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FURTHER RESULTS IN THE THEORY OF
MONODIFFRIC FUNCTIONS

G. J. KUROWSKI

This paper considers two fundamental problems in the
theory of monodiffric functions; i.e., discrete functions which
satisfy the partial difference equation

f(z + 1) - f(z) = -i[f(z + ί) - /(*)]

on some region of the discrete z-plane, z — m + in, m — 0,
± 1 , ± 2, , n = 0, ± 1 , ± 2, , and which, accordingly,
are analogs of analytic functions.

The first problem considered centers about a process analo-
gous to multiplication. A method of analytic extension is
presented whereby a function defined along the real axis may
be uniquely extended into the upper-half plane as a monodiffric
function. The generalized product of two monodiffric func-
tions may then be defined as the extension of a suitable product
on the real axis. This definition is shown to be consistent
with prior results.

The second problem is concerned with an analog to the
Cauchy integral based upon a discrete singularity function
which tends to zero as | z | becomes large. The desired singu-
larity function is obtained and the analogous integral formula
presented.

Introduction and notation* In recent years, considerable atten-
tion has been given to the development of discrete and semi-discrete
analogs of analytic functions (see, for example, references [1] through
[4], [6]). The theory of these discrete or semi-discrete functions is
obtained by deriving satisfactory analogs of classic results in the theory
of analytic functions as well as finding results which have no direct
analog in the classic theory.

The discrete analogs of analytic functions have been called by
several names. Duffin [1] calls them discrete analytic functions, Ferrand
[2] calls them preholomorphic functions, and Isaacs [3, 4] calls them
monodiffric functions. In this paper we shall be using the definitions
given by Isaacs which differ from those given by Duffin and Ferrand
and, accordingly, we shall refer to these discrete analogs as monodiffric
functions.

One central problem which has not been completely answered is
the analog of a closed multiplication. That is, a procedure which is
analogous to multiplication such that the "product'' of two monodiffric
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functions would itself be a monodiffric function. Such analogs have
been given, Isaacs [4], for the product of monodiffric functions with z.
In this paper, we shall propose a method of analytic extension for
monodiffric functions and apply this to define a generalized product of
two monodiffric functions.

A second development in this paper concerns a monodiffric analog
of the Cauchy integral formula. In [3], Isaacs obtains an analog of
this formula based on a singularity function (called a wedge function)
which tends to infinity with \z\. Accordingly, we will apply an opera-
tional calculus method, as used in [1] and [6], to obtain an integral
formula based upon a singularity function which tends to zero as the
modulus of z tends to infinity.

Throughout this paper, we will be concerned with the monodiffric
functions of the first kind as defined by Isaacs [3]. That is, we
consider discrete functions f(z) defined on the lattice of points z — m + in
where m — 0, ± 1 , ± 2, •; n = 0, ± 1 , ± 2, which satisfy the
partial difference equation

(1.1) f(z + 1) - f(z) = -i[f(z + i) - /(*)] ,

for some range of values of z. It should again be noted that this
definition is not the definition used by either Duffin [1] or Ferrand [2]
in their treatises on discrete analytic functions.

In our discussion it will be convenient to use the translation
operators

(1.2) E}f(z) =f(z + k) k>0; Etf{z) = f(z) ,

Eίf(z) = f(z + ik) k>0; EίM = f(z) ,

and the difference operators

(1.3) ΔJ{z) = f(z + 1) - f(z) ,

ΔJ(z) = f(z + i)- f(z) .

Defining the operator L by the relation

(1.4) Lf(z) = [(1 + i)I - El - iE}]f(z) ,

where If(z) = f(z), enables us to rewrite the defining equation (1.1)
in the form

(1.1)' Lf(z) = 0 .

Additional notation will be introduced as required.

2* Analytic extension for monodiffric functions* Isaacs [3]
defines a discrete function f(z) on the lattice to be monodiffric of the



FURTHER RESULTS IN THE THEORY OF MONODIFFRIC FUNCTIONS 141

first type at the point z if it satisfies the defining equation (1.1) there.
Since we shall consider only such functions, we shall refer to them
simply as monodiffric functions.

This defining equation (1.1) is easily solved by Boole's method [5],
The solution is, in terms of an arbitrary function g(x)

G(z) = [ i E l + i γ g ( x ) y ^ O .

We rewrite this solution by expanding the indicated operator using the
binomial theorem. Thus,

jf J denotes the binomial coefficient. However, since ί ? ) — 0

whenever k > y, an equivalent expression is

(2.1) G ( z ) - Σ

This summation for a given integral value of y is a finite sum because
of the noted property of the binomial coefficients. Hence, convergence
of (2.1) is assured for all finite z.

Equation (2.1) defines the analytic extension of g(x) into the upper
half plane of the lattice. That is, G(z) is a monodiffric function whose
values on the real axis are g(x). By the defining equation (1.1), G(z)
is uniquely determined.

Let us consider an application of (2.1). We introduce the factorial
polynomials

(2.2) (x)n - x(x - 1) (x - n + 1) ,

{y)n = y(y - 1) (y - n + 1).

Using the well-known [5] result

Jί(x)n = (n)k(x)n_k ,

we obtain as the extension of g(x) = (x)n

(2.3) G(z)

Equation (2.3) is recognized as the definition given by Isaacs [3] for
the monodiffric pseudo-power z{n\ Thus, we conclude that these pseudo-
powers of z may be obtained by the analytic extension of the factorial
polynomial (x)n into the lattice.

Analytic extension can be thought of as the application of the
operator
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(2.4) g ? = | j

(we may call g7 the extension operator) to a function g(x) on the real
line; i.e., we could write (2.1) in the form G(z) = &[g(x)]. Clearly
g" is a linear operator and consequently linear functional identities are
preserved by g3. For example, if S{2)(z) = gr[sin2£] and C{2)(z) =
g^cos2^], these extensions satisfy the identity

3* Multiplication of monodiffric functions. The method of
analytic extension (2.1) enables us to specify for monodiίfric functions
a process analogous to multiplication. Accordingly, we define the
generalized product, denoted by F(z) G(z), of two monodiffric functions
F(z) and G(z), which are the extensions of f(x) and g(x) respectively,
to be the extension of the product f(x)g(x — 1). That is,

(3.1) F{z) G(z) = Σ #($)#[ f(x)g(x - 1)] .

Equation (3.1) may be transformed into a more convenient form on
using the finite-difference analog of Leibnitz's rule

(3.2) Δl[f(x)g(x - 1)] = Σ (ϊ)A?f{x)Al-mg{x - 1 + m) .

Algebraic manipulation of (3.1) using (3.2) and the relation

(y)m = (y)p(v - P)«_*

enables us to write (3.1) in the form

(a ) F(z). G(z) = Σ iiϊ) Xf(x) Σ Hy ~ P)^(x + V - 1) .

However, since G(z) is the extension of g(x), we have

( b ) G(z - 1

Substitution of (b) into (a) gives the final result,

(3.3) F(z).G(z) =

Equation (3.3) will be taken as the definition for the generalized
product F(z) G(z). By construction, this product is monodiffric.

In [4], Isaacs defines a multiplication z G(z) of a monodiffric function
G(z) by z with the following relation:
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(3.4) z-G(s) = xG(z-l) + ίy G(z - i) .

If, in (3.3), we take f(x) — x, whose extension is z — z{1\ we obtain
(3.4). Thus, the definition of this generalized product (3.3) is consistent
with the definition (3.4) given by Isaacs for multiplication by z. In
particular, this implies that the iterative definition

(3.5) z - z { n ) = z { n + 1 \ n ^ O ; z ( 0 ) = 1 ,

for the generation of the pseudo-powers of z is consistent with the
definition (3.3).

In order to extend Isaacs' definition (3.4) for the product z G(z), we
have defined F(z)-G(z) = &[f(x)g(x - 1)]. However, since G(z)-F(z) =
&[g(x)f(x — 1)], this generalized product is not commutative. A similar
analysis shows that this generalized product is not associative. This
product is distributive over addition

(3.6) F(z) [G(z) + H(z)] = F(z) G(z) + F(z) H(z) , and

[G(z) + H(z)] F(z) = G(z)-F(z) + H(z) F(z) .

A second generalized product defined by F(z)®G(z) = tf[f(x)g(x)]
is both commutative and associative. However, this definition is not
consistent with Isaacs' result (3.4). It is easily established that

(3.7) z ® G(z) = &[xg(x)] = xG(z) + iy G(z + 1 - i) .

4* Monodifϊric analog of the Cauchy integral formula* In
[3], Isaacs obtains an analog of the Cauchy integral formula based
upon a singularity function which tends to infinity with \z\. Accord-
ingly, in this section we shall reconsider this question of an analog
for the integral formula and develop one based upon a singularity
function which tends to zero as | z \ becomes large.

Before we can proceed with this development, it is advisable to
recall some of the definitions given by Isaacs and to introduce some new
terminology. Isaacs [3] defines the conjoint path sum along the dis-
crete path P, denoted by

(4.1) Σ / ( * ) , Φ)Λz
(P)

as follows:

(a) The contribution to (4.1) in going from z to z + 1 is
f(z)g(z + 1) ,

(b) The contribution to (4.1) in going from z to z + i is
if(z)g(z + i) ,

(c) The contribution to (4.1) in going from b to a is the negative
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of the contribution to (4.1) in going from a to 6.
Corresponding to the operator L which defines monodiffric functions,
we introduce the operator B by the relation

(4.2) B = (1 + i)I - Er1 -

A discrete function g(z) is said to be co-monodiffric at the point z if
Bg(z) — 0. It is co-monodiffric on a domain D of the lattice if it is
co-monodiffric at every point of D.

A basic square of the lattice, identified by the point a in its lower
left corner and denoted by S(a) is the set

(4.3) S(a) = {a + (k + in); k = 0, 1 n = 0,l}.

The exterior boundary P(S) of S(a) is the set

(4.4)
a im

+ "•> * = 0 , l , 2 )
= 0, 2 )

The point {a + i + 1} of the basic square S(a) is said to be the interior
of S(a), denoted by I(a).

A domain D of the lattice is a finite union of basic squares S((Xj).
The interior / of D is the union of the interior points of the basic

squares S(oc3) comprising D. The exterior boundary of D, denoted by
P, is the union of the exterior boundaries of the composite basic squ-
ares of D intersected with the complement 7 of I. That is,

(4.5)

and

(4.6)

= U

P=[\JP(aj)]f)ϊ.

The following diagram illustrates these definitions for a domain D com-
posed of two basic squares (shaded). To facilitate the example, we
let k stand for the point zk.

I l l llO J 9

£={2,3,4,13 6,12,13,14}

I={13,14}

^={1,2, -..,11,12}.

A closed path P is said to include a basic square S(a) if all the vertices of
S(a) are points of the domain determined by P. With these definitions,
the following theorems are readily established for a basic square S(a).
Their extension to domains D given by (4.5) follows by juxtaposition.
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THEOREM 1. [Green's Identity] Let f(z), g(z) be lattice functions
defined on a domain D and its exterior boundary P. Then,

(4.7) i Σ Σ ίf(z)Bg(z + l + i) + g(z + l + i)Lf(z)}

THEOREM 2. [Cauchy Integral Theorem] If f(z) is monodiffric
and g(z) is co-monodiffric on the domain D and if P is any closed
path contained in D, then

(4.8) Σ / ( « ) , 0(2)^ = 0 .
( P )

The formula (4.8) was obtained by Isaacs [3] in a somewhat dif-
ferent context. He defined those pairs of functions /, g which satisfied
(4.8) on a basic square to be conjoint monodiffric and proved that if
f(z) and g(z) are conjoint monodiffric, then (4.8) is valid over a closed
path in D and further that if (4.8) is valid over all closed paths, then
f(z) and g(z) are conjoint monodiffric on the domain. By virtue of
Theorem 1 and 2 above, we have the following:

THEOREM 3. The discrete functions f(z) and g(z) are conjoint
monodiffric on a domain D if f(z) is monodiffric and g(z) is co-
monodiffric on D.

To develop an analog of the Cauchy integral formula, the Green's
identity (4.7) enables us to specify desirable properties for a singularity
function. Thus, we seek a function G(z) such that

( i ) BG(z) — 0 for all z of the lattice except the point z — 1 + i
where BG(1 + i) = 1.

(ii) I G(z) I tends to zero as | z | becomes large.
For the moment, let us ignore the second of these properties for G(z)

and solve the difference equation

(4.9, ««.,={•" xφ0 7 °
( 1 if x = y = 0

The solution to (4.9) could readily be translated to satisfy property (i).
Equations (4.9) is solved using the method of generating functions.
Thus we define

( a) H(u, *) = Σ Σ h(z)u*t" .
x y

Substitution into (4.9) results in

(b) H(u, t) = [(1 - u) + ί(l - t)Γ
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Expanding (b) in a power series and comparing with (a) gives the
following

(4.10) h(z) = , y x ^

0 , all other values of x, y

Investigation of h(z) shows that property (ii) is violated and further
shows that h(z) is a wedge function as defined by Issacs [3]. Accord-
ingly, h(z) together with Theorem 1 results in one of the analogs of
the Cauchy integral formula stated by Isaacs. However, h(z) does not
possess the desired property (ii) for large values of \z\.

In order to obtain a singularity function having both properties
(i) and (ii), we adopt the methods of the operational calculus as used
by Duffin [1], Kurowski [6] and others. Such considerations lead im-
mediately to the following function (whose singular point is z ~ 0)

(4.11) G(z; 0) = (2ττ)-2 Γ Γ ei{a*+hy)Q(a, b)dadb ,
J—πJ—π

where

Q(a, b) = [(1 - e-ia) + ί(l - β-*6)]"1 .

It is easily verified that G(z; 0) satisfies requirement (i) for the
singular point z — 0. Since G(z; 0) can be regarded as being the
Fourier coefficients of Q(ay 6), an integrable function on the indicated
square of integration, G(z; 0) tends to vanish as | z \ becomes large by
the Riemann—Lebesgue theorem. To obtain the singularity function
G(z; 1 + i) which satisfies property (i), we replace x by x — 1 and y
by y — 1 in (4.11). By the remarks above, G(z; 1 + i) has both of
the desired properties (i) and (ii). By (4.7) we have the following
analog of the Cauchy integral formula.

THEOREM 4. Let f(z) be monodiffric on a domain D of the lattice
which includes the basic square S(0). Let G(z; 1 + i) be the singu-
larity function defined in (4.11) with x replaced by (x — 1) and y
replaced by (y — 1). If P is any closed path in D which includes
S(0), then

(4.12) Σ/(*0, G(z; 1 + i)Δz = if(0) ,
(P)

Otherwise the value of this conjoint path sum is zero.

An elementary translation of the parametric point (1 + i) of the
singularity function G(z; λ) yields the general analog of the Cauchy
integral formula.
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