we of course have p — 2.

Proof of the converse. If [G: ,3(G)] divides p5, then the result
follows by Propositions 1.1 and 1.4 of [5]. So we assume G has the
second structure.

Let χ be a character of G. Say χ | A = a ^ ί \ and χ | ^ — 6«
where A — Z F 0 is abelian. Now the λ; are all constituents of μ*
(induction to A), a character of degree 9. Since Do fixes μ, we see that
DQ permutes the constituents of μ*, which are all linear. Since DQ is
a 2-group, it must fix some constituent, say λ. Then the characters
λ λ are a full set of conjugate characters of A/Z ~ VQ. Hence, by the
results proved in Example 3.1, we have either t = 1 or 4. Since
a2t <5 [G: A] = 8 and a is a power of 2, we see that α — 1 or 2 if £ = 1
and a = 1 if t — 4. Thus deg χ = αί = 1, 2 or 4 and the result follows.

(3.4) LEMMA. Let K be a proper normal subgroup of L.
( i ) Let e(K) — 1 and suppose L fixes all nonlinear characters

of K. Then S(K) S 3(L).

(ii) Let L have r.x.l and suppose K is nonabelian. Then

3(20 ε 3W.
(iii) Suppose L is a subgroup of G, a group with r.x.2. If K

is nonabelian and &3(K) = K, then e(G) = e(L) = 2.

Proof. Let e(K) — 1. We show first that for all nonidentity
elements x e K we can find an irreducible nonlinear character φ with
x ί ker φ. Using the semisimplicity of the group algebra, we can find
a character λ of K with x ί ker λ. It clearly suffices to assume that
λ is linear. Let θ be a character of K of degree p. Then clearly
either x $ ker θ or x $ ker ΘX.

Suppose we have (i). We show that 3(K) <Ξ $(L). If not, then
(L, 3(-K")) is a nontrivial subgroup of J5Γ. Choose nonidentity x g (L, 3( ίQ)
and let φ be a nonlinear character of K with x g ker >̂. Let χ be a
constituent of ^*. Then χ | L = aΣiΦi where the φ{ are the distinct
conjugates of ψ — φ{. Since L fixes all nonlinear characters of K, we
have t = 1 and χ L = α<p. Since ,3(^) is central in the representation
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associated with φ, it is central in the one associated with χ. Thus
(L, £>(K)) £Ξ ker χΠK = kevφ, a contradiction, and (i) follows.

Let L and K be as in (ii). Clearly e(L) = e(K) = 1. Let φ b e a
nonlinear character of K and let χ be a constituent of <p*. Then
χ I K = α Σί <P* a n ( i deg X — at deg <p. Since deg χ 5* p we have α = ί = 1.
Hence L fixes φ. The result now follows by (i).

Finally, suppose G, L and K are as in (iii). Since K is nonabelian,
e(L) ^ e(K) ^ 1. If e(L) = 1 then by (ii) above, L g (£3(1?), which
is not the case. Thus 2 ^ e(G) ^ e(L) ^ 2 and the result is proved.

(3.5) LEMMA. Let G satisfy Hypothesis 3.2. Let K be a normal
subgroup of G of index p2 with e(K) = 1. If K = &3(K) then
Ά(K) > 3(G), and either [&(K): 3(G)] = p or [G: &(G)] = p\ In par-
ticular, we see that the Hall pf-subgroup of &(K) is central.

Proof. G/K is abelian and in fact either type (p, p) or (p2). We
show that the latter cannot occur. Suppose to the contrary that G/K
is cyclic. Let L be the unique subgroup with G > L > K. Let φ be
a character of K of degree p and let χ be a constituent of φ*. Then
χ I K — a Σ i Φ. Since deg χ ^ p2, we see that £ = 1 or p. Then clearly
L fixes φ. Since this is true for all such φ, L g ©8(^) by Lemma
3.4 (i), a contradiction. Thus G/iί is abelian of type (p, p).

Let H be the Hall p'-subgroup of Q(K). This is normal in G.
We show that it is central. If not, then H, = Hng(G) < Jff. Let a;
be an element of order p of G/K. Now G/ϋΓ acts on H, since i ϊ S 3(^) .
Clearly, (E â?) a fli. On the other hand, &s(x) Q 3(<ίΓ, x» s 3(f?) by
Hypothesis 3.2. Hence Hγ — &H(x). By Lemma 1.2 (iv), x acts fixed
point free on H/Ht and this is true for all x. Then noncyclic abelian
p-group G/K acts fixed point free on H/Hu a contradiction ([1] Theorem
V, p. 336). Thus H is central.

Let S(K) = H x P where P is a Sylow p-subgroup of 3(iί). Clearly
P is normal in G. Also 3(ΐQ > £((?) 3 # , so 3(G) = H x Px with
J°i = ^ Π3(G) < P. Since &(K)/8(G) is a normal p-subgroup of G/&(G)
we can find an element of order p in the center of a Sylow p-subgroup
of G/S(G) in that group by Lemma 1.2 (ii). Let ζ be an inverse image
of this element in G with ζ e P. Thus (ζ, &P(G)) S 3(G) for some
Sylow p-subgroup of G. But ζ e £(#) and K a §(G), so (ζ, ©(G)) = 1.
Hence ζ is an element of £2(G) - 3(G) with Cpe3(G).

The map g —> (#, ζ) is a homomorphism of G into 3(G) by Lemma
1.2 (iii). Let L be the kernel. Since ζe${K), L^K. If L > if,
then ζe3(£) = 3(G) by Hypothesis 3.2. Thus K= L and the group
(G, ζ) cz G/K is an elementary abelian group of order p2. Let J be a
subgroup of (G, ζ) of order p with J g ϋΓ'. Such a choice is clearly
possible, since | (G, ζ) | = p2. Under the homomorphism g —• (gr, ζ) let
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N be the complete inverse image of J. Then N is normal and G > N> K.
Let M = <3(G), ζ>.

Consider the group G = G/J with subgroups JNΓ, K and M. Since
Λf > 3(G) a ^ we have

G>N> K

Note that G has r.x.2, but that it does not necessarily satisfy Hy-
pothesis 3.2. Now K is nonabelian by our choice of J. There are now
two possibilities, either &3(K) = K or (£8(10 > iί.

Suppose first &&{K) = K. Then by Lemma 3.4 (iii) e(G) = e(N) = 2.
Now MS8(N), since J=(N,ζ). But i ί ? g ^ ( G ) , since otherwise
J 3 (G, ζ), which is not the case. Thus G satisfies the hypothesis of
Proposition 2.7. Hence for p = 2, [G: 3(G)] — P6. Let η be an element
of G in the inverse image of 3(G). Then clearly ηe32(G). Now
(G, 37) S J, so by Lemma 1.2 (iii) we see that [G: (£(37)] = 1 or p, But
by Hypothesis 3.2 we cannot have [G: (£()?)] = p. Hence
Therefore [G: 3(G)] = p6.

Now let &3(K) > K, and in particular K(3(Z)) > J?. Choose sub-
group L with G > L > K such that L is contained in the complete
inverse image of g ( p ) ) . Then (L, &(K)) = J. Let L = <JΓ, a?>. The
map 6 —-> (6, a?) is then a homomorphism of B = S(K) onto J. Thus the
kernel which is 3(L) has index p in 3(K), since J has order p. But
by Hypothesis 3.2, 3(L) = 8(G) and the result follows.

Let G be a group with r.x.2, and let A be a normal abelian sub-
group of index p\ Suppose G/A is nonabelian. For each x e G let
d(x) — [A: &A(x)]. This is clearly a function of the cosets of A. If n
is prime to p, then clearly d(xn) — d(x). Also &Λ(xv) — &A(%)yi s o that
d(xy) = d(x). Hence, if x and y correspond to noncentral elements in
the same subgroup of order p2 of G/A, then d(x) = d(y).

Let K be the unique normal subgroup of G with K > A and
[iΓ: A] — p. Now iΓ = </l, w)> and we can assume that w e G\ Let
α0 = c?(w) and let a{ = d(α?i) for x{ e K{ — K where K{ is the ί-th nor-
mal subgroup of index p in G with K{ > if. There are clearly p + 1
such subgroups.

Let s(A) be the number of classes of conjugate characters of A
under the action of G/A (see Definition 4.2 of [5]). Then by Lemma
4.3 (iv) of [5] we have

( * ) I A I + (p - 1) I A l/αo + (p2 - p) Σ? + 1 1 A \/a, = [G: A]s(A) .

Since G has r.x.2, no character of A can have more than p2 conjugates
and the principal character is fixed. Hence s(A) > | A \/p2 and we obtain

(**) l/αo + 2> Σ?+11/α* > 1
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(3.6) LEMMA. Let G have r.x.2. Let Abe a normal elementary
abelian q-subgroup such that G/A is nonabelian of order p3. Suppose
that G/A acts faithfully and irreducibly on A. Then G ~ Go with A
corresponding to Vo and so p — 2 and q = 3.

Proof. We use the notation given in the material directly preceding
equations (*) and (**). Since G/A is a nonabelian p-group we see that
the number of generators of A is divisible by p. Say \A\ — qrp. We
have clearly Q(K) — 1, so that a0 — \A\.

Let λ be a nonprincipal character of A. Since G has r.x.2, λ has
1, p or p2 conjugates. If λ had 1 or p conjugates, then its inertia
group would contain K. However, if w fixes λ, we would have
1 < (if, A) s ker λ < A and then (if, A) would be a nontrivial G/A sub-
module of A, a contradiction. Hence λ has p2 conjugates. From this
we conclude that the number of classes of conjugate characters of A
is equal to

Hence by (*), since aQ = | A\, we have

I A\ + (p - 1) + (p2 - p)Σϊ+1\A\/ai = p*{l + (| A |

or

(***) V ΎIΛ11 A l/α, = p2 + p - 1 + [ A \ .

Let x and y be elements of Kt — if with ζA, x, y) = i^. Then w
centralizes ©^(^nK^d/). Since w acts fixed point free on A we have
®A(X) Γl K4(i/) = 1, and hence | A | divides a\. In particular | A |1/2 ^ | A \/aim

Then (***) becomes

j>(p + 1) I A I1'2 ^ p2 + p - 1 + I A I

or

1) ^ I A |1/2 + 1 = grp/2 + 1 .

Let us assume first that p > 2. If r = 1 then GF(q) must contain
the pth roots of unity. Hence q > p and so g >̂ p + 2. Then the above
equation becomes

(p2 + p - I) 2 ^ (p + 2)* ,

a contradiction for p ^ 3. Thus r ^ 2 and

p(p + 1) ^ qrpβ + 1 ^ qp + 1 ^ 2P + 1 .

The only possibility here is easily seen to be p = 3, g = 2 and r = 2.
But then (***) becomes
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I/a, = 11 + 64 = 75

and so

Σί Mi = 25 .

Now each | A \/a{ is a power of two at most equal to 8 = 641/2. Hence
the only solution of the above is \A\ja1 = l and \A\/<ti = 8 for i —
2, 3, 4. If G/i4. does not have period p then only one subgroup of order
p2 is noncyclic. Thus, say K2 is cyclic and since α2 = 8 we have
[A: 3(if2)] = 8, a contradiction. On the other hand, if G/A has period
p, then iζ/A is an abelian group of type (p, p) acting fixed point free
on A, again a contradiction. Thus p > 2 cannot occur.

Now let p = 2. We have

2(2 + ε l ) = 6 ^ qr + 1 ,

so the only possibilities are r = 1 and # = 3 or 5. If q = 5 we have
equality throughout and thus a] — \A\ for all i. But a nonabelian
group of order 8 always has a normal cyclic subgroup of order 4. If
this corresponds to Kγ then [A: 8(^i)] = 5 and w fixes ,8(^i)> a contra-
diction. This leaves only q = 3. Here we have from (***) the equation

V 3 A \/a, = 7 ,

and so \A\/a1 = l, | A \/a2 = | A \/a3 — 3. Since 1Γ2/A cannot be cyclic
we see that G/A is the dihedral group of order 8. Thus we have
@2(6r) ^ G/A the dihedral group acting on a (3, 3) group and this is the
group Go already discussed. This completes the proof.

Proof of Proposition 3.3. We will have need here for Lemma 3.5
applied to G. If the conclusion of that result is [G: Q(G)] = p6 we are
trivially through. Hence we assume in the following that the conclusion
is always [Q(K): $(G)] = p.

There are three distinct cases to study. Case 1 assumes that G/A
is abelian. In Case 2 we suppose G/A is nonabelian and that ξ>(Cr) is
central. Finally in Case 3 we consider the possibility that G/A is non-
abelian and that ξ>(G) is not central.

Case 1. We show first that H — ξ>(G) is central here. Write
A = H x P where P is the Sylow p-subgroup of A. P is characteristic
in A and hence normal in G. Consider G = G/P. If G has r.x.2, so
does G. Also &P(G) ^ G/A is abelian. Hence G has r.x.(2, 0) (see
Definition 3.1 of [5]). Then by Theorem A of [5] we see that G has
an abelian subgroup B of index dividing p2. Let B be its complete
inverse image in G. Clearly B > A, since B Ξ2 H, B Ξ2 P and
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We show that B centralizes H. Since B is abelian, we have
(5, H) g P. But H is normal so (B, H) £ if. Since HnP=l we
have (5, i ϊ ) = 1. Hence (£(#) > A and (£(#) is normal in G. If
[G: (£(#)] ^ P then H £ 3(G) by Hypothesis 3.2. Finally, suppose
ϋΓ = C£(i2") has index p2 in G. Since A is self centralizing, K is non-
abelian. Clearly K= &8(K). Hence by Lemma 3.5, $(8(K)) = &(G)
is central in G.

Since ξ>(G) is central, it clearly suffices to assume that G is a p-
group. Now A = (£(A) has index p2 in G, so by Lemma 4.4 of [5] there
exists xeG — A with [A: E4(a;)] g p2 and EP e A. Hence K — ζA, x} is
normal, [G: K] = p2 and [ϋΓ: 3(-K")] ^ P3. Moreover, iΓ is nonabelian.
By Hypothesis 3.2 and Lemma 3.5 we have [G: 3(G)] ^ p6.

Case 2. Since ξ>(G) is central we can assume that G is a p-group.
We use the notation of equations (*) and (**). Suppose α0 ^ p2. Then
[iΓ: 8(K)] S Ps and by Hypothesis 3.2 and Lemma 3.5 we have
[G: 3(G)] ^ p6. Now suppose for some ί Φ 0, α< = p. Let x^yeKi — K
such that ^ = <A, x, τ/>. Then 3(1^) 3 K4(^) Π ( ^ ) . But 3 ( ^ ) S 3(G),
so we have [G: 3(G)] g p5.

We assume now that α0 ^ p3 and a{ ^ p2 and obtain a contradiction.
By Lemma 4.4 of [5] or by (**) above, some a{ ^ p2. Say aΣ — p2.
Let x and 7/ be elements of K± — K such that Kλ = (A, x, τ/)>. Then
e ^ n ^ d / ) £ 3( iζ) £ 3(G) by Hypothesis 3.2, so [A: 3(G)] ^ p\

Since A > 3(G) we see that V = 32(G) Π A > 3(G). Now by Lemma
1.2 (iii), G' centralizes ^2(G) so &Jw) 3 32(G)n A = F > 3(G). Since
α0 ^ p3 and [A: g(G)] ^ ^4, we see that α0 = p3, [A: 3(G)] = p4 and
S4(ti;) = F with [F: 3(G)] = p. We show now that at least two of the
a{ are equal to p2. First suppose p > 2. If α̂  ^ p3 for i ^ 1, we have
by (**)

W + P/P 2 + p(p/p3) > 1 ,

or 1 + 2p2 > p3, a contradiction. If p = 2, then some iΓ ,̂ say KdJ is
such that iΓ3/A is cyclic. Since &(K3) = 3(G) we have α3 = p4 = 2\
Hence by (**) again

1/23 + 2/22 + 2/α2 + 2/24 > 1 ,

and 8 = 23 > α2. Thus α2 = 22. Say aλ = a2 = p2.
Let xe Kx — K and yeK2 — Kbe chosen so that G = ζA, x, τ/>.

Then [A: &Λ(x)] = [A: &Λ(y)] = p\ Moreover <&Λ(x) g F and Sx(^/) g V.
This follows since ©4(a?) 3 F implies F g 3 « 4 , a?, w » = 3{KX) = Q(G),
a contradiction. Set U = F(£4(x) Π Kκ(τ/). By the above we see that
U > 8(G). Now (y, U) = 1S 8(G), since U £ S^fo) and (a?, C7) £ 3(G),
since UQ V&A{x) and F g 32(G). But G = <A, », y>, so we see that
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3(G) < [ / g i Π 3 2 ( G ) = F and hence £/ = F. This is a contradiction,
since V <

3. If φ(G) were centralized by w it would be central by
Lemma 3.5 and Hypothesis 3.2, which is not the case. Write A = Q x R
where Q is a Sylow g-subgroup of A not centralized by w and R in-
cludes the remaining Sylow subgroups of A. Here, of course, qφ p. Let
G1 — G/i? with Qi — A/R ~ Q and w1 — wR/R. Then wx does not central-
ize Qu since (w, Q) £ Q. In Gx let ί^QO be the Frattini subgroup of
Qlβ Then ^ ! does not fix QJΦiQ,) by Theorem 12.2.2 of [2]. Set
G2 = GJΦiQJ and Q2 = QJΦiQ,). Here we have G2/Q2 - G/A acting
faithfully on an elementary abelian g-group. Since q is prime to p,
the representation is completely reducible. One of the irreducible con-
stituents will be faithful, otherwise w2 — wιΦ(Q1)/Φ(Qι) will be in all
the kernels and hence centralize the group. Dividing G2 by the product
of the remaining representation spaces, we have a group G with r.x.2
with an elementary abelian g-subgroup A of index pz such that G/A
acts irreducibly and faithfully on A. By Lemma 3.6 we must have
p = 2, q = 3, I A I = 9 and G - Go.

Thus in G we have p = 2 and [A: 3(G)] is divisible by 9. More-
over, G/A is the dihedral group of order 8. We apply equation (**).
Let iζ. correspond to the cyclic subgroup of order 4 of G/A. Then we
have a0 ^ 9 and aλ Ξ> 9. Thus

1/9 + 2/9 + 2/α2 + 2/α3 > 1

or l/α2 + l/α3 > 1/3. Hence one of α2 or α3 is less than 6. Say a2 < 6.
Since [A: 3(G)] divides al we have that 9 divides a] and so α2 is divisible
by 3. Thus α2 = 3, [A: S(G)] = 9 and G/&(G) ~ Go. This completes
the proof.

4* The main result* Our characterization of groups with r.x.2
is as follows.

(4.1) THEOREM A. Group G has r.x.2 if and only if G satisfies
one of the following.

( i ) (p = 2) G has subgroups N and K with

G>N>K> 3(K) >
I I I I I - I 1

2 2 22 2

such that (G, 3(N)), (N, 3(K)) and Kr are the three distinct subgroups
of order 2 of ί7, an abelian subgroup of type (2, 2) contained in 3(N).

(ii) (p = 2) G is a central extension of an abelian group Z by
GQ such that ZV0 is abelian. (Group Go is defined in Example 3.1).

(iii) G has a normal abelian subgroup A with index [G: A]



492 D. S. PASSMAN

dividing p2.
(iv) G has a normal subgroup N of index p with [N: 3(N)] = pz,

( v ) [G:S(G)] = p\
(vi) [G: 3(G)] — P6 and for all subgroups N of G of index p with

G > N > 3(G) we have &(N) — Q(G). Moreover, every homomorphic
image of G satisfies one of these six properties (i)-(iv).

It is interesting to note that the anomalous behavior of p = 2 for
groups with r.x.2 supports the conjecture that additional and more com-
plicated groups with r.x.β can occur if p g e as compared to p ^ e + 1
(see Propositions 4.6 and 4.7 of [5]). This is analogous to the situation
of regular p-groups in which for p ^ n all the groups of order pn are
regular while for p <: n — 1 there is at least one nonregular group.

We show by example that all of the cases of Theorem A occur

independently of each other.
( i ) Let G = Fz be the group of Example 2.8.
(ii) Take G = Go here.
(iii) Set G = F^x F^ where 2*\ is the group of Example 4.5 of [5].
(iv) Take G = Fxx F2 where Fx is the group of Example 3.7 of [5].
(v) Let G be the following group of order p15. G is generated

by elements χζ (i = 1, 2, 3, 4, 5) and yi5 (i > j and ΐ, j = 1, 2, 3, 4, 5),
all of order p such that for i > j , yi3 — (xi9 xd). Let Z be the central
subgroup generated by the yiS. If U is a subgroup of G with U > Z
and [U:Z] = p, then it is not hard to see that E7= K(Z7). With this
we see that Z — 3(G) and G does not satisfy (iii) or (iv).

(vi) Set G = Fλx Fx. Then [G: &(G)] = p6 and G does not satisfy

(i) or (ii). Since F± has r.x.l we see that G has r.x.2.

The proof of the sufficiency half of Theorem A is simple and we
do this first. Let G satisfy one of (i)~(vi). By Ito's theorem the de-
grees of all characters of G are powers of p. Cases (i) and (ii) follow
from Proposition 2.7 and 3.3 respectively. Cases (iii) and (v) follow by
Proposition 1.1 and 1.4 of [5]. In Case (iv) clearly N has r.x.l. Let
χ be a character of G with χ \ N = a J^[ φim Then deg χ = at deg φx so
a and t are powers of p. But by Lemma 1.2 of [5], a2t g [G: N] = p,
s o α ~ l and t = 1 or p. Since deg φ1 = 1 or p, this yields the result.

Finally, given case (vi). By Proposition 1.4 of [5], G has r.x.3.
Let x be a character of G and let G be the homomorphic image of G
which is the faithful linear group associated with χ. If G satisfies
(i)-(v), then G has r.x.2 and hence άegχ divides p2. The result will
follow then if we show that G does not satisfy (vi). Now G is nil-
potent so therefore so is G. Let ζ e Qt(G) - 3(<?)_with ζ* e 3(G). Then
the homomorphism g —> (g, ζ) maps G into 3(G), and thejmage has
period p. Since G is a faithful irreducible linear group 3(G) is cyclic
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and so | (G, ζ) | = p. Hence N = &(ζ) has index p in G. Thus
ζe&(N) - S(G), so G cannot satisfy (vi).

(4.2) LEMMA. Let G have a normal subgroup of index p with
r.x.l. Then G has one of the following.

( i ) a characteristic abelian subgroup of index p2;
(ii) a characteristic normal subgroup N of index p with [N: Q(N)]

dividing p3;
(iii) a center of index dividing p5.

Proof. Suppose first that G has a normal abelian subgroup of
index p2. Let K denote the group generated by all such subgroups.
Clearly K is a characteristic subgroup of G and [G: K] — 1, p or p2.
If [G: K] = p2 then K is abelian and we have (i). If [G: K] = p then
K = A^g where Ax and A2 are normal abelian subgroups of G of index
p2. Clearly £ ( # ) ^ Λ Π Λ and [K: A, Π A2] = p\ so we have (ii).
Finally, suppose K = G. Write G = Λ Λ Λ where Λ i 2 < G. Then
[G: Ax Π AJ = p2 or p3 and so [G: A, n A2 Π A3] divides p5. Since B(G) ^
AiΠAgΠAg we have (iii).

Hence we can assume that G has no normal abelian subgroup of
index p2. Let N be the given normal subgroup of index p with r.x.l.
Since N does not have a characteristic normal abelian subgroup of index
p we know by Lemma 1.1 (i) that [N: ,8(^0] divides p3. If N is
characteristic we have (ii). If not, let N± be another normal subgroup
of index p with r.x.l. Now N nΛ^ is normal and has index p2 in G.
Hence by assumption N r\N± is nonabelian and we have e(N Π N±) —
e(N) = eiNj) = 1. By Lemma 3.4 (ii) &£>(N n iVO ^ <iV, iVx> = G. But
finally iVx Π 3(̂ Vr) S .3(^ ΓΊ iS )̂ so we have (iii) again and the result
follows.

Proof of Theorem A. We assume G is nonabelian. If G has a
normal subgroup JV of index p with r.x.l, then G is type (iii), (iv) or
(v) by Lemma 4.2. If G has a normal subgroup N of index #> with
e(N) = 2 and (^(iV) = TV then G is type (i) by Proposition 2.7. Thus
it suffices to assume that G has no subgroup of index p with r.x.l and
that G satisfies Hypothesis 3.2.

We use induction on | G |. Thus for all groups G of order less than
that of G having r.x.2 we assume one of the following.

( 1 ) G has r.x.l;
( 2 ) G has a normal subgroup N of index p with r.x.l;
( 3 ) [G:8(G)] divides p°;
( 4 ) G is a central extension of abelian group Z by Go such that
is abelian.

We will show that either [G: S(G)] divides p6 or G has a normal
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abelian subgroup A of index pd. In the latter, since G has no subgroup
of index p with r.x.l, A must be self-centralizing. Then Proposition
3.3 will yield the theorem.

Now by Proposition 3.4 of [5], G has a normal subgroup N of
index p. By assumption e(N) = 2 so N satisfies (2), (3) or (4) above.
If N satisfies (2), then the result follows by Lemmas 4.2 and 3.5, and
Hypothesis 3.2. We assume then that G has no subgroup of index p2

with r.x.l.
Suppose N satisfies (3). By Hypothesis 3.2 we see that G is nil-

potent. For convenience we can assume that G is a p-group. We have
[G: B(G)] ^ p7. The only case we need consider is [G: 3(G)] = p7 and
we obtain a contradiction here. Let J be a central subgroup of G of
order p and set G = G/J. Then G has r.x.2 and so satisfies (1), (2) or
(3) above. Case (4) clearly cannot occur.

Suppose G is case (1). If G is abelian we have [G: 3(G)] g p4 by
Lemma 1.3 of [5]. If G has a normal abelian subgroup B of index p,
then let B be its complete inverse image in Gβ As above [B: 3(2?)] 5Ξ ρ\
Since 3(B) £ 3(C?)> this is also a contradiction. If neither of the two
occur, then [G: 3(G)] = p3 by Lemma 1.1 (i). Let ζ belong to the com-
plete image of 3(G) in G. Then (G, ζ) <Ξ J is, by Lemma 1,2 (iii),
[G: <£(ζ)] = 1 or p. But by Hypothesis 3.2 we cannot have ΓG: S(ζ)] = p.
Thus [G: 3(G)] ^ p3, a contradiction.

Let G be case (2). Then either G has a normal abelian subgroup
B of index p2 or G has a normal subgroup L of index p with
[L: 3(^)1 — P3 I n the first case let B be the complete inverse image
of B. Since e(B) = 2, we have by Lemma 1.3 of [5] that [B: $(B)] = p\
Hence [3(B): £(G)] = p and we can choose ζ G 3(β)_-3(G). In the
second case let L be the complete inverse image of L and let ζ be the
inverse image of 3(L) such that ζe32(G) — 3(G) and ζpe,3(ίr). (See
Lemma 1.2 (ii).) Since (ζ, L) g /, we see that [L: ez(ζ)] ^ p. Thus
in both cases we have an element ζ e 32(G) — 3(Cr) with ζp e 8(G) and
[G: (E(ζ)] ^ 2>2 Clearly we must have [G: K(ζ)] = p2. Now G/K(ζ) - (G, ζ)
is elementary abelian of order p2. Choose two distinct subgroups Gx

and G2 with G > G{ > <£(ζ). Now e(G<) = e(&(Q) = 2 and ©3(^(0) = S(C).
Hence by Proposition 2.7, (Glf ζ) = (G2, ζ) = β((£(ζ)). Thus (G, ζ) =

has order p = 2, a contradiction.
Finally, suppose G satisfies (3). Clearly the inverse image in G of

is central and this contradicts [G: 3(G)] = p7.
We need only assume now that N satisfies (4). Since Vo is a

characteristic subgroup of Go we see that A = V03(N) is characteristic
in N and hence normal in G. A is abelian and G/A has order pA for
p = 2. By Lemma 1.3, G/A has a normal abelian subgroup of index
p. Let K be its complete inverse image in G. Then K is metabelian
and hence cannot be case (4), since clearly Go is not metabelian. Thus



GROUPS WITH R.X. 2 495

K is one of cases (2) or (3), and the result follows. This completes
the proof of Theorem A.

5. Corollaries. With the complete characterization of groups with
r.x.2 we can easily read off several properties they have in common.

(5.1) COROLLARY. Let G have r.x.2. Then G has a normal abelίan
subgroup whose index divides p*. In particular f(2) = 4 where f is
the function studied in Theorem A of [5].

Proof. The result is clear for groups of type (ii) and (iii). If G
is type (iv) then since G/$(N) is a p-group and N/Q(N) is normal, we
can choose normal subgroup A with G > N > A > S(N) and [A: &(N)] = p.
Clearly A is abelian. If G is type (v) we merely take A to be a normal
subgroup with A > S(G) and [A: &(G)] = pe

Now let G satisfy (i) or (vi). Suppose first that G/&(G) = J is not
elementary abelian. By Lemma 1.4 we can find g e Q(J) and fee/' so
that <(#, Ky is a normal subgroup of J of order p2. Let g and h be
inverse image of these elements of G with heG'. Set A ~ <,8(G), g, hy.
Then A is a normal subgroup of G of index p\ But ge£>2(G), so g
and h commute by Lemma 1.2 (iii). Hence A is abelian and the result
follows here.

We need only consider the case where J is elementary abelian.
Suppose for some x e 3(G) we have (£(#) > ζx, 3(G)y. Then choose
y e £(#) — ζx, Q(G)y. Clearly A — ζx, y, S(G)y is an abelian subgroup
of G of index p4 which is normal since G/Q(G) is abelian. We suppose
now that for all x & S(G) we have (£(#) = ζx, S(G)y and obtain a con-
tradiction. This will yield the result. With this information we have
clearly that the number of classes c of G is given by

Since G has r.x.2 we have, using the fact that G has c characters, the
inequality

\G\ Scp*= |G|(l/ί9 + W - W ) .

This is the required contradiction.
That p4 is the best possible bound can be seen by considering the

group G = Fλ x Fj. where Fx is the group of Example 3.7 of [5],

(5.2) COROLLARY. Let G have r.x.2. Then G has a normal sub-
group H of index dividing p2 with [H: 3(12")] dividing p* or 18 if
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This follows quite easily. It is possible that the p4 term here can
be reduced to p3. This would require a further study of groups of
type (vi).

The author would like to take this opportunity to thank his advisor
Professor Richard Brauer for the help and encouragement he so freely
gave.
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