UNKNOTTING SPHERES VIA SMALE

RODOLFO DE SAPIO

It is shown here that a topological n-sphere which is embedded in Euclidean *m*-space R^m with a transverse field of (m-n)-planes (in the sense of Whitehead) bounds a topological (n+1)-disc in \mathbb{R}^m , provided m > n+2 > 4 and $n \neq 4$. On the other hand, Haefliger has constructed C^{∞} differentiable embeddings of the standard (4k-1)-sphere S^{4k-1} in 6k-space R^{6k} which are differentiably knotted (i.e. they do not bound differentiably embedded 4k-discs in R^{6k}). However, by using a sharpened form of the h-cobordism theorem of Smale it is possible to topologically unknot these spheres. This is achieved by showing that a differentiably knotted *n*-sphere in *m*-space R^m is so knotted because of a single bad point (provided m > n + 2 > 4). The topological case is then proved by first approximating the topologically embedded *n*-sphere by a differentiably embedded homotopy n-sphere, and thus reducing it to the differentiable case.

Differentiable or smooth will mean of class C^{∞} . An *n*-disc is a contractible, compact, smooth *n*-manifold with simply connected boundary. A pair of disc (B^m, B^n) is a pair of discs such that $\partial B^n = B^n \cap \partial B^m$, where ∂M denotes the boundary of a manifold M, and where B^n meets ∂B^m transversally. A theorem of Smale [4] asserts that an *n*-disc for $n \ge 6$ is diffeomorphic to the standard *n*-disc D^n in \mathbb{R}^n . Now let (D^m, D^n) be the standard pair of discs.

PROPOSITION 1. A pair of discs (B^m, B^n) is diffeomorphic to the standard pair (D^m, D^n) , provided m > n + 2 > 7.

Proof. This is an easy consequence of Smale [4; Corollary 3.2]. Let $\varphi: (D^m, D^n) \to (\operatorname{Int} B^m, \operatorname{Int} B^n)$ be a smooth embedding and consider the exact homology sequence of the pair $(B^n - \operatorname{Int} \varphi(D^n), \varphi(\partial D^n))$. By excision $H_i(B^n - \operatorname{Int} \varphi(D^n), \varphi(\partial D^n)) \approx H_i(B^n, \varphi(D^n)) = 0$ and hence the the inclusion $\varphi(\partial D^n) \to B^n - \operatorname{Int} \varphi(D^n)$ is a homotopy equivalence. To show that the inclusion $\partial B^n \to B^n - \operatorname{Int} \varphi(D^n)$ is also a homotopy equivalence consider the homology sequence of the pair $(B^n - \operatorname{Int} \varphi(D^n), \partial B^n)$. By Poincaré duality

$$H_i(B^n - \operatorname{Int} \varphi(D^n), \partial B^n) \approx H^{n-i}(B^n - \operatorname{Int} \varphi(D^n), \varphi(\partial D^n))$$

and by excision

$$H^{n-i}(B^n - \operatorname{Int} \varphi(D^n), \varphi(\partial D^n)) pprox H^{n-i}(B^n, \varphi(D^n))$$
 .

Since $H^{n-i}(B^n, \varphi(D^n)) = 0$, it follows that the inclusion $\partial B^n \longrightarrow B^n - \operatorname{Int} \varphi(D^n)$

induces isomorphisms of homology and hence is a homotopy equivalence. Therefore, since n > 5, [4; Corollary 3.2] implies that $B^n - \operatorname{Int} \varphi(D^n)$ is diffeomorphic to $S^{n-1} \times I$.

Similarly the inclusions $\varphi(\partial D^m) \to B^m - \operatorname{Int} \varphi(D^m)$ and $\partial B^m \to B^m - \operatorname{Int} \varphi(D^m)$ are homotopy equivalences and hence by [4; Corollary 3.2] the diffeomorphism $S^{n-1} \times I \approx B^n - \operatorname{Int} \varphi(D^n)$ may be extended to a diffeomorphism $S^{m-1} \times I \approx B^m - \operatorname{Int} \varphi(D^n)$, where, of course, $S^{n-1} \times I$ is embedded in $S^{m-1} \times I$ in the natural way. By using this product structure on $(B^m - \operatorname{Int} \varphi(D^m), B^n - \operatorname{Int} \varphi(D^n))$ it is possible to define a diffeomorphism $(B^m, B^n) \approx (D^m, D^n)$, proving the proposition.

The following theorem is a slight generalization of the topological unknotting of a differentiably knotted S^n in S^m for m > n + 2 > 6. Notice that Haefliger [1] has shown that S^n differentiably knots in S^m only if $3n + 3 \ge 2m \ge 2n + 4$. Recall that a homotopy *n*-sphere is a closed, oriented, smooth *n*-manifold with the homotopy type of S^n .

THEOREM A. Any pair (V^m, K^n) of homotopy spheres, with m > n + 2 > 6, is diffeomorphic to a pair obtained from two copies of (D^m, D^n) by identifying boundaries together through some diffeomorphism $(S^{m-1}, S^{n-1}) \rightarrow (S^{m-1}, S^{n-1})$.

REMARK. If it is assumed that K^n can be obtained by identifying two standard *n*-discs along their boundaries via a diffeomorphism $S^{n-1} \rightarrow S^{n-1}$, then the theorem is true for n > 3.

Proof. The proof is simple; for $n \ge 6$ even simpler. If $n \ge 6$, choose an embedding $\varphi: (D^m, D^n) \to (V^m, K^n)$. By Proposition 1 the pair $(V^m - \operatorname{Int} \varphi(D^m), K^n - \operatorname{Int} \varphi(D^n))$ is diffeomorphic to (D^m, D^n) . (It is easy to see that $(V^m - \operatorname{Int} \varphi(D^n), K^n - \operatorname{Int} \varphi(D^n))$ is a pair of discs; for example, if $B^n = K^n - \operatorname{Int} \varphi(D^n)$, then by Poincaré duality $H_i(B^n - \varphi(\partial D^n) \approx H^{n-i}(B^n, \varphi(\partial D^n))$ and by excision $H^{n-i}(B^n, \varphi(\partial D^n)) \approx$ $H^{n-i}(K^n, \varphi(D^n))$. Since $H^{n-i}(K^n, \varphi(D^n)) \approx H^{n-i}(K^n)$ for $i \neq n$, it follows that $B^n - \varphi(\partial D^n)$ is contractible and hence so is B^n .)

For n = 5 choose disjoint smooth embeddings $\varphi_i: D^5 \to K^5 (i = 1, 2)$ so that $K^5 - \operatorname{Int} [\varphi_1(D^5) \cup \varphi_2(D^5)]$ is diffeomorphic to $S^4 \times I$ (this is possible because any homotopy 5-sphere is, according to Milnor, *h*-cobordant to S^5 and hence, by Smale, is diffeomorphic to S^5). The embeddings φ_i may be extended to smooth embeddings $\varphi_i: (D^m, D^5) \to (V^m, K^5)$ (i = 1, 2). Now by the previous paragraph $V^m - \operatorname{Int} \varphi_i(D^m)$ is a disc and hence by the proof of Proposition 1 the $\varphi_i(\partial D^m)(i = 1, 2)$ are deformation retracts of $V^m - \operatorname{Int} [\varphi_1(D^m) \cup \varphi_2(D^m)]$. Therefore, by Smale [4; Corollary 3.2] the diffeomorphism $S^4 \times I \approx K^5 - \operatorname{Int} [\varphi_1(D^5) \cup \varphi_2(D^5)]$ may be extended to a diffeomorphism $S^{m-1} \times I \approx V^m - \operatorname{Int} [\varphi_1(D^m) \cup \varphi_2(D^m),$ and the theorem then follows easily. Let K^n be a homotopy *n*-sphere smoothly embedded in $S^m, m > n+2>6$, and let (S^m, S^n) be the standard pair of spheres, S^n embedded in S^m by the natural inclusion of R^{n+1} in R^{m+1} . A homeomorphism $f: (S^m, K^n) \rightarrow$ (S^m, S^n) of pairs, differentiable except possibly at a single point of K^n , is obtained as follows: map one copy of the (D^m, D^n) of Theorem A differentiably onto one pair of hemispheres of (S^m, S^n) and then extend the map radially to the other copy of (D^m, D^n) via the diffeomorphism $(S^{m-1}, S^{n-1}) \rightarrow (S^{m-1}, S^{n-1})$ of Theorem A (i.e., the cone map) giving the diffeomorphism up to a point. Thus f unknots K^n in S^m .

COROLLARY (Hirsch). Let N be a closed tubular neighborhood of a homotopy n-sphere K^n smoothly embedded in S^{n+k} . Then for $n \ge 5$ and $k \ge 3$ there is a diffeomorphism $N \approx S^n \times D^k$.

The closed tubular neighborhood N is a neighborhood of K^n in S^{n+k} which is diffeomorphic to a neighborhood of the zero cross-section in the normal bundle of K^n in S^{n+k} , the latter neighborhood being the set of all vectors less than or equal to some fixed $\varepsilon > 0$. The following proof replaces the combinatorial arguments of Hirsch [3] by application of the above theorem.

Proof. Take a closed tubular neighborhood of S^n in S^{n+k} ; it is diffeomorphic to $S^n \times D^k$. It may be assumed that the closed normal tube N is embedded in $S^n \times \operatorname{Int} D^k$ by the unknotting homeomorphism $f: (S^m, K^n) \to (S^m, S^n)$ constructed above. Moreover, K may be deformed into K' by a differentiable isotopy deforming N into a closed normal tube N' of K', where $N' \subset \operatorname{Interior} N$ and N' does not contain the "bad point" of f. Then N is diffeomorphic to N' and N is smoothly embedded in $S^n \times \operatorname{Int} D^k$ by f. Now from an argument similar to that in Proposition 1 it follows that $(S^n \times D^k) - \operatorname{Int} f(N')$ is diffeomorphic to $S^n \times S^{k-1} \times I$. Consequently the boundary of f(N') may be deformed isotopically onto $S^n \times S^{k-1}$. Since this isotopy may be extended to a differentiable isotopy deforming f(N') onto $S^n \times D^k$, the corollary is proved.

REMARK. Theorem A implies that a smoothly embedded homotopy *n*-sphere K^n in S^m , where m > n + 2 > 6 is topologically unknotted. It can be shown that the pairs (S^m, K^n) and (S^m, S^n) may be smoothly triangulated so that the unknotting homeomorphism $f: (S^m, K^n) \rightarrow (S^m, S^n)$ is a combinatorial equivalence. More generally, however, Zeeman [7] has shown that a combinatorially embedded S^n in S^m is combinatorially unknotted if m > n + 2. Stallings [5] proves that a locally flat S^n in S^m is unknotted if $n + 3 \le m \ge 5$.

Let $G_{m-n,n}$ be the Grassman manifold of (m-n)-planes in \mathbb{R}^m . If K^n is a topological n-manifold in \mathbb{R}^m , m > n > 0, then a field of (m-n)-planes transverse to K^n (or a transverse field) is a continuous $\varphi \colon K^n \to G_{m-n,n}$ such that $\varphi(x)$ is transverse (in the sense of Whitehead [6]) to K^n at x for every $x \in K^n$. A topological n-manifold K^n in S^m is said to have a transverse field if K^n has a transverse field in $S^m - \{\infty\}$ as defined above, where $\infty \in S^m - K$.

THEOREM B. A topological n-sphere K^n embedded in S^m with a transverse field unknots, provided m > n + 2 > 4 and $n \neq 4$.

Of course B follows from Stallings' result since such a K^n is locally flat in S^n . In order to prove B it is necessary to state some facts about transverse fields. So, suppose K^n is a topological *n*-manifold in R^m with a transverse field $\varphi: K \to G_{m-n,n}$. The space

$$E(arphi) = \{(x, y) \mid x \in K, y \in arphi(x)\}$$

may be considered as the total space of the (m - n)-plane bundle over K induced by φ ; the fibre over $x \in K$ is the (m - n)-plane $\varphi(x)$. Now by Whitehead [6; page 157, second sentence], given a continuous map $\varepsilon: K \rightarrow R_+$ (R_+ the positive reals), there is a Lipschitz map $\varphi': K \rightarrow G_{m-n,n}$ which is an ε -approximation to φ , and by [6; Theorem 1.3] ε may be chosen so that φ' is a transverse field (which is transversally homotopic to φ). Hence we may assume without loss of generality that the given transverse field φ is Lipschitz.

Define a map

$$\theta: E(\varphi) \to R^m$$

by $\theta(x, y) = x + y$. By [6; Theorem 1.5] there exists a map $\rho: K \to R_+$ (R_+ the positive reals) such that if

$$T'_{
ho} = \{(x, y) \mid (x, y) \in E(\varphi), \mid y \mid < \rho(x)\},\$$

an open subset of $E(\varphi)$, then $\theta \mid T'_{\rho}$ is a regular Lipschitz homeomorphism of T'_{ρ} onto $\theta T'_{\rho}$. Now define the φ -projection π of $\theta T'_{\rho}$ onto K by

$$\pi\theta(x, y) = \pi(x + y) = x$$
.

Then φ is said to be of class C^r $(1 \leq r \leq \infty)$ if $\varphi \pi$ is of class C^r in a neighborhood $N \subset \theta T'_{\varphi}$ of K. In this case by [6; Theorem 3] there exists a smooth C^r submanifold M^n of N such that $\pi \mid M: M \to K$ is a homeomorphism and the map $M \to G_{m-n,n}$ sending x into $\varphi \pi(x)$ is a transverse field on M.

Theorem B is a direct consequence of Theorem A (for n = 3 see Remark after Theorem A) and the following.

PROPOSITION 2. A pair (S^m, K^n) , where K^n is a closed topological manifold in S^m with a transverse field $\varphi: K \to G_{m-n,n}$, is homeomorphic to a pair (S^m, M^n) , where M^n is a smooth C^{∞} submanifold of S^m .

REMARK. The homeomorphism of the pairs (S^m, K^n) and (S^m, M^n) which is defined in the following proof is isotopic (homotopic through homeomorphisms) to the identity map of S^m .

Proof. Let $\rho: K \to R_+$ be as above; by [6; Theorem 1.10] φ may be assumed to be a C^{∞} transverse field. Now choose $\rho_0 > 0$ such that $0 < \rho_0 < \text{Inf} \{\rho(x) \mid x \in K\}$ and let

$$T_{\mathfrak{o}}' = \{(x,\,y) \in E(arphi) \mid | \; y \mid <
ho_{\mathfrak{o}}\}, \;\; T_{\mathfrak{o}} = heta \, T_{\mathfrak{o}}' \;.$$

Clearly $T'_{o} \subset T'_{\rho}$ and, moreover, the map $\psi: T_{o} \to E(\varphi)$ sending $x + y \to (x, (1/(\rho_{o} - |y|))y)$ defines a homeomorphism of

$$T_{\scriptscriptstyle 0} = \{x + y \mid x \in K, \, y \in arphi(x), \, \mid y \mid <
ho_{\scriptscriptstyle 0}\} \quad ext{onto} \quad E(arphi) \;.$$

By remarks above there exists a smooth C^{∞} submanifold M^{n} of R^{m} in T_{0} such that $\pi \mid M: M \to K$ is a homeomorphism. The homeomorphism $\pi \mid M$ will be extended to a surjective homeomorphism $f: S^{m} \to S^{m}$. The first step is to extend $\pi \mid M$ to a homeomorphism $\overline{\pi}: T_{0} \to T_{0}$ onto T_{0} in the following way: the image of M under $\psi: T_{0} \to E(\varphi)$ may be described as the set $\{(x, \alpha(x)) \mid x \in K, \alpha(x) \in \varphi(x), \alpha: K \to R^{m}\}$ and so the map $\beta: E(\varphi) \to E(\varphi)$ defined by $\beta(x, y) = (x, y - \alpha(x))$ is clearly a homeomorphism of $E(\varphi)$ onto itself. Setting $\overline{\pi} = \psi^{-1}\beta\psi$ gives the desired extension of $\pi \mid M$.

It is a tedious but straightforward verification that for $(x + y) \in T_0$, $|\overline{\pi}(x + y) - (x + y)| \rightarrow 0$ uniformly for all x as $|y| \rightarrow \rho_0$ and hence by defining $f: S^m \rightarrow S^m$ to be, for each s in S^m ,

$$f(s) = egin{cases} ar{\pi}(s) & ext{ (if } s \in {T_{\scriptscriptstyle 0}}) \ s & ext{ (if } s \notin {T_{\scriptscriptstyle 0}}) \ , \end{cases}$$

it follows that f is a homeomorphism of S^m onto S^m sending M onto K.

References

- 1. A. Haefliger, *Plongements différentiable de variétés dans variétés*, Comment. Math. Helv. **36** (1961), 47-82.
- 2. ____, Knotted (4k-1)-spheres in 6k-space, Ann. of Math. 75 (1962), 462-466.

3. M. W. Hirsch, Smooth regular neighborhoods, Ann. of Math. 76 (1962), 524-530.

4. S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399.

- 5. J. Stallings, On topologically unknotted spheres, Ann. of Math. 77 (1963), 490-503.
- 6. J. H. C. Whitehead, Manifolds with transverse fields in Euclidean space, Ann. of Math. **73** (1961), 154-212.

7. E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. 78 (1963), 501-526.

Received March 3, 1965. This research was partially supported by National Science Foundation Grant No. 4069.

STANFORD UNIVERSITY