CONTRACTIVE PROJECTIONS IN L_{p} SPACES

T. Ando

Abstract

Let $(\Omega, \mathfrak{A}, m)$ be a finite measure space and $L_{p}(1<p<\infty)$ the Lebesgue space of all complex valued measurable functions whose absolute p-th powers are integrable. Given a closed linear subspace of L_{p}, the operator which assigns to f the function in the subspace with minimum distance from it is continuous, idempotent, but not linear in general except the case $p=2$ when the operator is just an orthogonal projection. A problem is to determine when such an operator Q is linear. It is linear if and only if $P=I-Q$ is a contractive projection, i.e., a linear idempotent operator with $\|P\| \leqq 1$, so that the problem takes an equivalent form to give complete description of contractive projections in L_{p}. In this paper the problem will be settled in the latter form, not only for $1<p<\infty$ but also for $0<p \leqq 1$.

Recall an important class of contractive projection; given a Borel subring \mathfrak{B} with maximum element B, consider for each $f \in L_{p}(1 \leqq p<\infty)$, a general measure $\nu(A)=\int_{A \cap B} f d m$ defined on the Borel subfield generated by \mathfrak{B} and Ω, then the operator $E_{\mathfrak{B}}$ which assigns to f the RadonNikodym derivative of ν with respect to the measure m restricted on the subfield is called the conditional expectation relative to \mathfrak{B}. A conditional expectation is a contractive projection in each $L_{p}(1 \leqq p<\infty)$. When a Borel subring consists of all measurable sets contained in a fixed B, the conditional expectation operates as the multiplication by the characteristic function of B; in this case P_{B} is used instead of $E_{\mathfrak{B}}$. The operator P_{B} can be considered a contractive projection in each L_{p} $(0<p<\infty)$.

Recently Douglas [2] gave a characterization of a contractive projection in L_{1} to reveal a role of a conditional expectation, while Rota [6] treated $L_{p}(1 \leqq p \leqq \infty)$ case under an additional condition. A point of this paper is in the reduction of general case $1<p<\infty$ to the case $p=1$ (Theorem 1). Roughly speaking, every contractive projection is isometrically equivalent to a conditional expectation in case $1 \leqq p<\infty$ (Theorem 2), and is of P_{B} type in case $0<p<1$ (Theorem 3). A geometric description of a range of a contractive projection can be derived; a closed linear subspace can be a range of a contractive projection if and only if it is of L_{p} type, i.e., isometrically isomorphic to some L_{p} space, in case $1 \leqq p<\infty$ and consists of all functions which vanish outside a fixed measurable set in case $0<p<1$ (Theorem

[^0]4). When $1<p<\infty$, transfer to the conjugate space shows that, given a closed linear subspace, the operator which assigns the function in the subspace with minimum distance is linear if and only if the quotient space with respect to the subspace is of L_{p} type (Theorem 5).

The results in this paper will make it possible to establish pointwise convergence theorems for a sequence of contractive projections and for a sequence of predictions, as treated in [1], under general setting. This will be published elsewhere.
2. Reduction. In what follows, a measurable function and a measurable set are called simply a function and a set respectively. For a set A, χ_{A} is its characteristic function and A^{c} denotes its complement. $f \geqq g$ and $A \supseteq B$ mean $f(\omega) \geqq g(\omega)$ almost everywhere and $m(B-A)=0$ respectively. $\{f>\alpha\}$ stands for the set $\{\omega: f(\omega)>\alpha\}$ and the support of f is the set $\{|f|>0\}$. For a real number r the power f^{r} is defined by

$$
f^{r}(\omega)=\operatorname{sgn}(f(\omega)) \cdot|f(\omega)|^{r}
$$

and $\|f\|_{p}$ is the L_{p}-norm $(0<p<\infty)$:

$$
\|f\|_{p}=\left\{\int|f|^{p} d m\right\}^{1 / p}
$$

Two functions which are equal almost everywhere are identified.
If P is a contractive projection in $L_{p}(1<p<\infty)$, its adjoint P^{*} is a contractive projection in L_{q} with $p^{-1}+q^{-1}=1$ and there is nice duality between the range \Re_{P} of P and $\Re_{P^{*}}$, that of P^{*}.

Lemma 1. If P is a contractive projection in $L_{p}(1<p<\infty)$, then $f \in \Re_{P}$ is equivalent to $f^{r} \in \Re_{P^{*}}$ with $r=p-1$.

Proof. By duality, it suffices to prove that $P f=f$ implies $P^{*} f^{r}=$ f^{r}. Suppose that $P f=f$, then by Hölder's inequality

$$
\begin{aligned}
\|f\|_{p}^{p} & =\int f \cdot \bar{f}^{r} d m=\int P f \cdot \bar{f}^{r} d m \\
& =\int f \cdot \overline{P^{*} f^{r}} d m \leqq\|f\|_{p} \cdot\left\|P^{*} f^{r}\right\|_{q} \\
& \leqq\|f\|_{p} \cdot\left\|f^{r}\right\|_{q}=\|f\|_{p}^{p},
\end{aligned}
$$

so that $P^{*} f^{r}=f^{r}$, because there is only one function h (up to scalar) for which $\|f\|_{p}\|h\|_{q}=\int f \cdot \bar{h} d m$.

An immediate consequence is that a closed linear subspace of L_{p} $(1<p<\infty)$ can be a range of at most one contractive projection; in
fact, if P_{1}, P_{2} are contractive projections with $\Re_{P_{1}}=\Re_{P_{2}}$, then by Lemma $1 \Re_{P_{1}^{*}}=\Re_{P_{2}^{*}}$, hence $\Re_{I-P_{1}}=\Re_{I-P_{2}}$ because $\Re_{I-P_{1}}$, say, is the annihilator of $\Re_{P_{1}^{*}}$ by duality theorem, and $P_{1}=P_{2}$ follows. In particular, a contractive projection in L_{2} is an orthogonal projection.

A linear operator T is called positive, if $g \geqq 0$ implies $T g \geqq 0$. A consequence of the positivity is that for all f

$$
|T f| \leqq T|f|,
$$

which can be proved through the approximation of f by step-functions. Clearly T is positive, if $T \chi_{4} \geqq 0$ for all A.

Lemma 2. If T is a contraction in $L_{p}(0<p \leqq 1)$ which makes constant functions invariant, then it is necessarily positive and for all sets A

$$
\int T \chi_{A} d m=\int \chi_{A} d m
$$

Proof. Since T is a contraction and $T 1=1$ where 1 denotes the constant function with value 1 ,

$$
\begin{aligned}
\int 1 d m & =\int 1^{p} d m \\
& =\int|T 1|^{p} d m \\
& =\int\left|T \chi_{A}+T \chi_{A^{\circ}}\right|^{p} d m \\
& \leqq \int\left|T \chi_{A}\right|^{p} d m+\int\left|T \chi_{A^{c}}\right|^{p} d m \\
& \leqq \int \chi_{A}^{p} d m+\int \chi_{A}^{p} c d m \\
& =\int 1 d m
\end{aligned}
$$

it follows that

$$
\left|T \chi_{A}+T \chi_{A^{c}}\right|^{p}=\left|T \chi_{A}\right|^{p}+\left|T \chi_{A^{c}}\right|^{p}
$$

and

$$
\int\left|T \chi_{A}\right|^{p} d m=\int \chi_{A} d m
$$

so that, on account of the property of the function $|\xi|^{p}, T \chi_{A}$ and $T \chi_{A^{c}}$ have the same signature when $p=1$, and $T \chi_{A} \cdot T \chi_{A^{c}}=0$ when $0<p<1$ (cf. [5]), hence in any case $T \chi_{A} \geqq 0$, because

$$
T \chi_{A}+T \chi_{A^{c}}=1
$$

The second statement in the assertion is immediate when $p=1$, and follows from the observation that $T \chi_{A}$ is a characteristic function, when $0<p<1$.

Theorem 1. A contractive projection P in $L_{p}(1<p<\infty, p \neq 2)$ which makes constant functions invariant is contractive with respect to L_{1}-norm, i.e.,

$$
\int|P g| d m \leqq \int|g| d m \quad \text { for } g \in L_{p}
$$

The same conclusion is true, when $p=2$ and P is positive in addition.

Proof. (1) The case $1<p<2$. If $f \in \Re_{P}$, by Lemma $1 f^{r}$ and constant functions are in $\Re_{P^{*}}$ with $r=p-1$, so that $1+\varepsilon f^{r}$ is in it for all $1>\varepsilon>0$. The interchange of role between P and P^{*} shows that $\left(1+\varepsilon f^{r}\right)^{1 / r}$ is in \mathfrak{R}_{P}. Consider the function

$$
h_{\varepsilon}(\omega) \xlongequal{\text { def }} \frac{\left\{1+\varepsilon f^{r}(\omega)\right\}^{1 / r}-1}{\varepsilon} .
$$

Since

$$
f^{r}(\omega)=\{a(\omega)+b(\omega) \sqrt{-1}\}|f(\omega)|^{r}
$$

where $a(\omega)=\operatorname{Re}(\operatorname{sgn} f(\omega))$ and $b(\omega)=\operatorname{Im}(\operatorname{sgn} f(\omega))$, and

$$
\left\{1+\varepsilon f^{r}(\omega)\right\}^{1 / r}=\left\{1+\varepsilon f^{r}(\omega)\right\} \cdot\left|1+\varepsilon f^{r}(\omega)\right|^{(1 / r)-1},
$$

with $c(\omega)=\varepsilon|f(\omega)|^{r}$ and $s=(1-r) / 2 r$, it follows

$$
\begin{aligned}
&\left\{1+\varepsilon f^{r}(\omega)\right\}^{1 / r}=\{1+\alpha(\omega) \cdot c(\omega)+b(\omega) \cdot c(\omega) \sqrt{-1}\} \\
& \times\left\{1+2 a(\omega) c(\omega)+c^{2}(\omega)\right\}^{s}
\end{aligned}
$$

so that

$$
\begin{aligned}
h_{\varepsilon}(\omega)=f^{r}(\omega) & \cdot\left\{1+2 a(\omega) c(\omega)+c^{2}(\omega)\right\}^{s} \\
& +|f(\omega)|^{r} \frac{\left\{1+2 a(\omega) \cdot c(\omega)+c^{2}(\omega)\right\}^{s}-1}{c(\omega)}
\end{aligned}
$$

with the convention $0 \times \infty=0$. The modulus of the first term of the above formula is majorated by $|f(\omega)|^{r}\left\{1+|f(\omega)|^{r}\right\}^{2 s}$, which is, in turn, majorated by $\alpha\{1+|f(\omega)|\}$ with a constant α. The modulus of the second term is majorated by $\beta|f(\omega)|^{r}$ with a constant β at every point ω where $c(\omega)>1 / 2$, and at a point ω where $0<c(\omega) \leqq 1 / 2$ the mean value theorem shows

$$
\left|\frac{\left\{1+2 a(\omega) \cdot c(\omega)+c^{2}(\omega)\right\}^{s}-1}{c(\omega)}\right| \leqq \delta \text { for a constant } \delta,
$$

so that the modulus of the second term is majorated by

$$
\gamma\left\{1+|f(\omega)|+|f(\omega)|^{r}\right\}
$$

everywhere with some constant γ. Since $|f|^{r}$ is in L_{p} because of $1<p<2$, the conclusion is that $h_{\varepsilon}(\omega)$ converges dominatedly in L_{p}, as $\varepsilon \rightarrow 0$, to $\{a(\omega) / r+b(\omega) \sqrt{-1}\} \cdot|f(\omega)|^{r}$, which is in \Re_{P} as a result. In the same way, consider $\left\{\sqrt{-1}+\varepsilon f^{r}(\omega)\right\}^{1 / r}$ to prove that

$$
\left\{a(\omega)+\frac{b(\omega) \sqrt{-1}}{r}\right\}|f(\omega)|^{r}
$$

is in R_{P}. These together show that $\{a(\omega)+b(\omega) \sqrt{-1}\} \cdot|f(\omega)|^{r}$ i.e., $f^{r}(\omega)$ by definition, is in \Re_{P} (and, of course, in $\left.\Re_{P^{*}}\right)$. Prove by induction that $f^{r^{n}}$ is in $\Re_{P^{*}}$ for all n, then since $0<r<1$, $f^{r^{n}}$ converges dominatedly by $1+|f|^{r}$ in L_{q} almost everywhere to $\operatorname{sgn}(f)$ where $p^{-1}+q^{-1}=1$. Now given $g \in L_{p}$, let $f=P g$, then

$$
\begin{aligned}
\int|P g| d m & =\int P g \cdot \overline{\operatorname{sgn}(f)} d m \\
& =\lim _{n \rightarrow \infty} \int P g \cdot \bar{f}^{r^{n}} d m \\
& =\lim _{n \rightarrow \infty} \int g \cdot \overline{P^{*} f^{r n}} d m \\
& =\lim _{n \rightarrow \infty} \int g \cdot \bar{f}^{r n} d m \leqq \int|g| d m .
\end{aligned}
$$

(2) The case $2<p<\infty$. Since the adjoint P^{*} makes constant functions invariant by Lemma 1, the preceding proof shows that P^{*} is contractive with respect to L_{1}-norm, so that it is positive by Lemma 2. Given $g \in L_{p}$, let $h=\operatorname{sgn}(P g)$, then by the positivity

$$
\begin{aligned}
\int|P g| d m & =\int P g \cdot \bar{h} d m \\
& =\int g \cdot \overline{P^{*} h} d m \leqq \int|g| \cdot\left|P^{* h}\right| d m \\
& \leqq \int|g| \cdot P^{*}|h| d m \leqq \int|g| \cdot P^{*} 1 d m \\
& =\int|g| d m
\end{aligned}
$$

(3) Of $p=2$ and P is positive, the adjoint P^{*} is obviously positive, so that the same arguments as in (2) are valid. This completes the proof.

It should be mentioned that Rota [6] proved an equivalent form of Theorem 1 under an additional hypothesis (the averaging property) that $P g \cdot P h=P(g \cdot P h)$ for bounded functions g, h.

Theorem 1 will make it possible to reduce the study of contractive projections in $L_{p}(1<p<\infty, p \neq 2)$ to that of the case $p=1$. For this purpose some preliminaries are necessary.

Lemma 3. A closed linear subspace \mathfrak{M} of $L_{p}(0<p<\infty)$ contains a function with maximum support, that is, there is $f \in \mathfrak{M}$ such that $S_{f} \supseteq S_{g}$ for all $g \in \mathfrak{M}$, where S_{f} and S_{g} are supports of f and g respectively.

Proof. Obviously there is a sequence $\left\{f_{j}\right\} \subseteq \mathfrak{M}$ such that $\left\|f_{j}\right\|_{p}=1$ and $\bigcup_{j=1}^{\infty} S_{f_{j}} \supseteq S_{g}$ for all $g \in \mathfrak{M}$. Starting with $\alpha_{1}=1, A_{0}=\varnothing$, and $\gamma_{0, k}=1(k=1,2, \cdots)$, construct by induction the sequences $\left\{\alpha_{j}\right\},\left\{\gamma_{j, k}\right\}$, and $\left\{A_{j}\right\}(j=1,2, \cdots ; k=j+1, \cdots)$ which together obey the requirements:
(a) $2^{-k} \geqq \gamma_{j, k} \geqq \gamma_{j+1, k}>0$ for $k \geqq j+2$,
(b) $\quad S_{g_{j}} \supseteqq A_{j}$ and $m\left(S_{g_{j}}-A_{j}\right) \leqq 2^{-j+2}$ for $j \geqq 1$,
(c) $\gamma_{j-1, j} \geqq \alpha_{j}>0$ and $S_{g_{j}}=\bigcup_{k=1}^{j} S_{f_{k}}$ for $j \geqq 1$, where $g_{j}=\sum_{k=1}^{j} \alpha_{k} f_{k}$,
(d) $\left|g_{j}(\omega)\right|>\sum_{k=j+1}^{\infty} \gamma_{j, k}\left|f_{k}(\omega)\right|$ almost everywhere on A_{j} for $j \geqq 1$. Suppose that $A_{j}, \gamma_{j, k}$ for $j \leqq n-1$ and $k \geqq j+1$, and α_{j} for $j \leqq n$ have been found and obey the requirements. Take $1>\varepsilon>0$ so small that

$$
m\left(S_{g_{n}}-\left\{\left|g_{n}\right|>\varepsilon\right\}\right)<2^{-n}
$$

then since

$$
m\left(\left|f_{k}\right|>2^{k n / p}\right) \leqq 2^{-n k} \int\left|f_{k}\right|^{p} d m=2^{-n k}
$$

let

$$
A_{n}=\bigcap_{k=n+1}^{\infty}\left\{\left|f_{k}\right| \leqq 2^{k n / p}\right\} \cap\left\{\left|g_{n}\right|>\varepsilon\right\}
$$

and

$$
\gamma_{n, k}=\min \left\{\gamma_{n-1, k}, 2^{-k-(n k / p)} \varepsilon\right\}
$$

to get (a) and (b) for n; in fact

$$
\begin{aligned}
m\left(S_{g_{n}}-A_{n}\right) \leqq & m\left(S_{g_{n}}-\left\{\left|g_{n}\right|>\varepsilon\right\}\right) \\
& +\sum_{k=n+1}^{\infty} m\left(\left|f_{k}\right|>2^{n k / p}\right) \leqq 2^{-n+2}
\end{aligned}
$$

Since there is at least one α such that $0<\alpha<\gamma_{n, n+1}$ and

$$
m\left(S_{f_{n+1}} \cap\left\{\frac{g_{n}}{f_{n+1}}=-\alpha\right\}\right)=0
$$

for otherwise there arise uncountably many disjoint sets with positive measure, take one of such α 's as α_{n+1} to get (c) for n, that is, $S_{g_{n+1}}=$ $S_{f_{n+1}} \cup S_{g_{n}}$ where $g_{n+1}=g_{n}+\alpha_{n+1} f_{n+1}$. From the construction it follows that for $j \geqq n+1$

$$
\left\|\sum_{k=n+1}^{j} \gamma_{n, k}\left|f_{k}\right|\right\|_{p} \leqq \begin{cases}\sum_{k=n+1}^{\infty} 2^{-k}=2^{-n} & \text { if } p \geqq 1 \\ \left\{\sum_{k=n+1}^{\infty} 2^{-k n}\right\}^{1 / p}=2^{-n / p} & \text { if } 0<p<1\end{cases}
$$

so that $\sum_{k=n+1}^{\infty} \gamma_{n, k}\left|f_{k}\right|$ converges almost everywhere and by (a) for $\omega \in A_{n}$

$$
\left|g_{n}(\omega)\right|-\sum_{k=n+1}^{\infty} \gamma_{n, k}\left|f_{k}(\omega)\right| \geqq \varepsilon-\sum_{k=n+1}^{\infty} 2^{-k} \varepsilon>0
$$

thus (d) is satisfied for n. Let finally $f=\sum_{k=1}^{\infty} \alpha_{k} f_{k}$ which converges in \mathfrak{M} because of (a) and (c), then on account of (d)

$$
f(\omega)=g_{n}(\omega)+\sum_{k=n+1}^{\infty} \alpha_{k} f_{k}(\omega) \neq 0 \text { on } A_{n}
$$

so that by (b) and (c)

$$
\begin{aligned}
m\left(\bigcup_{n=1}^{\infty} S_{f_{n}}-S_{f}\right) & =\lim _{n \rightarrow \infty} m\left(S_{g_{n}}-S_{f}\right) \\
& \leqq \lim _{n \rightarrow \infty} m\left(S_{g_{n}}-A_{n}\right) \leqq \lim _{n \rightarrow \infty} 2^{-n+2}=0
\end{aligned}
$$

and f meets the requirement of maximum support.
Corollary. The range of a positive contractive projection P in $L_{p}(0<p<\infty)$ contains a nonnegative function with maximum support.

Proof. Let f be a function with maximum support in the range by Lemma 3, then the positivity implies

$$
|f|=|P f| \leqq P|f|
$$

On the other hand, $\|P|f|\|_{p} \leqq\||f|\|_{p}$ by the contractive property, so that $P|f|=|f|$ follows and $|f|$ meets the requirement.
3. Contractive projections. Before entering a basic proposition on representation of a contractive projection, recall the characteristic
properties of the conditional expectation relative to a Borel subring \mathfrak{B} with the maximum element B (cf. [4]). In what follows a function f is said to be measurable with respect to \mathfrak{B}, if $f \cdot \chi_{B}$ is measurable with respect to the Borel subfield generated by \mathfrak{B} and Ω.

$$
\begin{equation*}
E_{\mathfrak{B}} P_{B}=P_{B} E_{\mathfrak{B}}=E_{\mathfrak{B}}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
E_{\mathfrak{B}} f \text { is measurable with respect to } \mathfrak{B}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{A} E_{\mathfrak{B}} f d m=\int_{A} f d m \quad \text { for } A \in \mathfrak{B} \tag{3}
\end{equation*}
$$

The following are consequences:

$$
\begin{equation*}
E_{\mathfrak{B}} \text { is positive } \tag{4}
\end{equation*}
$$

whenever g is measurable with respect to \mathfrak{B} and $g \cdot f \in L_{1}$. The positivity guarantees the generalized Hölder's inequality (cf. [7]):

$$
\begin{equation*}
\left|E_{\mathfrak{B}}(f \cdot h)\right| \leqq\left\{E_{\mathfrak{B}}|f|^{p}\right\}^{1 / p}\left\{E_{\mathfrak{B}}|h|^{q}\right\}^{1 / q} \tag{6}
\end{equation*}
$$

with $p^{-1}+q^{-1}=1$, whenever $f \in L_{p}$ and $h \in L_{q}$.
Lemma 4. A contractive projection P in L_{1} which makes constant functions invariant is a conditional expectation.

This is a basic result of Douglas [2] and is contained implicitly in Rota [7]. Here is a sketch of a quick proof. Let \mathfrak{B} be the least Borel subfield with respect to which all $P h$ are measurable. Since P is positive by Lemma $2, f \in \mathfrak{R}_{P}$, the range of P, implies $\operatorname{Re}(f), \operatorname{Im}(f) \in \mathfrak{R}_{P}$. If a real valued function h is in \Re_{P}, its positive part, i.e., $h^{+}=$ $\max (h, 0)$ is also in it; this is proved just as in the proof of Corollary of Lemma 3. Thus for any α, the characteristic function of $\{h>\alpha\}$ is in \Re_{P}, because it is the limit of $1-\left\{1-n(h-\alpha)^{+}\right\}^{+}$as $n \rightarrow \infty$, so that it immediately follows that \Re_{P} is just the collection of all functions in L_{p} which are measurable with respect to \mathfrak{B}. Take an arbitrary $A \in \mathfrak{B}$, and consider the contractions $P_{A} P P_{A}+P_{A^{c}}$ and $P_{4^{c}} P P_{4^{c}}+P_{A}$ to get, on the basis of Lemma 2,

$$
\int_{A} P\left(f \cdot \chi_{A}\right) d m=\int_{A} f d m
$$

and

$$
\int_{A^{c}} P\left(f \cdot \chi_{4^{c}}\right) d m=\int_{\mathbf{A}^{c}} f d m
$$

When $f \geqq 0$,

$$
\int_{A^{c}} P\left(f \cdot \chi_{A^{c}}\right) d m \leqq \int P\left(f \cdot \chi_{A^{c}}\right) d m \leqq \int_{A^{c}} f d m
$$

so that

$$
\int_{A} P\left(f \cdot \chi_{A^{c}}\right) d m=0
$$

consequently

$$
\int_{A} P f d m=\int_{A} f d m
$$

The last equality holds without positivity assumption on f; this shows that P is the conditional expectation relative to \mathfrak{B}.

Suppose that P is a contractive projection in $L_{p}(1 \leqq p<\infty, p \neq 2)$. According to Lemma 3, take a function f with maximum support in the range of P and consider the measure space (B, \mathfrak{D}, m_{p}) where B is the support of f, \mathfrak{D} is the Borel field consisting of all measurable subsets in B, and $d m_{p}=|f|^{p} d m$. Use a convention that a function on Ω with its support contained in B is identified, in the natural way, with a function on B and conversely. The operator T in $L_{p}\left(B, \mathfrak{D}, m_{p}\right)$, defined by

$$
T h=\frac{P(f \cdot h)}{f}
$$

is a contractive projection; in fact, the idempotency is a consequence of that of P, combined with the maximum property of B, and

$$
\begin{aligned}
\int|T h|^{p} d m_{p} & =\int\left|\frac{P(f \cdot h)}{f}\right|^{p}|f|^{p} d m \\
& =\int|P(f \cdot h)|^{p} d m \leqq \int|f \cdot h|^{p} d m \\
& =\int|h|^{p} d m_{p}
\end{aligned}
$$

because P is contractive in $L_{p}(m)$ by assumption. Furthermore T makes constant functions invariant, because $P f=f$ by assumption. Then Lemma 4 together with Theorem 1 shows that T is a conditional expectation relative to some Borel subfield \mathfrak{B} of \mathfrak{D} (with respect to the measure m_{p}), so that by (3)

$$
\int_{A} T h|f|^{p} d m=\int_{A} h|f|^{p} d m \quad \text { for } A \in \mathfrak{B}
$$

\mathfrak{B} can be identified with a Borel subring of \mathfrak{A} with the maximum element B, and T can be considered as an operator acting on function on Ω by the relation

$$
T h=T\left(h \cdot \chi_{B}\right) .
$$

Apply the conditional expectation $E_{\mathfrak{B}}$ (with respect to the measure m), with (2), (3), and (5) in mind, to get

$$
E_{\mathfrak{B}}\left(T h \cdot|f|^{p}\right)=E_{\mathfrak{B}}\left(h \cdot|f|^{p}\right),
$$

then since $T h$ is measurable with respect to \mathfrak{B} it follows from (5)

$$
T h \cdot E_{\mathfrak{B}}|f|^{p}=E_{\mathfrak{B}}\left(h \cdot|f|^{p}\right)
$$

The original projection P is reproduced from T through the relation

$$
P h=f \cdot T\left(\frac{h}{f}\right)+P\left(h \cdot \chi_{B^{c}}\right),
$$

hence finally

$$
P h=\frac{f \cdot E_{\mathfrak{B}}\left(h \cdot \bar{f}^{p-1}\right)}{E_{\mathfrak{B}}|f|^{p}}+P\left(h \cdot \chi_{B^{c}}\right) .
$$

When $p \neq 1$, the last term $P g$ with $g=h \cdot \chi_{B^{c}}$ disappears, for

$$
\begin{aligned}
(1+\varepsilon)^{p} \int|P g|^{p} d m & =\int|P(P g+\varepsilon g)|^{p} d m \\
& \leqq \int|P g+\varepsilon g|^{p} d m \\
& =\int|P g|^{p} d m+\varepsilon^{p} \int|g|^{p} d m
\end{aligned}
$$

because P is a contractive projection and the support of $P g$ is contained in B, disjoint from the support of g, but the above inequality is possible, for fixed p and all $\varepsilon>0$, only when $\int|P g|^{p} d m=0$. These observation give a half of the proof of the main theorem.

Theorem 2. P is a contractive projection in $(1 \leqq p<\infty, p \neq 2)$ if and only if there is a Borel subring \mathfrak{B} and a function $f \in L_{p}$ such that the support B of f is the maximum element of \mathfrak{B} and P is represented in the form

$$
P h=\frac{f \cdot E_{\mathfrak{B}}\left(h \cdot \bar{f}^{p-1}\right)}{E_{\mathfrak{B}}|f|^{p}}+V h
$$

where, when $p=1, V$ is a contraction such that $V=P_{B} V, V P_{B}=0$, and $V h / f$ is measurable with respect to \mathfrak{B}, and, when $p \neq 1, V=0$.

Proof. Suppose that P admits such a representation. The case $p=1$ is observed by Douglas [2] (cf. the proof of Theorem 3). When $p \neq 1$ (p may be equal to 2), by (4) and (6)

$$
\begin{aligned}
\left|E_{\mathfrak{B}}\left(h \cdot \bar{f}^{p-1}\right)\right| & \leqq E_{\mathfrak{B}}\left(|h| \cdot|f|^{p-1}\right) \\
& \leqq\left\{E_{\mathfrak{B}}|h|^{p}\right\}^{1 / p} \cdot\left\{E_{\mathfrak{B}}|f|^{p}\right\}^{1 / q},
\end{aligned}
$$

where $p^{-1}+q^{-1}=1$, so that from (2), (3), and (5) it follows that

$$
\begin{aligned}
\int|P h|^{p} d m & \leqq \int_{B} \frac{|f|^{p} \cdot\left|E_{\mathfrak{B}}\left(h \cdot \bar{f}^{p-1}\right)\right|^{p}}{\left\{E_{\mathfrak{B}}|f|^{p}\right\}^{p}} d m \\
& =\int_{B} E_{\mathfrak{B}}\left\{\left|\frac{E_{\mathfrak{B}}\left(h \cdot \bar{f}^{p-1}\right)}{E_{\mathfrak{B}}|f|^{p}}\right|^{p} \cdot|f|^{p}\right\} d m \\
& =\int_{B}\left|\frac{E_{\mathfrak{B}}\left(h \cdot \overline{f^{p-1}}\right)}{E_{\mathfrak{B}}|f|^{p}}\right|^{p} \cdot E_{\mathfrak{B}}|f|^{p} d m \\
& \leqq \int_{B} \frac{E_{\mathfrak{B}}|h|^{p} \cdot\left\{E_{\mathfrak{B}}|f|^{p}\right\}^{p-1} \cdot E_{\mathfrak{B}}|f|^{p}}{\left\{E_{\mathfrak{B}}|f|^{p}\right\}^{p}} d m \\
& =\int_{B} E_{\mathfrak{B}}|h|^{p} d m=\int_{B}|h|^{p} d m,
\end{aligned}
$$

thus P is a contraction in L_{p}. It is idempotent; in fact,

$$
\begin{aligned}
P^{2} h & =\frac{f}{E_{\mathfrak{B}}|f|^{p}} \cdot E_{\mathfrak{B}}\left\{\frac{E_{\mathfrak{B}}\left(h \cdot \bar{f}^{p-1}\right)}{E_{\mathfrak{B}} \mid f^{p}} \cdot|f|^{p}\right\} \\
& =\frac{f}{E_{\mathfrak{B}}|f|^{p}} \cdot \frac{E_{\mathfrak{B}}\left(h \cdot \overline{f^{p-1}}\right)}{E_{\mathfrak{B}}|f|^{p}} \cdot E_{\mathfrak{B}}|f|^{p}=P h
\end{aligned}
$$

by (2) and (5). This completes the proof.
Corollary 1. A contractive projection P in L_{p} is isometrically equivalent to a conditional expectation (with respect to a measure), if $1<p<\infty$, or if $p=1$ and $P P_{B}=P$ where B is the maximum support of the range of P.

Proof. When $1<p<\infty, p \neq 2$, with notations in the discussion preceding Theorem 2, consider the measure m^{\prime} on \mathfrak{Y}, defined by

$$
m^{\prime}(A)=m_{p}(A \cap B)+m\left(A \cap B^{c}\right),
$$

then the operator T is identified with a conditional expectation with respect to m^{\prime} and on account of $V=0$

$$
P=U T U^{-1}
$$

where U is the isometry which assigns to $h \in L_{p}\left(m^{\prime}\right)$ a function $h\left(f+\chi_{B^{c}}\right)$ it L_{p}. When $p=2$, the assertion follows from the fact that unitary equivalence is determined only by the dimension of the range. When $p=1, P P_{B}=P$ implies $V=0$ so that the same arguments as in the first case can be applied.

Corollary 2. P is a positive contractive projection in L_{p} $(1 \leqq p<\infty)$ if and only if in Theorem $2 f$ can be chosen as a nonnegative function and V is positive, when $p=1$.

Proof. If P has a representation with nonnegative f and positive V, it is obviously positive, because the conditional expectation is positive. The converse statement follows from the construction in the proof of Theorem 2 combined with Corollary of Lemma 3.

Corollary 3. P is a contractive projection both in L_{p} and L_{q} $\left(1<p<2, p^{-1}+q^{-1}=1\right)$ if and only if in Theorem $2 f$ can be chosen as

$$
|f(\omega)|^{2}=|f(\omega)|
$$

Proof. If P has the representation with such f,

$$
|P h|=\left|f \cdot E_{\mathfrak{B}}(h \cdot \bar{f})\right| \leqq E_{\mathfrak{B}}|f|
$$

by (4), and the assertion (for all p with $1<p \leqq 2$) follows from the fact that the conditional expectation is contractive in every L_{p}. Conversely if P is contractive both in L_{p} and L_{q} for some p, it is also contractive in L_{2} by Riesz's convexity theorem ([3], VI, 10), hence is self-adjoint in L_{2}. Take a function g with maximum support in the range \Re_{P}, then the self-adjointness implies, by Lemma 1 , $g^{r n} \in \Re_{P}$ $n=1,2, \cdots$ where $r=p-1$. Since $g^{r n}$ converges to $\operatorname{sgn}(g)$ so that $f=\operatorname{sgn}(g)$ meets the requiremet.

When $1>p>0$, the duality method is no longer available, but the concavity of the function $|\xi|^{p}$ is a tool.

Theorem 3. P is a contractive projection in $L_{p}(0<p<1)$, if and only if there are a set B and a contraction V such that $P_{B} V=$ $V, V P_{B}=0$, and P is represented in the form

$$
P=P_{B}+V
$$

Proof. If P admits the representation, by the property of V

$$
\begin{aligned}
\int|P h|^{p} d m & \leqq \int\left\{\left|P_{B} h\right|+|V h|\right\}^{p} d m \\
& \leqq \int\left|P_{B} h\right|^{p} d m+\int|V h|^{p} d m \\
& \leqq \int_{R}|h|^{p} d m+\int_{R^{c}}|h|^{p} d m
\end{aligned}
$$

so P is a contraction. It is idempotent; in fact,

$$
\begin{aligned}
P^{2} & =P_{B}\left(P_{B}+V\right)+V\left(P_{B}+P_{B} V\right) \\
& =P_{B}+V=P
\end{aligned}
$$

According to the discussion preceding Theorem 2, for the converse assertion, it suffices to prove that a contractive projection P in L_{p} which makes constant functions invariant is necessarily the identity operator. P is positive and $P \chi_{A}$ is a characteristic function, as in the proof of Lemma 2. The correspondence which assigns to A the support of $P \chi_{A}$ preserves inclusion relation by the positivity of P. Since P is linear, it preserves disjointness. The idempotency of the correspondence follows from the idempotency of P. Then the correspondence must be the identity, which means that P makes all characteristic functions invariant, so that it is the identity operator. This completes the proof.
4. Geometric description. A Banach space will be called of L_{p} type if it is isometrically isomorphic to an L_{p} space on a measure space. When $1<p<\infty$, a Banach space is of L_{p} type if and only if its conjugate space is of L_{q} type with $p^{-1}+q^{-1}=1$. Given an L_{p} space, the simplest subspace of L_{p} type is the collection of functions which vanish outside a fixed set B; such a subspace will be called an L_{p} section. A closed linear subspace is an section if and only if it is the range of an operator P_{B}. The collection of all functions measurable with respect to a Borel subring is clearly of L_{p} type; such a subspace will be called an L_{p} subspace. A closed linear subspace is an L_{p} subspace if and only if it is the range of a conditional expectation. Inspection of the proof of Lemma 3 shows that a closed linear subspace \mathfrak{M} is an L_{p} subspace if it contains constant functions and if $f \in \mathbb{M}$ implies $\{\operatorname{Re}(f)\}^{+} \in \mathfrak{M l}$. The representation of a contractive projection in terms of a conditional expectation will answer the question of when a closed linear subspace can be the range of a contractive projection.

Theorem 4. A closed linear subspace can be the range of a contractive projection, if and only if it is of L_{p} type or and L_{p} section according as $1 \leqq p<\infty$ or $0<p<1$.

Proof. The assertion is well known in case $p=2$ and is an immediate consequence of Theorem 3 in case $0<p<1$. Douglas [2] treated the case $p=1$. If P is a contractive projection in L_{p} ($1<p<\infty, p \neq 2$), by Corollary 1 of Theorem 2 it is isometrically equivalent to a conditional expectation, so that its range is isometrically isomorphic to that of a conditional expectation, hence it is of
L_{p} type. Conversely if \mathfrak{M} is a closed linear subspace of L_{p} type, there exists by definition a measure space ($\Omega^{\prime}, \mathfrak{Y}^{\prime}, m^{\prime}$) and an isometry W from $L_{p}\left(\Omega^{\prime}, \mathfrak{X}^{\prime}, m^{\prime}\right)$ onto \mathfrak{M}. Let $f=W 1$ where 1 denotes the constant function with value 1 on Ω^{\prime}, and consider the isometry V from $L_{p}\left(m^{\prime \prime}\right)$ onto L_{p} which assigns $h\left(f+\chi_{B^{c}}\right)$ to h where B is the support of f and

$$
d m^{\prime \prime}=\left\{|f|^{p}+\chi_{s^{c}}\right\} d m
$$

Then the image of \mathfrak{M} under V^{-1} is just the image of $L_{p}\left(m^{\prime}\right)$ under the isometry $U=V^{-1} W$. On account of Lamperti's result [5] U preserves disjointness in the sense that $g_{1} \cdot g_{2}=0$ implies $U g_{1} \cdot U g_{2}=0$. Since U maps the constant function 1 on Ω^{\prime} to the characteristic function χ_{B}, it results that the image of a characteristic function is also a characteristic function, and U is positive in the sense that it preserves nonnegativity. A discussion similar to the proof of Lemma 4 shows that the image of U is a L_{p} subspace, hence is the range of a conditional expectation, so that \mathfrak{M} itself is the range of a contractive projection, isometrically equivalent to the conditional expectation. This completes the proof.

Given a closed linear subspace \mathfrak{M} of $L_{p}(1<p<\infty)$, consider the operator $P_{\mathfrak{M}}$ which assigns to f the function in \mathfrak{M} with minimum distance from it, that is, $P_{m} f \in \mathfrak{M}$ and $\left\|f-P_{\mathfrak{M}} f\right\|_{p} \leqq\|f-g\|_{p}$ for all $g \in \mathfrak{M}$; the operator is well defined because of the weak compactness of the unit ball and of the strict convexity of the L_{p} norm. $P_{\mathfrak{M}}$ will be called the prediction relative to \mathfrak{M}. It is idempotent, but not linear in general.

Suppose that the prediction relative to \mathfrak{M} is linear, then the operator $P=I-P_{\mathfrak{M}}$ is a contractive projection which annihilates exactly functions in \mathbb{M}, so that its adjoint P^{*} is a contractive projection in L_{q}, with $p^{-1}+q^{-1}=1$, having the annihilator \mathbb{M}^{\perp} as its range. Then by Theorem $4 \mathfrak{M}^{\perp}$ is of L_{q} type. Conversely if the annihilator \mathbb{M}^{\perp} is of L_{q} type, it is the range of a contractive projection Q in L_{q}, and $I-Q^{*}$ is readily shown to coincide with the prediction $P_{\mathfrak{M}}$. On the other hand, by duality theorem, the annihilator \mathfrak{M}^{\perp} is isometrically isomorphic to the conjugate space of the quotient space $L_{p} / \mathbb{M} \mathcal{L}$. These observations lead to the assertion.

THEOREM 5. The prediction $P_{\mathfrak{M}}$ relative to a closed linear subspace \mathfrak{M} of $L_{p}(1<p<\infty)$ is linear, if and only if the quotient space L_{p} / \mathfrak{M} is of L_{p} type.

References

1. T. Ando and I. Amemiya, Almost everywhere convergence of prediction sequence in $L_{p}(1<p<\infty)$, Z. Wahrscheinlichkeitstheorie verw. Geb. 4 (1965), 113-120.
2. R. G. Douglas, Contractive projections on an L_{1} space, Pacific J. Math. 15 (1965), 443-462.
3. N. Dunford and J. Schwartz, Linear Operators I, Interscience, 1958.
4. K. Jacobs, Neuere Methoden und Ergebnisse der Ergodentheorie, Springer, 1960.
5. J. Lamperti, The isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466.
6. G.-C. Rota, On the representation of averaging operators, Rend. Sem. Mat. Padova 30 (1960), 52-64.
7. -, On the eigenvalues of positive operators, Bull. Amer. Math. Sco. 67 (1961), 556-558.

Research Institute of
Applied Electricity,
Hokkaido University
Sapporo, Japan

[^0]: Received January 18, 1965. The work on this paper was done while the author was at California Institute of Technology under Grant NSF-G 19914.

