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UNKNOTTING SPHERES VIA SMALE

Roporro DE Sario

It is shown here that a topological #n-sphere which is
embedded in Euclidean m-space R™ with a transverse field of
(m—mn)-planes (in the sense of Whitehead) bounds a topological
(n+1)-disc in R™, provided m>n+2>4 and n+4. On the other
hand, Haefliger has constructed C> differentiable embeddings
of the standard (4k—1)-sphere S*! in 6k-space R which are
differentiably knotted (i.e. they do not bound differentiably
embedded 4k-discs in R%), However, by using a sharpened form
of the h-cobordism theorem of Smale it is possible to topologi-
cally unknot these spheres. This is achieved by showing that a
differentiably knotted n-sphere in m-space R™ is so knotted
because of a single bad point (provided m >n +2 >4). The
topological case is then proved by first approximating the
topologically embedded n-sphere by a differentiably embedded
homotopy 7-sphere, and thus reducing it to the differentiable

case,

Differentiable or smooth will mean of class C=, An n-disc is a
contractible, compact, smooth #-manifold with simply connected bounda-
ry. A pair of disc (B™, B") is a pair of discs such that B = B" N dB™,
where 0M denotes the boundary of a manifold M, and where B" meets
0B™ transversally, A theorem of Smale [4] asserts that an n-disc for
n = 6 is diffeomorphic to the standard n-disc D” in R”. Now let
(D™, D™ be the standard pair of dises.

ProposITION 1. A pair of discs (B™, B") is diffeomorphic to the
standard pair (D™, D), provided m >n + 2 > 7,

Proof, This is an easy consequence of Smale [4; Corollary 3.2].
Let @: (D™, D™) — (Int B™, Int B") be a smooth embedding and consider
the exact homology sequence of the pair (B" — Int @(D"), @(6D"). By
excision Hy(B" — Int ¢(D"), (0D")) ~ H,(B", »(D™)) = 0 and hence the
the inclusion @(0D") — B™ — Int o(D™) is a homotopy equivalence, To
show that the inclusion 0B™ — B" — Int o(D") is also a homotopy equiva-
lence consider the homology sequence of the pair (B™ — Int @(D™),0B").
By Poincaré duality

H(B" — Int (D"), 0B") ~ H*(B" — Int @(D"), p(6D™))
and by excision
H"(B" — Int p(D"), (3D")) ~ H"(B", p(D")) .
Since H*¥(B", p(D")) = 0, it follows that the inclusion 0B*— B* — Int (D™
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induces isomorphisms of homology and hence is a homotopy equivalence.
Therefore, since n > 5, [4; Corollary 3.2] implies that B™ — Int @(D")
is diffeomorphie to S** x I,

Similarly the inclusions @(0D™) — B™ — Int o(D™) and 0B™ — B™ —
Int o(D™) are homotopy equivalences and hence by [4; Corollary 3.2]
the diffeomorphism S ' x I ~ B™ — Int @(D") may be extended to a
diffeomorphism S™* x I ~ B™ — Int @(D™), where, of course, S"* x I
is embedded in S™ ' x I in the natural way. By using this product
structure on (B™ — Int o(D™), B® — Int (D™)) it is possible to define a
diffeomorphism (B™, B*) ~ (D™, D™), proving the proposition.

The following theorem is a slight generalization of the topological
unknotting of a differentiably knotted S* in S™ for m >n + 2 > 6.
Notice that Haefliger [1] has shown that S™ differentiably knots in S™
only if 8n + 3 = 2m = 2n + 4. Recall that a homotopy n-sphere is a
closed, oriented, smooth n-manifold with the homotopy type of S”.

THEOREM A. Any patr (V™, K" of homotopy spheres, with
m >n + 2> 6, is diffeomorphic to a pair obtained from two copies

of (D™, D*) by tdentifying boundaries together through some dif-
feomorphism (S™! S*=1) — (S, S*),

REMARK. If it is assumed that K™ can be obtained by identifying
two standard n-discs along their boundaries via a diffeomorphism
S**— S*~! then the theorem is true for n > 3.

Proof. The proof is simple; for # = 6 even simpler. If n = 6,
choose an embedding @: (D™, D") — (V™, K*). By Proposition 1 the
pair (V™ — Int (D™), K™ — Int (D)) is diffeomorphic to (D™, D™).
(It is easy to see that (V™ — Int o(D™), K* — Int (D™ is a pair of
dises; for example, if B* = K* — Int @(D"), then by Poincaré duality
H,(B" — p(0D") ~ H*%(B", (0D")) and by execision H"¥(B", p(0D")) ~
H*K", (D"). Since H" (K", p(D")~ H*(K") for © + n, it follows
that B™ — @(0D™) is contractible and hence so is B".)

For n =5 choose disjoint smooth embeddings ¢,: D°—K*t =1, 2)
so that K°® — Int [p,(D®) U @(D?)] is diffeomorphic to S* x I (this is possi-
ble because any homotopy 5-sphere is, according to Milnor, A-cobordant
to S° and hence, by Smale, is diffeomorphic to S°. The embeddings
@; may be extended to smooth embeddings o¢;: (D™, D*) — (V™ K°)
(t =1,2). Now by the previous paragraph V™ — Int p,(D™) is a dise
and hence by the proof of Proposition 1 the @,(0D™)(7 = 1, 2) are defor-
mation retracts of V™ — Int [p,(D™)U @,(D™)]. Therefore, by Smale [4;
Corollary 3.2] the diffeomorphism S* X I~ K® — Int [p(D") U @.(D?)] may
be extended to a diffeomorphism S™ ! x I ~ V™ — Int [p(D™) U @(D™),
and the theorem then follows easily.
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Let K" be a homotopy n-sphere smoothly embedded in S™, m >n+2>6,
and let (S™, S*) be the standard pair of spheres, S* embedded in S™ by
the natural inclusion of B™** in R™*', A homeomorphism f: (S™,K*)—
(S™, S™) of pairs, differentiable except possibly at a single point of K™,
is obtained as follows: map one copy of the (D™, D) of Theorem A
differentiably onto one pair of hemispheres of (S™, S*) and then extend
the map radially to the other copy of (D™, D*) via the diffeomorphism
(8™, 81 —(S™*, S**) of Theorem A (i.e., the cone map) giving the
diffeomorphism up to a point. Thus f unknots K* in S™,

COROLLARY (Hirsch), Let N be a closed tubular neighborhood of
a homotopy m-sphere K™ smoothly embedded in S*"*, Then for n=5
and k = 3 there is a diffeomorphism N ~ S™ x DF,

The closed tubular neighborhood N is a neighborhood of K* in
S»+* which is diffeomorphic to a neighborhood of the zero eross-section
in the normal bundle of K~ in S"**, the latter neighborhood being
the set of all vectors less than or equal to some fixed € > 0., The
following proof replaces the combinatorial arguments of Hirsch [3] by
application of the above theorem.

Proof. Take a closed tubular neighborhood of S™ in S™™*; it is
diffeomorphic to S* x D*. It may be assumed that the closed normal
tube N is embedded in S* x Int D* by the unknotting homeomorphism
f: (8™, K™)—(S™, S") constructed above. Moreover, K may be deformed
into K’ by a differentiable isotopy deforming N into a closed normal
tube N’ of K’, where N’ C Interior N and N’ does not contain the
“bad point” of f. Then N is diffeomorphic to N’ and N is smoothly
embedded in S™ x Int D* by f. Now from an argument similar to that
in Proposition 1 it follows that (S* x D*) — Int f(N’) is diffeomorphie to
S*x S*1x I, Consequently the boundary of f(N') may be deformed iso-
topically onto S* x S*!, Since this isotopy may be extended to a differ-
entiable isotopy deforming f(N’) onto S* x D*, the corollary is proved.

REMARK. Theorem A implies that a smoothly embedded homotopy
n-sphere K* in S™, where m > n + 2 > 6 is topologically unknotted.
It can be shown that the pairs (S™, K") and (S™, S") may be smoothly
triangulated so that the unknotting homeomorphism f: (S™, K™)—(S™, S™)
is a combinatorial equivalence, More generally, however, Zeeman [7]
has shown that a combinatorially embedded S” in S™ is combinatorially
unknotted if m >n + 2. Stallings [5] proves that a locally flat S in
S™ is unknotted if n + 3 <m = 5.

Let G,_,. be the Grassman manifold of (m — m)-planes in R™,
If K” is a topological n-manifold in R™, m > n > 0, then a field of
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(m — n)-planes transverse to K" (or a transverse field) is a continuous
¢: K*—@G,,_,,, such that ¢(z) is transverse (in the sense of Whitehead
[6]) to K" at = for every xc K". A topological n-manifold K" in
S™ is said to have a transverse field if K™ has a transverse field in
S™ — {0} as defined above, where « e S™ — K. :

THEOREM B. A topological n-sphere K* embedded in S™ with a
transverse field unknots, provided m >n + 2 >4 and n # 4.

Of course B follows from Stallings’ result since such a K" is
locally flat in S™. In order to prove B it is necessary to state some
facts about transverse fields. So, suppose K" is a topological n-manifold
in B™ with a transverse field ¢: K — G,,_,,.. The space

E(p) ={(x,y) | ve K, y € p(z)}

may be considered as the total space of the (m — m)-plane bundle over
K induced by o; the fibre over x € K is the (m — n)-plane @(x). Now
by Whitehead [6; page 157, second sentence], given a continuous map
&: K—R, (R, the positive reals), there is a Lipschitz map ¢': K—G,,_,,,
which is an e-approximation to @, and by [6; Theorem 1.3] ¢ may be
chosen so that ¢’ is a transverse field (which is transversally homotopie
to @). Hence we may assume without loss of generality that the given
transverse field @ is Lipschitz.

Define a map
0: E(p) — R™

by 6(x,y) =« +y. By [6; Theorem 1.5] there exists a map p: K— R,
(R, the positive reals) such that if

T; = {(x, v) | (x, v) e E(o), |y | < p(x)} ,

an open subset of E(p), then 6| T, is a regular Lipschitz homeomorphism
of T; onto 6T;. Now define the p-projection © of 6T} onto K by

wo(z,y) =n(x +y) =z .

Then ¢ is said to be of class C" (1 < r < ) if or is of class C” in a
neighborhood N C 0T, of K. In this case by [6; Theorem 3] there
exists a smooth C™ submanifold M™ of N such that w| M: M — K is a
homeomorphism and the map M — G,_,.. sending x into on(x) s a
transverse field on M.

Theorem B is a direct consequence of Theorem A (for n = 3 see
Remark after Theorem A) and the following.

PROPOSITION 2, A pair (S™, K*), where K" is a closed topological
manifold in S™ with a transverse field ¢o: K—@G,,_,,,, is homeomorphic
to a pair (S™, M), where M"* is a smooth C~ submanifold of S™.
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REMARK. The homeomorphism of the pairs (S™, K") and (S™, M™)
which is defined in the following proof is isotopic (homotopie through
homeomorphisms) to the identity map of S™.

Proof. Let p: K— R, be as above; by [6; Theorem 1.10] ¢ may
be assumed to be a C= transverse field. Now choose o, > 0 such that
0 < o, < Inf{o(x) | e K} and let

T ={@, e ke |yl <o}, To=0T;.

Clearly T, — T} and, moreover, the map +: T, — E(p) sending z + y —
(x, /(o — |y 1]))y) defines a homeomorphism of

T,={x+ylzeK yep), |yl < p} onto E(p).

By remarks above there exists a smooth C* submanifold M " of R™
in T, such that 7| M: M — K is a homeomorphism. The homeomorphism
7| M will be extended to a surjective homeomorphism f: S™— S™, The
first step is to extend = | M to a homeomorphism 7: T,— T, onto 7,
in the following way: the image of M under +: T,— E(p) may be
described as the set {(x, a(x)) | v e K, a(x) € p(x), a: K—E™} and so the
map pB: E(p) — E(p) defined by B(x,y) = (x,y — a(x)) is clearly a
homeomorphism of E(p) onto itself. Setting 7T = 8+ gives the
desired extension of 7 | M.

It is a tedious but straightforward verification that for (x + y)e T,
[T(x + y) — (x + y) | — 0 uniformly for all « as |y|— p, and hence by
defining f: S™ — S™ to be, for each s in S™,

{7‘1’(3) (if seT,),

f8) = (f s¢ T, ,

it follows that f is a homeomorphism of S™ onto S™ sending M onto K.
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