ON A HOMOTOPY CONVERSE TO THE LEFSCHETZ FIXED POINT THEOREM

Robert F. Brown

Abstract

Let α be a homotopy class of maps of X, a connected compact metric ANR, into itself and let L_{α} denote the Lefschetz number of α. A converse to the Lefschetz fixed point theorem is: if $L_{\alpha}=0$ then α contains a fixed point free map. The converse is true if X is a compact connected simply-connected topological n-manifold (Fadell) or if X is a compact connected topological n-manifold, with or without boundary, and α contains the identity map (Brown-Fadell). Let $\mu(\alpha)$ denote the fixed point class invariant of α, then every map in α has at least $\mu(\alpha)$ fixed points. The purpose of this paper is to generalize the preceding results by proving that if X is a compact connected topological n-manifold, $n \geqq 3$, with or without boundary, then there is a map in α which has exactly $\mu(\alpha)$ fixed points. It follows that the converse to the Lefschetz theorem will hold whenever α contains a map all of whose fixed points are in a single fixed point class.

Let X be a topological space and let $f: X \rightarrow X$ be a map. If $x, x^{\prime} \in X$ are fixed points of f, then x and x^{\prime} are in the same fixed point class [7], [9] of f if there is a path $w: I \rightarrow X(I=[0,1])$ homotopic to the path $f w$ by a homotopy keeping x and x^{\prime} fixed, i.e., there exists a map $H: I \times I \rightarrow X$ such that $H(s, 0)=w(s), H(s, 1)=$ $f(w(s))$, for all $s \in I$, and $H(0, t)=x, H(1, t)=x^{\prime}$, for all $t \in I$.

In order to state our theorem, we will need the results of Browder's extensive research on fixed point classes and the fixed point index [1], [2]. For the reader's convenience, we will summarize those results which we require. Let X be a connected compact metric ANR. Let $f: X \rightarrow X$ be a map and let α denote the homotopy class of maps containing f. The fixed points of f belong to a finite number of fixed point classes $\mathfrak{F}_{1}, \cdots, \mathfrak{F}_{r}$. There is a set of mutually disjoint open sets $\mathscr{H}_{1}, \cdots, \mathscr{S}_{r}$ of X such that $\mathfrak{F}_{j} \subset \mathscr{\oiint}_{j}, j=1, \cdots, r$. The fixed point index $i\left(f, \mathscr{E}_{j}\right)$ of f on \mathscr{E}_{j} is well-defined and independent of the choice of \mathbb{E}_{j}. Call this integer the index of the fixed point class \mathfrak{F}_{j} and denote it by $i\left(\mathfrak{F}_{j}\right)$. Let $\mu(f)$ denote the number of fixed point classes \mathfrak{F}_{j} of f such that $i\left(\mathfrak{F}_{j}\right) \neq 0$. If $g \in \alpha$, then $\mu(g)=\mu(f)$ so we may replace $\mu(f)$ by $\mu(\alpha)$. Every map in α has at least $\mu(\alpha)$ fixed points.

Theorem 1. Let M be a compact connected topological n-manifold,

[^0]$n \geqq 3$, with or without boundary, and let α be a homotopy class of maps of M into itself. There is a map $f \in \alpha$ which has exactly $\mu(\alpha)$ fixed points.

In the case of triangulated manifolds, Theorem 1 is a consequence of Theorem 3 of [9]. (See [13] for the announcement of a different extension of Wecken's theorem to topological manifolds.) The restriction on the dimension of the manifold in Theorem 1 is necessary; a two-dimensional counter-example is known [14].

If all the fixed points of a map $g \in \alpha$ are in the same fixed point class \mathfrak{F}, then we can take $\mathfrak{F})=M$ and $i(\mathfrak{F})=i(g, M)=L_{g}=L_{\alpha}[2$, Theorem 4]. Therefore, we have the following homotopy converse to the Lefschetz fixed point theorem.

Corollary. Let M be a compact connected topological n-manifold, $n \geqq 3$, with or without boundary, and let α be a homotopy class of maps on M which contains a map all of whose fixed points lie in a single fixed point class. If $L_{\alpha}=0$, then α contains a fixed point free map.

It is clear that for manifolds of dimension at least three, the converses to the Lefschetz theorem obtained by Fadell [5] and by Brown and Fadell [4] stated above are immediate consequences of the corollary.

Although the Lefschetz fixed point theorem itself holds for very general categories of spaces [2], [6], the converse fails to be true even for finite polyhedra, e.g., for the class of the identity map on $S^{2} \vee S^{1} \vee S^{1}$ (Y. H. Clifton).
2. Fixed points of maps on manifolds with boundary. The results of this section are generalizations of theorems of Weier [12]. (A closely related development is given in [11].).

Theorem 2. Let M be a compact connected topological manifold with boundary and let $f: M \rightarrow M$ be a map, then there exists a map $f^{\prime}: M \rightarrow M$ homotopic to f such that f^{\prime} has a finite number of fixed points; none of which lie on the boundary of M.

Proof. If we identify two copies of M by the identity homeomorphism restricted to the boundary B of M, we obtain a compact connected manifold without boundary called the double of M and denoted by $2 M$. Denote one of the copies of M in $2 M$ by M_{1} and consider f to be a map on M_{1}. It follows immediately from [3, Theorem 2] that there is a homeomorphism h of $B \times I$ into M_{1} such
that $h(b, 0)=b \in B$. Define a family of maps $r^{t}: M_{1} \rightarrow M_{1}, t \in I$, by letting $r^{t}(x)=x$ for all $x \in\left[M_{1}-h(B \times I)\right]$ and all $t \in I$ and for $h(b, s) \in h(B \times I)$, let $r^{t}(h(b, s))=h(b,(1-s) t+s)$. The map f induces $F: 2 M \rightarrow M_{1}$ in the obvious way so that $F(x)=f(x)$ for all $x \in M_{1}$. Consider $g=r^{1} F: 2 M \rightarrow M_{1}$, then g is homotopic to $F, g \mid M_{1}$ (g restricted to M_{1}) is homotopic to f, and $g\left(M_{1}\right) \subseteq\left[M_{1}-h(B \times[0,1))\right]$. Let $\varepsilon>0$ denote the distance from B to $h(B \times\{1\})$. By Theorem 1 of [12], there is a homotopy $g^{t}: 2 M \rightarrow 2 M, t \in I$, such that $g^{0}=g, \rho\left(g^{t}(x), g(x)\right)<\varepsilon$ for all $t \in I$ and $x \in 2 M$ (ρ is the metric of $2 M$) and g^{1} has at most a finite number of fixed points. By the definition of ε, it is clear that $f^{\prime}=g^{1} \mid M_{1}: M_{1} \rightarrow M_{1}$ is homotopic to f and $f^{\prime}\left(M_{1}\right) \subseteq M_{1}-B$ so f^{\prime} has no fixed points on B.

Remark. Suppose $x, x^{\prime} \in M$ are fixed points of $f: M \rightarrow M$ which are in the same fixed point class of f by means of a path w, that is, w is a path in M from x to x^{\prime} which is homotopic to $f w$ by a homotopy which keeps x and x^{\prime} fixed. Let $w^{\prime}: I \rightarrow M$ be a path from x to x^{\prime} which is homotopic to w by a homotopy which keeps x and x^{\prime} fixed, then x and x^{\prime} are in the same class of f by means of w^{\prime}.

Theorem 3. Let M be a compact connected topological n-manifold, $n \geqq 3$, with boundary B and let $g: M \rightarrow M$ be a map with a finite number of fixed points, none of which lie on B. If x_{0} and x_{1} are fixed points of g in the same fixed point class, then there exists an open set $W \subseteq M$, containing x_{0} and x_{1} but no other fixed point of g, and a map $g^{\prime}: M \rightarrow M$ such that g^{\prime} is homotopic to $g, g^{\prime}(x)=g(x)$ for all $x \in M-W$, and x_{0} is the only fixed point of g^{\prime} in W.

Proof. We first show that x_{0} and x_{1} belong to the same fixed point class of g by means of a path $w^{\prime}: I \rightarrow M$ such that $w^{\prime}(I) \cap B=$ \varnothing. By hypothesis, x_{0} and x_{1} are in the same class by means of a path $w^{\prime \prime}$. By Theorem 2 of [3], there is a neighborhood U of B in M and a homeomorphism $h: B \times[0,1) \rightarrow U$ (onto) such that $h(b, 0)=$ $b \in B$. Since neither x_{0} nor x_{1} is in B, we can construct U so that it does not contain these points. Define the path w^{\prime} by

$$
w^{\prime}(t)= \begin{cases}w^{\prime \prime}(t) & w^{\prime \prime}(t) \notin U \\ h\left(b, \frac{r+1}{2}\right) & w^{\prime \prime}(t)=h(b, r) \in U \quad(b \in B, r \in[0,1)) .\end{cases}
$$

Define $K: I \times I \rightarrow M$ by

$$
K(t, s)= \begin{cases}w^{\prime \prime}(t) & w^{\prime \prime}(t) \notin U \\ h\left(b,\left[\frac{1-r}{2}\right] s+r\right) & w^{\prime \prime}(t)=h(b, r) \in U\end{cases}
$$

then K is a homotopy connecting $w^{\prime \prime}$ and w^{\prime} keeping x_{0} and x_{1} fixed, so by the remark, w^{\prime} is the required path. Now suppose that for some fixed point x_{2} of g we have $w^{\prime-1}\left(x_{2}\right)=J \neq \varnothing$. Let N be a Euclidean neighborhood of x_{2} containing no other fixed point of g and let $a: N \rightarrow R^{n}$ be a homeomorphism taking x_{2} to the origin. Let \bar{A} be the closed unit ball in R^{n} centered at the origin and let $\bar{V}=a^{-1}(\bar{A})$. Let $\left\{C_{\gamma}\right\}$ denote the components of $w^{-1}(\bar{V}) \subset I$, then by the continuity of w^{\prime}, there are only a finite number of such components $\left\{C_{i}\right\}_{i=1}^{m}$ with the property $C_{i} \cap J \neq \varnothing$. Note that $C_{i}=\left[c_{i}, d_{i}\right] \subset(0,1)$ for $i=1, \cdots, m$ and let $\zeta_{1}:\left[c_{1}, d_{1}\right] \rightarrow N-V$ such that $\zeta_{1}\left(c_{1}\right)=w^{\prime}\left(c_{1}\right), \zeta_{1}\left(d_{1}\right)=w^{\prime}\left(d_{1}\right)$, then the path w_{1}^{\prime} defined by

$$
w_{1}^{\prime}(t)= \begin{cases}w^{\prime}(t) & t \in I-\left(c_{1}, d_{1}\right) \\ \zeta_{1}(t) & t \in\left[c_{1}, d_{1}\right]\end{cases}
$$

is homotopic to w^{\prime} by a homotopy which is constant outside of N and so, in particular, keeps x_{0} and x_{1} fixed. Thus, by the remark, x_{0} and x_{1} are in the same fixed point class of g by means of w_{1}^{\prime}. Repeating this construction a finite number of times, we obtain a path $w: I \rightarrow M$ such that x_{0} and x_{1} are in the same fixed point class of g by means of $w, w(I) \cap B=\varnothing$, and w intersects no other fixed point of g. Hence there exists an open set W in $M-B$ containing w and disjoint from all fixed points of g except x_{0} and x_{1}. We can now apply the proof of Theorem 5 of [12] to g, W, x_{0} the x_{1} without any changes whatsoever to obtain the required map $g^{\prime}: M \rightarrow M$.
3. Proof of Theorem 1. By Theorem 2, there is a map $f^{\prime} \in \alpha$ with a finite number of fixed points, none of which lie on the boundary B of M. Applying Theorem 3 to f^{\prime} a finite number of times, we obtain a map $g \in \alpha$ no two of whose fixed points are in the same fixed point class of g. Denote the fixed points of g by $x_{1}, \cdots, x_{r}(\varepsilon M-B)$, then there exist Euclidean neighborhoods U_{1}, \cdots, U_{r} such that $x_{j} \in U_{j}$, $j=1, \cdots, r, \bar{U}_{j} \cap \bar{U}_{k}=\varnothing$ for $j \neq k$, and $i\left(x_{j}, U_{j}\right)=i\left(\mathfrak{F}_{j}\right)$ where \mathfrak{F}_{j} denotes a fixed point class of g. By a result quoted above (§ 1), $i\left(\mathfrak{F}_{j}\right) \neq 0$ for exactly $\mu(\alpha)$ of the classes \mathfrak{F}_{j}. Let x_{j} be a fixed point of g such that $i\left(\mathfrak{F}_{j}\right)=0$. There is a homeomorphism $h: U_{j} \rightarrow R^{n}$ (onto) taking x_{j} to the origin. Let \bar{A} be the closed unit ball in R^{n} centered at the origin and let $\bar{V}=h^{-1}(\bar{A})$. We may obtain a finite triangulation of \bar{V} of mesh small enough so that if P is the closed star of x_{j} then $g(P) \subset V$. A slight modification of the proof of Proposition 1.1 of [4] permits us to identify O'Neill's index on U_{j} [8] with the index we have been using in this paper. Therefore, the index of g on U_{j} as defined in [8] is zero and by Corollary 5.3 of that paper, there is a map $g^{\prime}: M \rightarrow M$ such that g^{\prime} has no fixed point on U_{j} and g^{\prime} is suf-
ficiently close to g so that $g^{\prime}(P) \subset U_{j}$. Furthermore, from the proof of Theorem 5.2 of [8], it follows that, for $x \in M-P, g^{\prime}(x)=g(x)$. Thus $g^{\prime} \in \alpha$ and g^{\prime} has the same fixed points as g except for x_{j}. If we repeat this construction for each fixed point x_{k} of g such that $i\left(\mathfrak{F}_{k}\right)=0$, we obtain in a finite number of steps a map $f \in \alpha$ with exactly $\mu(\alpha)$ fixed points.

References

1. F. Browder, The topological fixed point theory and its application in functional analysis, Doctoral Dissertation, Princeton University, 1948.
2. -, On the fixed point index for continuous mappings of locally connected spaces, Summa Brasil. Math. 4 (1960), 253-293.
3. M. Brown, Locally flat embeddings of topological manifolds, Topology of 3-manifolds and related topics, Prentice-Hall, (1962).
4. R. Brown and E. Fadell, Non-singular path fields on compact topological manifolds, Proc. Amer. Math. Soc. 16 (1965), 1342-1349.
5. E. Fadell, On a coincidence theorem of F. B. Fuller, Pacific J. Math., (to appear).
6. R. Knill, On the Lefschetz coincidence point formula, Doctoral Dissertation, U. of Notre Dame, 1964.
7. J. Nielson, Untersuchungen zur Topologie der geschlossenen zweiseitigen Fläche, I, Acta Math. 50 (1927), 189-358.
8. B. O'Neill, Essential sets and fixed points, Amer. J. Math. 75 (1953), 497-509.
9. F. Wecken, Fixpunktklassen, I, Math. Ann. 117 (1940-1), 659-671.
10. —, Fixpunktklassen, III, Math. Ann. 118 (1941-3), 544-577.
11. J. Weier, Die Randsingularitäten von offener Mengen in sich, Math. Ann. 130 (1955), 196-201.
12. -, Fixpunktheorie in topologische Mannigfaltigkeiten, Math. Z. 59 (1953), 171-190.
13. -, Sur les class essentielles des deux représentations, C. R. Acad. Sci. Paris 239 (1954), 337-339.
14. Ueber Probleme aus der Topologie der Ebene und der Flächen, Math. Japon 4 (1956), 101-105.

University of California, Los Angeles

[^0]: Received December 10, 1964. This research was supported in part by the Air Force Office of Scientific Research.

