THE LACK OF SELF-ADJOINTNESS IN THREE-POINT BOUNDARY VALUE PROBLEMS

J. W. Neuberger

Suppose that $a<c<b, C_{[a, b]}$ is the set of all real-valued continuous functions on $[a, b]$, each of p and q is in $C_{[a, b],}$ $p(x)>0$ for all x in $[a, b]$ and each of P, Q and S is a real 2×2 matrix. The assumption is made that the only member f of $C_{[a, b]}$ so that $\left(p f^{\prime}\right)^{\prime}-q f=0$ and
(d) $\quad P\left[\begin{array}{l}f(a) \\ p(a) f^{\prime}(a)\end{array}\right]+Q\left[\begin{array}{l}f(c) \\ p(c) f^{\prime}(c)\end{array}\right]+S\left[\begin{array}{l}f(b) \\ p(b) f^{\prime}(b)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
is the zero function. It follows that there is a real-valued continuous function K_{12} on $[a, b] \times[a, b]$ such that if g is in $C_{[a, b]}$, then the only element f of $C_{[a, b]}$ so that $\left(p f^{\prime}\right)^{\prime}-q f=g$ and (Δ) holds is given by

$$
f(x)=\int_{a}^{b} K_{12}(x, t) g(t) d t \quad \text { for all } x \text { in }[a, b]
$$

In this note it is shown that if in addition it is specified that Q is not the zero 2×2 matrix, then K_{12} is not symmetric, i.e., it is not true that $K_{12}(x, t)=K_{12}(t, x)$ for all x, t in $[a, b]$.

The union of (a, c) and (c, b) is denoted by R. The symbol j denotes the identity function on $[a, b]$, i.e., $j(x)=x$ for all x in $[a, b]$. If V is a function from $[a, b] \times[a, b]$ and x is in $[a, b]$, then $V(j, x)$ is the function h such that $h(t)=V(t, x)$ for all t in $[a, b]$. If each of f and $\left(p f^{\prime}\right)^{\prime}-q f$ is in $C_{[a, b]}$, then $\left(p f^{\prime}\right)^{\prime}-q f$ is denoted by $L f$.

Given an element g of $C_{[a, b]}$, one has the problem of determining a function f so that

$$
\left\{\begin{array}{l}
L f=g \text { and } \tag{*}\\
(\Delta) \text { holds } .
\end{array}\right.
$$

Denote $\left[\begin{array}{l}0 \\ \int_{a}^{t} 1 / p \\ \int_{a}^{t} q\end{array}\right]$ by $F(t)$ and $\left[\begin{array}{c}0 \\ \int_{a}^{t} g\end{array}\right]$ by $G(t)$ for all t in $[a, b]$.
Then problem (*) may be reformulated as follows: find a function Y from $[a, b]$ to E_{2} such that
$(* *) \quad Y(t)=Y(x)+G(t)-G(x)+\int_{x}^{t} d F \cdot Y$ for all t, x in $[a, b]$ and

$$
\begin{aligned}
& \int_{a}^{b} d H \cdot Y=N \text { where } \\
& \qquad H(x)= \begin{cases}0 & \text { if } x=a \\
P & \text { if } a<x \leqq c \\
P+Q & \text { if } c<x<b \\
P+Q+S & \text { if } x=b\end{cases}
\end{aligned}
$$

The assumption is made for the rest of this paper that only the function Y which is constant at N satisfies (**) if G is constant at N. It follows that for each continuous function G from $[a, b]$ to $E_{2}^{\prime},(* *)$ has exactly one solution.

Consider the function M from $[a, b] \times[a, b]$ to the set of 2×2 matricies which has the following property:

$$
M(t, x)=I+\int_{x}^{t} d F \cdot M(j, x) \text { for all } t, x \text { in }[a, b]
$$

where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Using Theorem B of [2], one has that the unique solution Y of ($* *$) is given by

$$
\begin{gathered}
Y(t)=\int_{a}^{b} K(t, j) d G \text { for all } t \text { in }[a, b] \text { where } \\
K(t, x)=\left\{\begin{array}{l}
-\left[\int_{a}^{b} d H \cdot M(j, t)\right]^{-1} \int_{x}^{b} d H \cdot M(j, x)+M(t, x) \quad \text { if } a \leqq x \leqq t \\
-\left[\int_{a}^{b} d H \cdot M(j, t)\right]^{-1} \int_{x}^{b} d H \cdot M(j, x) \quad \text { if } t<x \leqq b
\end{array}\right.
\end{gathered}
$$

That $\left[\int_{a}^{b} d H \cdot M(j, t)\right]^{-1}$ exists for all t in $[a, b]$ follows from the assumption that was made above.

Some straightforward calculation gives that

$$
K(t, x)=\left\{\begin{array}{l}
M(t, b) U(x) M(b, x)+M(t, x) \quad \text { if } a \leqq x \leqq t \\
M(t, b) U(x) M(b, x) \quad \text { if } t<x \leqq b
\end{array}\right.
$$

where

$$
\begin{aligned}
& U(x)=\left[\begin{array}{ll}
u_{11}(x) & u_{12}(x) \\
u_{21}(x) & u_{22}(x)
\end{array}\right]=-\left[\int_{a}^{b} d H \cdot M(j b)\right]^{-1} \int_{x}^{b} d H \cdot(j, b) \\
& \text { for all } x \text { in }[a, b]
\end{aligned}
$$

Note that $Y=\left[\begin{array}{c}f \\ p f^{\prime}\end{array}\right]$ where f is the unique solution to $(*)$. Denote K by $\left[\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right]$. It follows that

$$
f(t)=\int_{a}^{b} K_{12}(t, j) g d j \quad \text { for all } t \text { in }[a, b]
$$

Theorem A. If Q is not the 0-matrix (i.e., (*) is r three-point problem) then it is not true that $K_{12}(t, x)=K_{12}(x, t)$ for all x and t in R.

Proof. Denote M by $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$. From [2] one has the following identities:

$$
\left.\begin{array}{l}
B(t, x)=A(t, b) B(b, x)+B(t, b) D(b, x) \quad \text { if } x \text { and } t \text { are in }[a, b] \\
\text { (since } M(t, b) M(b, x)=M(t, x) \text { for all } t, x \text { in }[\alpha, b]), \\
A(t, x) D(t, x)-B(t, x) C(t, x)=1 \quad \text { (i.e., det } M(t, x)=1), \\
A(t, x)
\end{array}\right) D(x, t), \quad \begin{aligned}
& B(t, x)=-B(x, t), \quad \text { and } \\
& C(t, x)=-C(x, t) \quad \text { if } x \text { and } t \text { are in }[a, b] .
\end{aligned}
$$

Note that $L A(j, x)=L B(j, x)=0$ if x is in $[a, b]$.
Suppose that

$$
K_{12}(t, x)=K_{12}(x, t) \quad \text { for all } x \text { and } t \text { in } R .
$$

If $a<x<t<b$, then

$$
\begin{aligned}
K_{12}(t, x)= & {\left[A(t, b) u_{11}(x)+B(t, b) u_{21}(x)\right] B(b, x) } \\
& +\left[A(t, b) u_{12}(x)+B(t, b) u_{22}(x)\right] D(b, x)+B(t, x)
\end{aligned}
$$

and

$$
\begin{aligned}
K_{12}(x, t)= & {\left[A(x, b) u_{11}(t)+B(x, b) u_{21}(t)\right] B(b, t) } \\
& +\left[A(x, b) u_{12}(t)+B(x, b) u_{22}(t)\right] D(b, t) .
\end{aligned}
$$

Using the identities listed above,

$$
\begin{aligned}
A(t, b) & {\left[-u_{11}(x) B(x, b)+u_{12}(x) A(x, b)-B(x, b)\right] } \\
& +B(t, b)\left[-u_{21}(x) B(x, b)+u_{22}(x) A(x, b)+A(x, b)\right] \\
= & A(t, b)\left[u_{12}(t) A(x, b)+u_{22}(t) B(x, b)\right] \\
& -B(t, b)\left[u_{11}(t) A(x, b)+u_{21}(t) B(x, b)\right]
\end{aligned}
$$

An examination of this expression yields the fact that it remains true if x and t are interchanged or x is set equal to t.

Denote by x a number in R. Since $u_{11}, u_{11}, u_{22}, u_{22}$ are constant on (a, c) and (c, b) and $A(j, b)$ and $B(j, c)$ are independent solutions v of $L v=0$, it follows that

$$
-u_{11}(x) B(x, b)+u_{12}(x) A(x, b)-B(x, b)=u_{12}(t) A(x, b)+u_{22}(t) B(x, b)
$$

and

$$
\begin{array}{r}
\left.-u_{21}(x) B(x, b)+u_{22}(x) A(x, b)+A(x, b)=-u_{11}(t) A(x, b)-u_{21}(t) B(x, b)\right] \\
\text { for all } x \text { and } t \text { in } R .
\end{array}
$$

Similarly, it follows that
(i) $-u_{11}(x)-1=u_{22}(t)$,
(ii) $u_{12}(x)=u_{12}(t)$,
(iii) $u_{21}(x)=u_{21}(t)$ and
(iv) $u_{22}(x)+1=-u_{11}(t)$ for all x and t in R.
(ii) and (iii) imply that u_{12} and u_{21} are constant on R. (i) and (iv) give the same information so that only (i) need be considered. Denote $u_{11}(c-)$ by $c_{1}, u_{22}(c-)$ by $c_{2}, u_{11}(c+)$ by c_{3} and $u_{22}(c+)$ by c_{4}. Hence (i) gives that $c_{1}+c_{2}=-1, c_{1}+c_{4}=-1, c_{3}+c_{4}=-1$ and $c_{3}+c_{2}=-1$. But these equations imply that $c_{2}=c_{4}$ and $c_{1}=c_{3}$, i.e., that u_{11} and u_{22} are constant on R. Hence, U is constant on R. If t is in (a, c) and x is in (c, b), then

$$
\left[\int_{a}^{b} d H \cdot M(j, b)\right]^{-1} \int_{t}^{x} d H \cdot M(j, b)=U(x)-U(t)=0
$$

so that

$$
Q M(c, b)=\int_{t}^{x} d H \cdot M(j, b)=0
$$

i.e., $Q=0$, a contradiction. Hence the theorem is established.

If n is an integer greater than 3, this theorem can be extended to n point boundary value problems. This is the case in which H is a step function with n discontinuities (with one at a and another at b). What happens when H has points of change other than discontinuities is not at all clear to this author.

References

1. J. W. Neuberger, Concerning boundary value problems, Pacific J. Math. 10 (1960), 1385-1392.
2. H. S. Wall, Concerning continuous continued fractions and certain system of Stieltjes integral equations, Rend. Circ. Mat. Palermo II 2 (1953). 73-84.

Received February 1, 1965.
Emory University

