ON THE FUNCTIONAL EQUATION
 $F(m n) F((m, n))=F(m) F(n) f((m, n))$

James E. Shockley

Let f be a multiplicative arithmetic function, $f(1)=1$. Necessary and sufficient conditions on f will be found so that the functional equation

$$
F(m n) F((m, n))=F(m) F(n) f((m, n))
$$

will have a solution F with $F(1) \neq 0$ and all solution F will be determined. It will be shown that two different types of solutions may exist and that one of these requires that f have a property similar to complete multiplicativity.

The special case of the equation

$$
\begin{equation*}
F(m n) F((m, n))=F(m) F(n) f((m, n)) \tag{1}
\end{equation*}
$$

with f completely multiplicative and $F(1) \neq 0$ was solved completely by Apostol and Zuckerman [1]. Specialized results were also given for the case $F(1)=0$, but this case was not solved in general.

We note that if $f(1)=0$ then f is identically zero and is thus completely multiplicative. This case was solved completely in [1] and will not be considered here. Thus in the sequel we will assume that f is multiplicative and is not identically zero (which implies that $f(1)=1$).

1. If F is a solution of (1) with $F(1) \neq 0$ then any constant multiple of F is also a solution. Thus we may reduce the problem of solving (1) with $F(1) \neq 0$ to that of solving

$$
\begin{equation*}
F(m n) F((m, n))=F(m) F(n) f((m, n)), \quad F(1)=1 \tag{2}
\end{equation*}
$$

The proof of Theorem 1 is essentially the same as that of Theorem 2 of [1] and will be omitted.

ThEOREM 1. F is a solution of (2) if, and only if, F is a nonzero multiplicative function and for each prime p

$$
\begin{equation*}
F\left(p^{a+b}\right) F\left(p^{a}\right)=F\left(p^{b}\right) F\left(p^{a}\right) f\left(p^{a}\right) \quad \text { if } \quad b \geqq a \geqq 1 \tag{3}
\end{equation*}
$$

The problem is thus reduced to that of determining the form of F on the powers of each prime p.

Theorem 2. Let F be a solution of (2). If $F\left(p^{m}\right) \neq 0$ for some
$m \geqq 1$ then $F\left(p^{k m+n}\right)=F\left(p^{m+n}\right) f\left(p^{m}\right)^{k-1}(k=2,3, \cdots),(n=0,1,2, \cdots)$.
The proof follows easily from (3) by induction on k.
Corollary 2.1. Let F be a solution of (2). If $F\left(p^{m}\right) \neq 0$ and $f\left(p^{m}\right)=0$ for some $m \geqq 1$, then $F\left(p^{n}\right)=0$ for $n \geqq 2 m$.

Corollary 2.2. Let F be a solution of (2). If $F\left(p^{m}\right) \neq 0$ and $f\left(p^{m}\right) \neq 0$ for some $m \geqq 1$, then $F\left(p^{k m}\right) \neq 0(k=2,3, \cdots)$.

Theorem 3. Let F be a solution of (2). If $F\left(p^{m}\right) \neq 0$ and $f\left(p^{m}\right) \neq 0$ for some $m \geqq 1$, then $f\left(p^{n}\right) \neq 0$ whenever $F\left(p^{n}\right) \neq 0$. If, for some $m \geqq 1$, $F\left(p^{m}\right) \neq 0$ and $f\left(p^{m}\right)=0$ then $f\left(p^{n}\right)=0$ whenever $F\left(p^{n}\right) \neq 0$.

Proof. To prove the first proposition we observe that if $F\left(p^{n}\right) \neq 0$ and $f\left(p^{n}\right)=0$ then $F\left(p^{t}\right)=0$ for $t \geqq 2 n$ which contradicts Corollary 2.2. The proof of the second proposition is similar.

We are now in a position to determine the form of the solution F on the powers of p if $F\left(p^{m}\right) \neq 0$ and $f\left(p^{m}\right)=0$.

THEOREM 4. Let m be a positive integer such that $f\left(p^{m}\right)=0$. Let $m_{1}=m, m_{2}, \cdots, m_{k}$, be the integers t on the interval [m,2m) for which $f\left(p^{t}\right)=0$. The function F is a solution of (3) with m the smallest positive integer such that $F\left(p^{m}\right) \neq 0$ if, and only if, $F\left(p^{m}\right) \neq 0$ and $F\left(p^{n}\right)=0$ whenever $n \neq m_{i}$.

Proof. If F is a solution of (3) and m is the smallest positive integer such that $F\left(p^{m}\right) \neq 0$ then by Corollary 2.1 we see that $F\left(p^{n}\right)=0$ for $n \geqq 2 m$ and by Theorem 3 we see that $F\left(p^{n}\right)=0$ if $n \neq m_{i}$ ($m<n<2 m$). To prove the converse we substitute in (3).
2. The case $F\left(p^{m}\right) \neq 0$ and $f\left(p^{m}\right) \neq 0$. We will first show that in this case f cannot be defined arbitrarily on the powers of p if a solution of (2) is to exist.

Theorem 5. Let F be a solution of (2). If $F\left(p^{m}\right) \neq 0$ and $f\left(p^{m}\right) \neq 0$ for some positive integer m, then

$$
f\left(p^{m k}\right)=f\left(p^{m}\right)^{k} \quad(k=1,2, \cdots)
$$

Proof. From Corollary 2.2 and Theorem 3 we see that $F\left(p^{k m}\right) \neq 0$ and that $f\left(p^{k m}\right) \neq 0(k=1,2, \cdots)$. Taking $a=b=k m$ in (3) and using Theorem 2 we obtain

$$
F\left(p^{2 k m}\right)=F\left(p^{k m}\right) f\left(p^{k m}\right)=F\left(p^{m}\right) f\left(p^{m}\right)^{k-1} f\left(p^{k m}\right)
$$

If we now take $n=0$ and replace k by $2 k$ in Theorem 2 we obtain

$$
F\left(p^{2 k m}\right)=F\left(p^{m}\right) f\left(p^{m}\right)^{2 k-1}
$$

Comparing the last two equations we see that $f\left(p^{m}\right)^{k}=f\left(p^{k m}\right)$.
Theorem 6. Let F be a solution of (2). Suppose $f\left(p^{m}\right) \neq 0$ and $F\left(p^{m}\right) \neq 0$ for some $m \geqq 1$, and let d be the smallest positive integer such that $F\left(p^{m+d}\right) \neq 0$. Then $d \mid m$. Furthermore, if n is a positive integer then $F\left(p^{m+n}\right) \neq 0$ if and only if $n \equiv 0(\bmod d$.)

Proof. (A) Such an integer d must exist by Corollary 2.2. Suppose $d \nmid m$. Let t be the smallest positive integer such that $t d>m$. We can write $m<t \bar{d}=m+j<m+d$. From Theorem 2

$$
F\left(p^{t(m+d)}\right)=F\left(p^{(t+1) m+j}\right)=F\left(p^{m+j}\right) f\left(p^{m}\right)^{t}=0
$$

since $0<j<d$; similarly, by Theorem 2 and 3 we have

$$
F\left(p^{t(m+d)}\right)=F\left(p^{m+d}\right) f\left(p^{m+\grave{c}}\right)^{t-1} \neq 0
$$

which is impossible. Thus $\bar{d} \mid m$.
(B) If $n \not \equiv 0(\bmod d)$ there exist positive integers K and L such that $K m<L n=K m+j<K m+d$. By considering $F\left(p^{L n}\right)$ we obtain a contradiction similar to that in part (A) if we assume $F\left(p^{m+n}\right) \neq 0$.
(C) Suppose $n \equiv 0(\bmod d)$, say $n=k d$. Applying Theorem 2 twice we see that

$$
F\left(p^{k m+n}\right)=F\left(p^{k(m+d)}\right)=F\left(p^{m+d}\right) f\left(p^{m+d}\right)^{k-1} \neq 0
$$

and

$$
F\left(p^{k m+n}\right)=F\left(p^{m+n}\right) f\left(p^{m}\right)^{k-1}
$$

Thus

$$
\begin{equation*}
F\left(p^{m+n}\right)=F\left(p^{m+k d}\right)=\frac{F\left(p^{m+d}\right) f\left(p^{m+d}\right)^{k-1}}{f\left(p^{m}\right)^{k-1}} \neq 0 \tag{4}
\end{equation*}
$$

We now extend the result of Theorem 5 to completely characterize the solutions of (2) with $f\left(p^{m}\right) \neq 0$ and $F\left(p^{m}\right) \neq 0$.

Theorem 7. Let F and f be multiplicative functions. Suppose p is a prime, that m and d are the smallest positive integers such that $F\left(p^{m}\right) \neq 0, f\left(p^{m}\right) \neq 0$ and $F\left(p^{m+d}\right) \neq 0$. Then F is a solution of (3) if, and only if,

$$
\begin{equation*}
f\left(p^{m+k d}\right)=f\left(p^{m}\right)^{1+k d / m} \quad(k=1,2,3, \cdots) \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
F\left(p^{m+k d}\right)=F\left(p^{m}\right) f\left(p^{m}\right)^{k d / m}=\frac{F\left(p^{m}\right)}{f\left(p^{m}\right)} f\left(p^{m+k d}\right), \tag{7}\\
F\left(p^{n}\right)=0 \text { if } 0<n<m \text { or if } n \not \equiv 0(\bmod d)
\end{gather*}
$$

Proof. (5) and (8) were established in Theorem 6. To prove (6) we let $k_{1}=2 k, k_{2}=2, m_{1}=m+d, m_{2}=m+k d, n_{2}=2 k m-2 m$, so that $k_{1} m_{1}=k_{2} m_{2}+n_{2}$. From Theorem 2 we obtain

$$
\begin{equation*}
F\left(p^{k_{1} m_{1}}\right)=F\left(p^{m+d}\right) f\left(p^{m+d}\right)^{2 k-1} . \tag{9}
\end{equation*}
$$

From Theorem 2 and equations (3) and (4) we obtain

$$
\begin{aligned}
F\left(p^{k_{2} m_{2}+n_{2}}\right) & =F\left(p^{(2 k-1) m+k d}\right) f\left(p^{m+k d}\right) \\
& =F\left(p^{m+k d}\right) f\left(p^{m}\right)^{2 k-2} f\left(p^{m+k d}\right) \\
& =\frac{F\left(p^{m+d}\right) f\left(p^{m+d}\right)^{k-1}}{f\left(p^{m}\right)^{k-1}} f\left(p^{m}\right)^{2 k-2} f\left(p^{m+k d}\right) .
\end{aligned}
$$

Equating the last expression with (9) we obtain

$$
\begin{equation*}
f\left(p^{m+k d}\right)=\frac{f\left(p^{m+d}\right)^{k}}{f\left(p^{m}\right)^{k-1}} . \tag{10}
\end{equation*}
$$

For the special case $k=m / d$ we obtain from Theorem 5 and (10)

$$
f\left(p^{2 m}\right)=f\left(p^{m}\right)^{2}=\frac{f\left(p^{m+d}\right)^{m / d}}{f\left(p^{m}\right)^{m / d-1}}
$$

so that $f\left(p^{m+d}\right)=f\left(p^{m}\right)^{1+d / m}$.
Substituting this in (10) we obtain (6).
To prove (7) we apply Theorem 2 twice obtaining

$$
\begin{aligned}
F\left(p^{(m+k d) m / d}\right) & =F\left(p^{m+k d}\right) f\left(p^{m+k d}\right)^{m / d-1} \\
& =F\left(p^{(m / d+k) m}\right)=F\left(p^{m}\right) f\left(p^{m}\right)^{m / d+k-1}
\end{aligned}
$$

From this relation, along with (6) used twice we find

$$
\begin{aligned}
F\left(p^{m+k d}\right) & =\frac{F\left(p^{m}\right) f\left(p^{m}\right)^{m / d+k-1}}{f\left(p^{m+k d}\right)^{m / d-1}}=\frac{F\left(p^{m}\right) f\left(p^{m}\right)^{m / d+k-1}}{f\left(p^{m}\right)^{m / d+k-1-k d / m}} \\
& =F\left(p^{m}\right) f\left(p^{m}\right)^{k d / m}
\end{aligned}
$$

The other part of (7) follows from (6).
To prove the converse we substitute in (3).
3. Summary. We have reduced the problem of solving (2) to that of finding a multiplicative function F (not identically zero) that satisfies (3) for the powers of each prime p. Such a function F will exist if, and only if, one of the following holds for f and F on the
powers of p :

1. There is a positive integer m such that $f\left(p^{m}\right)=0$ and $F\left(p^{n}\right)=0$ except possibly for the integers n in the interval $[m, 2 m$) for which $f\left(p^{n}\right)=0$.
2. There is a positive integer m, a positive divisor d of m and a complex number C such that

$$
f\left(p^{m+k d}\right)=f\left(p^{m}\right)^{1+k d / m} \neq 0 \quad(k=0,1,2, \cdots)
$$

and F has the defining properties

$$
F\left(p^{m+k d}\right)=C f\left(p^{m+k d}\right) \quad(k=0,1,2, \cdots)
$$

$F\left(p^{n}\right)=0$ if $n \neq m+k d$ for some nonnegative integer k.

References

1. Tom M. Apostol and Herbert S. Zuckerman, On the functional equation $F(m n) F((m, n))=F(m) F(n) f((m, n))$, Pacific J. Math. 14 (1964), 377-384.
2. P. Comment, Sur l'equation fonctionelle $F(m n) F((m, n))=F(n) F(m) f((m, n))$, Bull. Res. Council of Israel, Sect. F7F (1957/58), 14-20.

Received October 23, 1964, and in revised form February 24, 1965.
University of Wyoming

